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Abstract In this paper, we investigate nonlinear
dynamical responses of two-degree-of-freedom airfoil
(TDOFA) models driven by harmonic excitation under
uncertain disturbance. Firstly, based on the determin-
istic airfoil models under the harmonic excitation, we
introduce stochastic TDOFA models with the uncer-
tain disturbance asGaussianwhite noise. Subsequently,
we consider the amplitude–frequency characteristic of
deterministic airfoil models by the averaging method,
and also the stochastic averaging method is applied
to obtain the mean-square response of given stochas-
tic TDOFA systems analytically. Then, we carry out
numerical simulations to verify the effectiveness of
the obtained analytic solution and the influence of har-
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monic force on the system response is studied. Finally,
stochastic jump and bifurcation can be found through
the random responses of system, and probability den-
sity function and time history diagrams can be obtained
via Monte Carlo simulations directly to observe the
stochastic jump and bifurcation. The results show that
noise can induce the occurrence of stochastic jump and
bifurcation, which will have a significant impact on the
safety of aircraft.

Keywords Airfoil models · Uncertain disturbance ·
Averaging method · Amplitude–frequency response ·
Stochastic jump and bifurcation

1 Introduction

A two-degree-of-freedom airfoil (TDOFA) models is a
typical self-excited system with rich nonlinear dynam-
ical behaviors, such as limit cycle oscillation, bifur-
cation, and chaos [1]. The limit cycle oscillation of
airfoil is an important problem and normally associ-
ated with flutter. In practical aircraft design, the flut-
ter phenomenon is not rare; sometimes they are even
very prominent and generally lead to the possible great
disaster. Accordingly, predicting the amplitude and fre-
quency of flutter oscillation via the analytical or numer-
ical techniques is very important, and it has been an
active area of research for many years.

Many methods have been proposed to investigate
the responses of TDOFA systems, such as the harmonic
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balance method (the describing function method or lin-
earization method) [1–5], the center manifold theory
[6], the high-dimensional harmonic balance method
[7], the incremental harmonic balance method [8], and
the homotopy analysis method [9]. The harmonic bal-
ance method is applied to obtain an equivalent linear
system, and then, the traditional methods for linear sys-
tem can be employed [1]. Shen [2] used the first-order
harmonic balance method to investigate the approxi-
mate analytical solution. Lee et al. [3,4] investigated
the dynamical response of a coupled TDOFA systems
with cubic stiffness nonlinearity in both degrees of free-
domby the harmonic balancemethod. Liu and Zhao [5]
applied the equivalent linearization method to investi-
gate the bifurcation behavior of an airfoil with a cubic
nonlinearity in the pitch degree of freedom, and the
comparisons of an approximately analytical solution
with the numerical results are presented. Liu et al.
[6] analyzed the frequency of the limit cycle oscil-
lation by the center manifold method. Liu et al. [7]
investigated the nonlinear TDOFA system by the high-
dimensional harmonic balance method. Raghothama
et al. [8] applied the incremental harmonic balance
method to study the limit cycle flutter of the nonlinear
airfoil. In addition, Chen et al. [9] proposed the homo-
topy analysis method to study the nonlinear aeroelas-
tic system of an airfoil for both weakly and strongly
nonlinear terms. Therefore, for the deterministic case,
many approximate methods have been well developed
to predict the response of system in most flutter cases,
such as high flow speeds, weakly and strongly nonlin-
ear systems. The accuracy of the approximate solution
can satisfy the realistic requirement.

However, it is noted that random perturbation is
usually neglected in most of those airfoil aeroelastic
studies. Random factors exist everywhere in real world
without exaggeration. Thus, it is necessary to investi-
gate the airfoil system subject to stochastic excitation.
In the past few years, with the development and broad
application of random dynamical systems, there have
been some attempts to consider different techniques
in random excited system to get the system responses
[10–20]. For instance, Poirel et al. [10,11] investigated
the random flutter of airfoil and they also obtained
the numerical results by a probabilistic and statistical
method. Du et al. [17] investigated the stochastic res-
onance in an underdamped quartic double-well poten-
tial with noise and time delayed feedback. Hu et al.
[18] proposed a moment Lyapunov exponent method

to interpret and analyze the stochastic stability for a
binary airfoil driven by a non-Gaussian colored noise.
Singh et al. [19] investigated the stochastic stability and
dynamics of a random two-dimensional airfoil with
structurally nonlinear. Xu et al. [20] proposed a new
technique to deal with strongly nonlinear stochastic
systemswith fractional derivative damping and random
harmonic excitation.

As we all know, the TDOFAmodels can be regarded
as two coupled Duffing equations. And the dynamical
behaviors of Duffing systems with random excitation
have been explored successfully in different techniques
[21–25]. In this paper, the TDOFA models with har-
monic excitation and additive noise will be considered.
The steady-state responses will be presented analyti-
cally by applying the stochastic averaging method. We
also find the stochastic jump for an airfoil flutter sys-
tem subject to a harmonic excitation and additive noise
excitation.

The paper is organized as follows: In Sect. 2, we
described the deterministic TDOFA model and based
on the deterministic airfoil models, we established
the stochastic TDOFA models by introducing the ran-
dom fluctuations. In Sect. 3, the amplitude–frequency
response in deterministic case and the mean-square
response in stochastic case can be obtained by applying
the averaging method or stochastic averaging method,
respectively, and the comparisons of an approximately
analytical solution with the numerical results are pre-
sented. In Sect. 4, the stochastic jump and bifurcation
are investigated based on the steady-state probability
density and the response. Conclusion will close this
paper in Sect. 5.

2 The description of stochastic TDOFA models

In this section,we introduce a stochasticTDOFAmodel
with cubic stiffness nonlinearity in two degrees of free-
dom, which oscillates in the pitch and plunge direc-
tions. Figure 1 gives the symbols used in the analysis
of TDOFA motion. The symbol α represents the air-
foil pitch angle, positive if nose up, and h denotes the
plunging deflection, positive if downward. The elastic
axis is located at a distance ahb from the mid-chord,
while the center of mass is located at a distance xαb
from the elastic axis, where b is the semi-chord length
of the airfoil. Both distances are positive when mea-
sured toward the trailing edge of the airfoil.
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Fig. 1 Schematic diagram of TDOFA motion

Considering an airfoil placed in a stationarymedium,
the equations of motion are shown below after neglect-
ing the aerodynamics terms in the equations given by
Fung [26]. For nonlinear restoring forces, the coupled
bending-torsion equations for the airfoil with cubic
stiffness nonlinearity can be written as follows

mḧ + Sα̈ + Chḣ + Ḡ (h) = P (t) , (1a)

Sḧ + Iαα̈ + Cαα̇ + M̄ (α) = Q (t) . (1b)

where Ḡ (h)=Kh
(
h+βhh3

)
, M̄ (α)=Kα

(
α+βαα3

)

denotes the nonlinear plunge and pitch stiffness terms,
respectively. The dot over the variables denotes differ-
entiation with respect to the time t . S represents the
airfoil static moment about the elastic axis. The sym-
bols m, Ch , Cα , and Iα denote the airfoil mass per unit
length, damping coefficient in plunge, damping coeffi-
cient in torsion, andwingmassmoment of inertia about
elastic axis, respectively. P (t) and Q (t) are, respec-
tively, the externally applied force and moment acting
on the airfoil.

By introducing the followingnon-dimensional trans-
formations:

ξ = h

b
, τ = Ut

b
, Kξ = Kh, xα = S

bm
,

ωξ =
(
Kξ

m

)1/2

,

ωα =
(
Kα

Iα

)1/2

,� = ωξ

ωα

,U∗ = U

bωα

,

rα =
(

Iα
mb2

)1/2

,

ζξ = Ch

2(mKh)
1/2 , ζα = Cα

2(IαKα)1/2
,

G (ξ) = G (ξ)

Kξ

,

M (α) = M (α)

Kα

, p (τ ) = P (τ ) b

mU 2 , r (τ ) = Q (τ )

mU 2r2α
.

in which ωξ and ωα are the uncoupled natural frequen-
cies in the plunge and pitch degree of freedom, respec-
tively; ζξ and ζα are the damping ratios in the plunge
and pitch degree of freedom, respectively; rα is the
radius of gyration about the elastic axis; and p (τ ) is
the non-dimensional applied force and r (τ ) is the non-
dimensional moment. Therefore, Eqs. (1a), (1b) can be
written in a non-dimensional form as

ξ ′′ + xαα′′ + 2ζξ

�

U∗ ξ ′ +
( �

U∗
)2
G (ξ) = p (τ ) ,

(2a)
xα

r2α
ξ ′′ + α′′ + 2ζα

1

U∗ α′ + 1

U∗2 M (α) = r (τ ) . (2b)

where the prime denotes differentiation with respect to
the non-dimensional time τ .

In this paper, we only consider the situation of the
externally applied force and moment is harmonic func-
tion. Without loss of generality, we assume that the
externally applied moment is sinusoidal and the exci-
tation is only applied in the pitch degree of freedom. In
this case, p (τ ) = 0 and we write

Q (τ ) = Q0 sin (ωτ) ,

and let

F = Q0

mU 2r2α
,

then the right-hand sideofEq. (2b) becomes F sin (ωτ).
Based on the deterministic systems (2a), (2b), we

assume that the harmonic excitation combined with
random excitation is only applied in the pitch degree
of freedom. In this investigation, we consider the air-
foil system is provided with slight coupling and weak
nonlinear; then, the stochastic TDOFA models can be
obtained as

ξ ′′ + ε2xαα′′ + 2ε2ζξΩξ ξ
′ + Ω2

ξ

(
ξ + ε2βξ ξ

3
)

= 0, (3a)

ε2
xα

r2α
ξ ′′ + α′′ + 2ε2ζαΩαα′ + Ω2

α

(
α + ε2βαα3

)

= ε2F sin (ωτ) + εη (τ) . (3b)

in which Ωξ = �
U∗ , Ωα = 1

U∗ , 0 < ε � 1 is a small
parameter, η (τ) is a Gaussian white noise and has the
following statistical property
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E [η (τ)] = 0, E [η (τ) η (τ + τ1)]

= Dδ (τ1) , τ1 > 0. (4)

here E [ · ] denotes the mathematical expectation
operator and D is the noise intensity.

3 The theoretical analysis of TDOFA models

3.1 The deterministic TDOFA system

In this subsection, we first consider the deterministic
case (D = 0). Then, Eqs. (3a), (3b) reduce to a deter-
ministic differential equation driven by harmonic exci-
tation, which can be rewritten as

ξ ′′ + ω∗2
ξ ξ = ε2 f (ξ, α) , (5a)

α′′ + ω∗2
α α = ε2g (ξ, α) . (5b)

where

ω∗2
ξ = Ω2

ξ

(
1 + ε2σ1

)
, ω∗2

α = Ω2
α

(
1 + ε2σ2

)
,

f (ξ, α) = σ1Ω
2
ξ ξ −

(
xαα′′ + 2ζξΩξ ξ

′ + Ω2
ξ βξ ξ

3
)

,

g (ξ, α) = σ2Ω
2
αα + F sin (ωτ)

−
(
xα

r2α
ξ ′′ + 2ζαΩαα′ + Ω2

αβαα3
)

.

in which σ1, σ2 are the detuning parameters of plunge
and pitch motion.

In this investigation, we only consider ω∗
ξ = ω∗

α =
ω. In this case, the detuning parameters of plunge and
pitch motion can be rewritten as

σ1 =
(

ω2

Ω2
ξ

− 1

) /
ε2, σ2 =

(
ω2

Ω2
α

− 1

) /
ε2. (6)

Now let ξ0, α0 denote the solutions of systems (5a),
(5b), which can be obtained by averaging method.
Introducing the Van der Pol transformations as follows

α0 = A0 (τ ) cos
(
Φα0

)
,

α′
0 = −ωA0 (τ ) sin

(
Φα0

)
, (7a)

ξ0 = B0 (τ ) cos
(
Φξ0

)
,

ξ ′
0 = −ωB0 (τ ) sin

(
Φξ0

)
, (7b)

Φα0 = ωτ + θα0 (τ ) , Φξ0 = ωτ + θξ0 (τ ) . (7c)

Substituting Eqs. (7a), (7b) into Eqs. (5a), (5b) then
one can obtain

A′
0 = −ε2

ω
g (ξ0, α0) sin

(
Φα0

)
, (8a)

θ ′
α0

= − ε2

ωA0
g (ξ0, α0) cos

(
Φα0

)
, (8b)

B ′
0 = −ε2

ω
f (ξ0, α0) sin

(
Φξ0

)
, (8c)

θ ′
ξ0

= − ε2

ωB0
f (ξ0, α0) cos

(
Φξ0

)
. (8d)

Applying the averaging principle, we arrive at

A′
0 = −ε2

ω

1

2π

∫ 2π

0
g (ξ0, α0) sin

(
Φα0

)
dΦα0 , (9a)

θ ′
α0

= − ε2

ωA0

1

2π

∫ 2π

0
g (ξ0, α0) cos

(
Φα0

)
dΦα0 ,

(9b)

B ′
0 = −ε2

ω

1

2π

∫ 2π

0
f (ξ0, α0) sin

(
Φξ0

)
dΦξ0 , (9c)

θ ′
ξ0

= − ε2

ωB0

1

2π

∫ 2π

0
f (ξ0, α0) cos

(
Φξ0

)
dΦξ0 . (9d)

Substituting the f (ξ0, α0) , g (ξ0, α0) intoEqs. (9a)–
(9d) and letting θ = θξ0 − θα0 yields

A′
0 = − ε2

2ω

[−N2 sin (θ) + N3 + F cos
(
θα0

)]
,

(10a)

θ ′
α0

= − ε2

2A0ω

[
N1 + N2 cos (θ) − F sin

(
θα0

)]
,

(10b)

B ′
0 = − ε2

2ω
[M2 sin (θ) + M3] , (10c)

θ ′
ξ0

= − ε2

2B0ω
[M1 + M2 cos (θ)] . (10d)

where

M1 = σ1Ω
2
ξ B0 − 3

4
Ω2

ξ βξ B
3
0 ,

N1 = σ2Ω
2
αA0 − 3

4
Ω2

αβαA
3
0,

M2 = xαω2A0, N2 = xα

r2α
ω2B0,

M3 = 2ζξΩξωB0, N3 = 2ζαΩαωA0.

Base on the steady-state solution of the deterministic
system, Eqs. (10a)–(10d) satisfy the following condi-
tions

A′
0 = 0, θ ′

α0
= 0, B ′

0 = 0, θ ′
ξ0

= 0. (11)

Then, one can obtain the following amplitude–
frequency relation
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Fig. 2 The comparison of
two methods: a pitch
motion; b plunge motion.
“Dot” harmonic balance
method, “star” averaging
method

(a) (b)

M2
2 = M2

3 + M2
1 , (12a)

(
N2M3

M2
+ N3

)2

+
(
N1 − N2M1

M2

)2

= F2. (12b)

In order to illustrate the effectiveness of averaging
method, the harmonic balance method in Ref. [4] will
be used to verify the approach. The system parame-
ters ε = 1.0, F = 1.5 and the values of other system
parameters are consistent with the Ref. [4]. In Fig. 2, it
is clear that the results obtained by our method show a
good agreement with the results obtained by harmonic
balance method. Moreover, comparing the method we
proposed with the harmonic balance method, the pro-
cess of calculation of the averaging method seems sim-
pler and also can obtain the same results.

3.2 The stochastic TDOFA system

In this subsection, the perturbation technique will be
used to research the effects of the noise and we assume
that the noise intensity is small. Let

α = α0 + α1 = A0 cos
(
Φα0

) + α1, (13a)

ξ = ξ0 + ξ1 = B0 cos
(
Φξ0

) + ξ1. (13b)

where α0 = A0 cos
(
Φα0

)
, ξ0 = B0 cos

(
Φξ0

)
are the

solutions of the deterministic system (5a), (5b) and
α1, ξ1 are small disturbances.

Substituting Eqs. (13a), (13b) into Eqs. (3a), (3b)
and eliminating the high-order small items, we can get
α1, ξ1 to satisfy the stochastic differential equations as
follows

ξ ′′
1 + Ω2

ξ ξ1 = −ε2 f1 (ξ1, α1) , (14a)

α′′
1 + Ω2

αα1 = −ε2g1 (ξ1, α1) + εη (τ) . (14b)

where

f1 (ξ1, α1) = xαα′′
1 + 2ζξΩξ ξ

′
1 + 3Ω2

ξ βξ ξ
2
0 ξ1,

g1 (ξ1, α1) = xα

r2α
ξ ′′
1 + 2ζαΩαα′

1 + 3Ω2
αβαα2

0α1.

On assumption that ε is small, we introduce the
change in variables [27,28]

α1 = A1 (τ ) cos
(
Φα1

)
,

α′
1 = −ΩαA1 (τ ) sin

(
Φα1

)
, (15a)

ξ1 = B1 (τ ) cos
(
Φξ1

)
,

ξ ′
1 = −Ωξ B1 (τ ) sin

(
Φξ1

)
, (15b)

Φα1 = Ωατ + θα1 (τ ) , Φξ1 = Ωξτ + θξ1 (τ ) . (15c)

Substituting Eqs. (15a), (15b) into Eqs. (14a), (14b)
and then the stochastic differential equations for A1 (τ ),
θα1 (τ ), B1 (τ ), θξ1 (τ ) can be derived as

A′
1 (τ ) = ε2

Ωα

g1 (ξ1, α1) sin
(
Φα1

)

− ε

Ωα

η (τ) sin
(
Φα1

)
, (16a)

θ ′
α1

(τ ) = ε2

ΩαA1
g1 (ξ1, α1) cos

(
Φα1

)

− ε

ΩαA1
η (τ) cos

(
Φα1

)
, (16b)

B ′
1 (τ ) = ε2

Ωξ

f1 (ξ1, α1) sin
(
Φξ1

)
, (16c)

θ ′
ξ1

(τ ) = ε2

Ωξ B1
f1 (ξ1, α1) cos

(
Φξ1

)
. (16d)

Substituting f1 (ξ1, α1) , g1 (ξ1, α1) into Eqs. (16a)-
(16d) and using the stochastic averaging method, we
get the Itô stochastic differential equations as follows
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Fig. 3 Steady-state probability density of amplitude A1. “Times”
numerical result, “solid line” analytical result (D = 0.75)

d A1 =
(

−ε2ζαΩαA1 + ε2π S (Ωα)

2A1Ω2
α

)
dτ

+ ε

Ωα

√
π S (Ωα)dW1 (τ ) , (17a)

dθα1 = 3

4
ε2ΩαβαA

2
0dτ

+ ε

ΩαA1

√
π S (Ωα)dW2 (τ ) , (17b)

dB1 = −ε2ζξΩξ B1dτ, (17c)

dθξ1 = 3

4
ε2Ωξβξ B

2
0dτ. (17d)

whereW1 (τ ) ,W2 (τ ) are independent standardWiener
processes and S (Ωα) denotes the value of the spectral
density of η (τ) at Ωα .

Clearly, Eq. (17a) implies that A1 (τ ) is a time-
homogeneous diffusion process because it does not
depend on θα1 (τ ), B1 (τ ) and θξ1 (τ ). So, the proba-
bility density function P (A1, τ ) of A1 (τ ) satisfies the
following Fokker–Plank equation

∂P

∂τ
= − ∂

∂A1

[(
−ε2ζαΩαA1 + ε2

π S (Ωα)

2Ω2
αA1

)
P

]

+ε2π S (Ωα)

2Ω2
α

∂2P

∂A2
1

(18)

In the subsection, we just concentrate on the steady-
state solution. By letting ∂P(A1,τ )

∂τ
= 0, the steady-state

probability density of A1 (τ ) can be written as

P (A1) = A1

σ 2 exp

(

− A2
1

2σ 2

)

, σ 2 = π S (Ωα)

2ζαΩ3
α

. (19)

Nowwe carry out numerical simulation to verify the
correctness of the analytical solution (see Fig. 3). We

can see that the numerical result of steady-state proba-
bility density is coincident with the analytical result.

Appling Eq. (19), we can obtain the first- and
second-order moments of A1 (τ ) as follows

E (A1) =
∫ +∞

0
A1 · P (A1)d A1 =

√
π

2
σ, (20a)

E
(
A2
1

)
=

∫ +∞

0
A2
1 · P (A1)d A1 = 2σ 2. (20b)

Combining Eqs. (20a), (20b) and (13a), the mean-
square response of pitch motion can be obtained

E
(
α2

)
= E(α0 + α1)

2

= E
[
A0 cos

(
Φα0

) + A1 (τ ) cos
(
Φα1

)]2

= A2
0cos

2 (
ωτ + θα0

) + σ 2. (21)

It is seen from Eq. (21) that the mean-square
response E

(
α2

)
is a periodic function of time τ . Tak-

ing average with respect to time τ , one can obtain the
time-averaging mean-square response as Ref. [29]

〈
E

(
α2

)〉

τ
=

〈
A2
0cos

2 (
ωτ + θα0

)〉

τ
+ σ 2

= A2
0

2
+ σ 2. (22)

where 〈·〉τ = 1
T

∫ T
0 (·)dτ denotes the time-averaging

operator with respect to time τ over one period T .
In order to verify the correctness of analytical solu-

tion, numerical results of original equations (3a), (3b)
are presented to compare the differences between the
numerical simulations and approximately analytical
results in the next step. In this subsection, we choose
the following parameters xα = 0.1, rα = 1.0,U∗ =
1.0,� = 1.0, ζα = ζξ = 0.1, βα = 0.25, βξ =
0, ε = √

0.1, F = 1.5. In Fig. 4, we first consider the
deterministic case, namely D = 0 , and the approxi-
mately analytical results are in good agreement with
the numerical simulation results. Subsequently, the
stochastic case is considered in Fig. 5. It intuitively
shows that the analytical time-averaging mean-square
response coincide well with the numerical results.

For the deterministic case,we also consider the influ-
ence of the amplitude F of harmonic excitation on the
system response. In Fig. 6, we obtain the amplitude–
frequency response curves for different values of F .
We find that the amplitude andmultiple-value response
area will become bigger with the increase in F .
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Fig. 4 Amplitude–frequency responses: a pitch motion; b plunge motion. “Asterisks” numerical result, “solid line” analytical result
(D = 0)
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(α
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τ
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Fig. 5 Time-averaging mean-square response of pitch motion.
“Asterisks” numerical result, “solid line” analytical result (D =
0.01)

4 Stochastic jump

In this section, the stochastic jump of TDOFA sys-
tem is investigated by means of the changes in sys-
tem responses. The values of system parameters are

the same as the previous ones. In fact, stochastic jump
phenomenon can be found from Figs. 4 and 5. As
is shown in Fig. 4, we can find the amplitude of α

and ξ has a jump phenomenon with the increase in
ω, that is, from region 2 into region 3 for amplitude
A0, and from region 2 into region 3 for amplitude
B0; and vice versa. Moreover, similar result can be
found from the mean-square response of α which is
shown in Fig. 5. This phenomenon can be regarded as
bifurcation.

InFigs. 7 and8,wewill verify the jumpphenomenon
through the response and the phase diagrams. Here we
let ω = 1.15, when the initial value is α0 = 3.0, α′

0 =
3.0, ξ0 = 0, and ξ ′

0 = 0, the system will stay at
the upper branch of the multiple-value response area
(region 2) in Fig. 4(a) (see Fig. 7); however, when the
initial value is α0 = 0.5, α′

0 = 0.5, ξ0 = 0.5, and
ξ ′
0 = 0.5, the system will stay at the lower branch (see
Fig. 8).

Now the stochastic jump of TDOFA models sub-
ject to harmonic and random excitation is investi-
gated to observe the effects of random noise. The
Monte Carlo simulation will be used to demonstrate
the steady-state probability density and the responses.
Because the amplitude of pitch motion is A (τ ) =√

α2 (τ ) + [
α′ (τ )

/
ω

]2, the steady-state probability

123



1586 Y. Xu et al.

0.5 1 1.5 2
0

2

4

6

8

10

12

14

ω

A
0

F=1.5

(a)

F=6.0

F=3.0

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

ω

B
0 F=1.5

F=6.0

F=3.0

(b)

Fig. 6 Amplitude–frequency response curves for different excitations: a pitch motion; b plunge motion. “Triangle symbol” F = 1.5;
“plus symbol” F = 3.0; “circle” F = 6.0
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Fig. 7 Responses of the original systems (3a), (3b) with parameters: ω = 1.15, D = 0, α0 = 3.0, α′
0 = 3.0, ξ0 = 0, ξ ′

0 = 0
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Fig. 8 Responses of the original systems (3a), (3b) with parameters: ω = 1.15, D = 0, α0 = 0.5, α′
0 = 0.5, ξ0 = 0.5, ξ ′
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Fig. 9 Steady-state probability densities for amplitude A of pitch
motion in original systems (3a), (3b) with the different noise
intensities and initial values: a D = 0.005, α0 = 3.0, α′

0 =

3.0, ξ0 = 0, ξ ′
0 = 0; b D = 0.05, α0 = 3.0, α′

0 = 3.0, ξ0 =
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0 = 0; c D = 0.8, α0 = 3.0, α′
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D = 0.05, α0 = 0.5, α′
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Fig. 10 Responses of the original system (3a), (3b) for the same intensity of noise and the same initial values: ω = 1.15, D =
0.05, α0 = 3.0, α′

0 = 3.0, ξ0 = 0, ξ ′
0 = 0

density function P (A) of A (τ ) can be obtained by
directly Monte Carlo simulation.

As shown in Fig. 9(a–c), we can see that the noise
will induce the emergence of two peaks of the steady-
state probability density, which means the stochastic
jump occurs. And with the increase in noise intensity,
the height of the small peak will increase gradually;
meanwhile, the height of the large peak will reduce.
In addition, by comparing Fig. 9(d) with Fig. 9(b), we
can see that the steady-state probability density will not
appear the two peaks in Fig. 9(d) under the same noise
intensity, which means the stochastic jump not occurs.
That means that the system responses will not jump to
another state once it gets into a steady state. In the next
part, we just consider that the initial value of system is
taken as α0 = 3.0, α′

0 = 3.0, ξ0 = 0, and ξ ′
0 = 0.

Now, the time history diagrams are plotted to further
illustrate the stochastic jumpphenomenon.As shown in
Fig. 10, when the noise intensity is smaller relatively,
the response of system changes from period motion
of the deterministic case into random quasi-periodic
motion, and it is relatively difficult to jump out of this
stable region once it gets into a steady state. In other
words, the stochastic jump phenomenon is not fre-
quent. However, when the noise intensity is bigger (see
Fig. 11), it intuitively shows the existence of stochastic
jump. Meanwhile, with the increase in noise intensity
gradually, the stochastic jump phenomenon will occur
more and more frequently. Therefore, we can conclude
that the noise can lead to a stochastic jump, which can
be named as stochastic bifurcation due to the change
in steady-state probability density.
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Fig. 11 Responses of the original system (3a), (3b) in pitch motion for the parameters: ω = 1.15, α0 = 3.0, α′
0 = 3.0, ξ0 = 0, ξ ′

0 = 0,
and with the different noise intensities: a D = 0.1; b D = 0.3; c D = 0.5; d D = 0.8

5 Conclusion

In this paper, we investigate the nonlinear dynamical
responses of a coupled cubic nonlinear TDOFA sys-
tem under combined harmonic and Gaussian white
noise excitation. In order to ascertain system response,
the averaging method is used to drive the resultant
equations of motion. It is shown that the numerical
results obtained by the fourth-order Runge–Kutta sim-
ulation of original system (3a), (3b) coincide perfectly
with the analytical solution obtained by the averaging
method for both in deterministic and stochastic case.
The stochastic jump phenomenon has been observed
through the probability density figures and the time his-
tory diagrams with the changes in noise intensity. The
results illustrate that the noise has an essential effect
on the system response, which can induce the stochas-

tic jump phenomenon. In addition, with the increase
in noise intensity gradually, the stochastic jump phe-
nomenonwill occurmore andmore frequently.We also
demonstrate the influences of the initial value and the
noise intensity via the time history and the phase dia-
grams.
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