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Abstract In this paper, an approach based on the syn-
ergistic use of proper orthogonal decomposition and
Kalmanfiltering is proposed for the online healthmoni-
toring of damaged structures. The reduced-ordermodel
of a structure is obtained during an (offline) initial
training stage of monitoring; afterward, effective esti-
mations of a possible structural damage are provided
online by tracking the evolution in time of stiffness
parameters and projection bases handled in the model
order reduction procedure. Such tracking is accom-
plished via two Kalman filters: a first (extended) one
to deal with the time evolution of a joint state vec-
tor, gathering the reduced-order state and the stiffness
terms degraded by damage; a second one to deal with
the update of the reduced-order model in case of dam-
age evolution. Both filters exploit the information con-
veyed bymeasurements of the structural response to the
external excitations. Results are reported for a (pseudo-
experimental) benchmark test on an eight-story shear
building. Capability and performance of the proposed
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approach are assessed in terms of tracked variation of
the stiffness terms of the reduced-order model, identi-
fied damage location and speed-up of the whole health
monitoring procedure.
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1 Introduction

The rapid growth of infrastructure systems in devel-
oping countries has led to the creation of large inven-
tories of structures, featuring new design techniques
or new structural systems. Owners got soon aware
of the increased safety levels and longevity that can
be attained by integrating structural health monitoring
(SHM) systems [1]. Further to that, a major portion
of infrastructures in developed countries are approach-
ing the foreseen end of their lifecycle [2]; decisions
to ensure safety and optimal maintenance strategies
demand once again reliable information on their struc-
tural health, see, e.g., [3] and [4].

Data related to the structural health have to be col-
lected via a network of (possibly embedded) sensors.
As there is no way to directly sense such state of health,
data must be interpreted so that meaningful informa-
tion is extracted from them, see [5]. In recent years,
a renewed interest has therefore been focused on var-
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ious aspects of SHM, including damage detection [6],
inspection scheduling and maintenance management
[7] and sensor network design [8]. Developments of
the sensing method have been provided with surface-
mounted MEMS sensors [9,10], fiber Bragg grating
sensors [11–13], microwave remote sensing systems
[14,15], laser scanning methods [16], GPS measure-
ment systems [17,18] and motion capturing via digital
image processing [19–21], to furnish unprecedented
dense arrays of data. Accordingly, a need is emerging
for an enhancement in signal processing and feature
extraction methods, to handle the continuous stream of
data provided by the sensors and identify in real-time
possible defects.

The detection of a variation in the mechanical prop-
erties of structural members or in some features of the
measured structural response can be employed as a
SHM procedure, see, e.g., [22]. If dynamic testing is
employed, the aforementioned measured response can
be adopted to track the evolution of the structural state
from the initial virgin one. Thereafter, the tracked fea-
tures can be used either for model updating [23–26], or
for feeding feature extraction methods and so detecting
the location and intensity of a possible damage [27]. If
high-quality data are available, a detailed assessment of
the damage state can be obtained; otherwise, the meth-
ods can only detect the existence of damage, see [28].
For additional details on feature extraction in SHM, the
interested readers are referred to [29–33].

Since damage processes induce a reduction of stiff-
ness parameters (and therefore a shift in the natural
frequencies of the system) [34], linked to a change
of geometry or boundary conditions of the structural
members or to a degradation of the material properties,
damage detection can be viewed as a system identi-
fication problem. A number of robust, offline proce-
dures have been developed for the identification of
linear state-space systems: The data-driven stochas-
tic subspace identification (SSI) algorithm is the de
facto standard stochastic system identification method
for output-only scenarios [35,36]; the subspace identi-
fication algorithm is instead extensively adopted for
the identification of deterministic input–output sys-
tems [37,38]. The two aforementioned methodologies
include singular value decomposition (SVD) and QR
decomposition techniques [39]. To move to online sys-
tem identification schemes, such methodologies have
been modified by focusing on moving time windows
of fixed length: As new observations become avail-

able, subspace identification is updated. The costs of
SVD and QR usually prevent the real-time application
of such methods, despite the efforts made to minimize
the associated computational burden, see, e.g., [37].

In this paper, the focus is on the development of an
online damage detection procedure that can be adopted
for real-time SHM procedures. The main engine of
the proposed method is a recursive Bayesian filter,
used to simultaneously estimate the state of the system
and the stiffness parameters that can be subjected to
a damage-induced degradation. For linear state-space
systems disturbed by white Gaussian noises, Kalman
filtering is known to provide optimal estimates of the
entire state vector upon availability of measurements
[40]. By also considering the unknown time-varying
stiffness parameters, a nonlinear state-space equation
is obtained; the relevant dual identification task has
been usually approached via the extendedKalman filter
(EKF), which merely relies on a step-by-step lineariza-
tion of the state-space equations.

In the presence of severe nonlinearities, such lin-
earization was shown to be the cause of instabilities
of the filtering procedure, resulting in biases or diver-
gence of the estimates. To deal with severe nonlin-
earities and general probability distributions of ran-
dom variables, nonlinear versions of Bayesian filters
have been developed, such as the unscented Kalman
filter [41] and the particle filter [42]. Both these fil-
ters have been then applied to the detection of damage
in structures with a relatively low number of degrees
of freedom (DOFs), see, e.g., [43–46]. In this study, a
large number of parameters (mostly related to the par-
tially observed structural state) are instead dealt with,
and the focus is on a synergy of reduced-order mod-
elling and online system identification. Since an on-the-
fly linearized equation of motion is handled, an EKF
is adopted for estimation; nonetheless, any nonlinear
recursive Bayesian filter could be adopted as well.

If the number of parameters to be estimated (e.g.,
the local time-varying stiffness properties in a dam-
aging structure) is small, the above-mentioned proce-
dures can provide accurate solutions close to, or in real
time. In [47], it has been shown that, as the number
of unknown parameters increases, biases in the fil-
ter estimates show up and increase as well. Within
the frame of dual filtering described above, a reduc-
tion of the state components looks compulsory and can
be obtained with a reduced-order modeling procedure.
However, at variance with the identification of the full-
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ordermodel of the system, the estimated components of
the reduced stiffness do not provide an explicit informa-
tion concerning the intensity and location of damage;
so, the identification procedure must be supplemented
with additional information coming from the bases
adopted to project the full-order governing equations
onto the reduced-order (sub)space. The proper orthog-
onal decomposition (POD) method is here adopted to
set the reduced-order model (ROM) of the structural
system, and to define the link between the number of
DOFs and the accuracy of the ROM on the one hand,
and the needed projector on the other hand. If compared
to alternative methods, e.g., an eigenanalysis provid-
ing the vibration modes and the relevant frequencies,
POD provides some advantages for the online SHM of
damaging structures: The ROM is tailored to the spe-
cific, structure-dependent loading conditions, and so
can lead to a smaller number of DOFs to be dealt with;
the ROMhas been shown to be (slightly) more accurate
than the eigenmode-based one under general loading
conditions, see, e.g., [48]; the ROM can be experimen-
tally obtained in an initial training stage of the mon-
itoring, prior to any identification of a possible dam-
age state, see the discussion in [45]; through the use of
accuracy indices linked to the so-called oriented energy
content, see [49], the order of the ROM can be appro-
priately chosen, and specifically developed algorithms
withminimal computational costs can be adopted in the
training stage, see, e.g., [50]. For a review of the liter-
ature related to the application of POD in structural
dynamics, see [51].

In [52,53], it was shown that, even in case of highly
nonlinear dynamic systems, the first two POD modes
can accurately capture the evolution of the system. Fur-
thermore, it is known that the POD-based solution is
susceptible to a change in case the parameters of the
originatingmodel are subject to variations [54]. If POD
is adopted to get the ROM, see [55], the mentioned
bases, also called proper orthogonal modes (POMs),
and the proper orthogonal values (POVs) actually con-
tain information concerning the sought location and
intensity of the damage, see, e.g., [56–59]; such proper-
ties are robustly provided byPODunder changing envi-
ronmental conditions. Taking this feature into account,
an algorithm is here proposed for the dual estimation of
state and parameters of the reduced-order model with
anEKF,wherein the damage-dependent POMs are con-
tinuously updated by a further Kalman filter without
the need of time-consuming retraining stages. A syn-

ergy of the two recursive Bayesian filters and of POD is
exploited in a decoupled two-stage procedure: First, the
joint filtering scheme is adopted to obtain estimates of
the stiffness parameters relevant to the ROM; second,
the linear correlation between the subspace spanned
by POMs and the observation equation is exploited for
model updating purposes.

The remainder of this paper is organized as follows:
In Sect. 2, details are provided on the reduced-order
modeling technique through POD and on the resulting
state-space model; since model parameters (i.e., stiff-
ness properties of the structure) are to be estimated,
it is shown how the state vector has to be augmented
and how the resulting observation equation, that has
to link the reduced-order state with the observables of
the full-order one, needs to be modified accordingly;
the sensitivity to damage of features of the POD-based
ROM is also addressed. Section 3 deals with the imple-
mentational details of the concurrent dual estimation of
the ROM, and update of the ROM itself due to damage
evolution (if any); some details are also provided con-
cerning the expected (the so-called asymptotic) speed-
up in the analysis, as furnished by the computational
complexity of all the algorithmic stages. In Sect. 4, the
capability and performance of the proposed approach
are discussedwith reference to a shear building. Finally,
Sect. 5 collects some concluding remarks on the pro-
posed procedure and also possible strategies to extend
its applicability to complex, real-life structures.

2 Reduced-order state-space model of partially
observed dynamic systems

Let us consider a space-discretized structural system. If
u, u̇ and ü, respectively, represent the relevant displace-
ment, velocity and acceleration vectors that all belong
toRm , wherem is the number of DOFs of the full-order
model, the (vectorial) equation of motion of the system
reads:

Mü + Du̇ + K (t)u = f (t) (1)

where M, D and K are the mass, viscous damping and
stiffnessmatrices belonging toRm×m , respectively, and
f ∈ R

m is the time-varying loading vector. In Eq. (1),
we have assumed the mass and damping matrices to
be time invariant, whereas the stiffness properties can
evolve in time due to possible damage phenomena. The
termK(t)u can be alternatively considered as the inter-
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nal force vector f i(t) ∈ R
m , which is therefore linked

to the current mechanical properties of the structure.
Here, as we do not focus on numerical procedures to
model damage and, therefore, stiffness evolution, we
have explicitly highlighted the stiffness matrix K in
Eq. (1) and assumed it to be a function of time t . For
further details, readers are referred to [60], where a
thorough analysis was reported on the identification of
a damaging structure.

In system identification and, specifically, in SHM
procedures, the properties inmatricesM, D andK, or at
least estimations of them, are supposed to be available.
Even if such structural properties are affected by uncer-
tainties not explicitly considered in the design phase,
the procedure to be proposed next for the setting of
the ROM can be supported by an identification scheme
that finely tunes the said full-order matrices; this addi-
tional task, not addressed here but already envisaged in
[45], can then allow to study damage evolution in sys-
tems affected by initial uncertainties in their physical
properties. Within the stochastic framework for system
identification to be provided in Sect. 3, such uncertain-
ties in the stiffness matrix K are actually accounted for
through ad hoc formulated process/model errors.

By partitioning the time interval of interest accord-
ing to [t0 tN ] = ⋃N

k=1

[
tk−1 tk

]
, and by adopting a stan-

dard Newmark explicit integrator to advance the solu-
tion of Eq. (1) in time, a state-space form of the fully
discretized equation of motion is obtained as:

zk = Ak zk−1 + bk (2)

where Zk ∈ R
3m is the state vector for the system,

which gathers all the displacements, velocities and
accelerations according to:

zk =
⎧
⎨

⎩

uk
u̇k
ük

⎫
⎬

⎭
(3)

and the algorithmic mapping matrixAk ∈ R
3m×3m and

vector bk ∈ R
3m , respectively, read:

Ak =
⎡

⎣
I − β �t2KkM−1 �t I − β �t2M−1(D + �t Kk) −β�t2M1(�t2(1/2 − β)Kk + �t (1 − γ )D) + �t2(1/2 − β)I
−γ�t KkM−1 I − γ �tM−1(D + �t Kk) −γ �tM1(�t2(1/2 − β)Kk + �t (1 − γ )D) + �t2(1 − γ )I

−KkM−1 −M−1(D + �t Kk) −M−1(�t2(1/2 − β)Kk + �t (1 − γ )D)

⎤

⎦ (4)

bk =
⎧
⎨

⎩

β�t2M−1f k
γ�t M−1f k
M−1f k

⎫
⎬

⎭
(5)

β and γ being the Newmark parameters, see, e.g., [61].
In these equations, a subscript k means that the relevant

variable is computed at time instant tk (the same holds
for index k − 1 and instant tk−1); �t = tk − tk−1 is the
time step size, here assumed constant during the whole
analysis; and I is the identity matrix.

SHM requires the system to be at least partially
observed. Accordingly, in a deterministic frame the
observation equation at time tk reads:

yk = Hzk (6)

where yk ∈ R
n is the vector of the n observables and

H ∈ R
n×3m is a Boolean matrix of appropriate dimen-

sions,which links the state zk of the system to the obser-
vations in yk . As the monitoring system collects infor-
mation on the structural health through sensor mea-
surements, a time-independent matrix H means that
the type of sensors adopted and their deployment over
the structure are never changed.

Due to the definition (3) of the state vector zk , whose
dimension is three times the number m of DOFs of the
discrete system, any identification procedure based on
the adopted state-space model gives rise to a consid-
erable computational burden. Anyhow, as thoroughly
discussed in [60,62] and [45], this state-space represen-
tation is necessary whenever the nonlinear evolution of
the structural system (due to, e.g., damage growth) is
studied within a stochastic framework: If all the state
variables were not listed in zk , part of the information
concerning the step-by-step evolution of the statistics
of the state would be missed.

2.1 Reduced-order modelling via POD

To reduce the computational burden, keeping a high
accuracy of the numerical model as a target, POD is
next exploited. It is well recognized that POD provides
amodel-specific and, somehow, also load-specific opti-
mal linear subspace, onto which the system dynam-
ics can be projected. This subspace is not supposed to

evolve in time, once obtained at the end of an initial
training stage of the analysis, see, e.g., [48].
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To deal with structural systems undergoing dam-
age evolution and therefore requiring an update of the
subspace itself, the training stage is typically repeated
whenever the reduced-order model is no more able
to provide an accurate input–output relation, see [50].
To avoid the computational costs of repeated training
stages, an adaptive procedure governed by a Kalman
filter will be reported in the forthcoming Sect. 3.

We now discuss the main technical details of the
POD-based reduced-order modeling technique, to also
highlight the role of the observation equation in the
aforementioned adaptive procedure. For linear sys-
tems, the displacement field can be written in a sep-
arable form as:

u (x, t) =
m∑

i=1

ϕi (x) αi (t) (7)

where vectors ϕi (x) belong to a set of arbitrary bases
spanningRm , called proper orthogonalmodes (POMs),
and coefficients αi define the time-varying amplifica-
tion of such bases. While the system is moving due
to the external excitation, a “structure” in the response
(linked in some sense to the vibration modes, see, e.g.,
[49]) usually reduces considerably the number of effec-
tive terms in Eq. (7). So, if themain variation in the data
occurs in a rather small subspace of Rm , it is possible
to track the evolution of the system by keeping only l
terms in the expansion of Eq. (7), with l � m. Accord-
ingly:

u (x, t) ≈
l∑

i=1

ϕi (x) αi (t) = Φl α (8)

where the matrix Φl ∈ R
m×l gathers (as columns) the

l POMs retained in the ROM and vector α provides
the time evolution of the POMs, and so it gathers the
DOFs of themodel. By substituting Eqs. (8) into (1), by
defining a residual vector linked to the approximation
(8), and by eventually adopting a Galerkin projection
onto the same reduced-order subspace adopted in (8),
the equation of motion of the system can be written as:

Mα̈ + Dα̇ + Kα = f (t) (9)

where

M = ΦT
l MΦl,D = ΦT

l DΦl,K = ΦT
l KΦl,f = ΦT

l f

(10)

To set the accuracy of the reduced-order model and
define the number l of POMs to be retained, the error
linked to the approximation (8) needs to be quanti-
fied. According to the snapshot version of POD [63],
during the initial stage of the analysis snapshots of
nodal displacements u j = u

(
t j

)
at time instants t j ,

j = 1, . . . , J , are collected in the so-called snapshot
matrix U ∈ R

m×J . A singular value decomposition of
matrix U then provides:

U = L�RT (11)

where L ∈ R
m×m and R ∈ R

J×J are, respectively,
the matrices gathering the left and right orthonormal
singular vectors; � ∈ R

m×J is the pseudo-diagonal
matrix,whose pivotal entries�i i are the singular values
of U. As proved in [64], L collects all the POMs and,
if singular values �i i are sorted decreasingly, l can be
set by assigning:
∑l

i=1 �2
i i∑m

i=1 �2
i i

≥ p (12)

where p ∈ (0 1] is an accuracy index based on the
energy content of the ROM. It should be noted that
the main priority in this study is not the development
of a very accurate ROM of the system, but instead the
setting of a very compact model with a minimal num-
ber of parameters to be estimated in real time. It is
expected that part of the model inaccuracy can be han-
dled and compensated for by the recursive Bayesian
filters employed herein for system identification.

Even though POD is optimal for linear systems only,
it can be applied to model order reduction of nonlinear
systems too, see [65–68]. A number of authors have
studied the links between POMs and linear normal
modes of structural systems, showing that in case of
free undamped oscillations, the POMs converge to the
linear normal modes for a sufficiently large number of
collected samples or snapshots [69,70]. The POVs have
been also used as indicators ofmodal activity, and itwas
shown that they can accurately determine the number
of active modes in the dynamic response of a structure
[71].

2.2 State-space representation of the ROM

Similarly to what has been reported for the full-order
model, the reduced-order state-space form of system
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evolution in the time step
[
tk−1 tk

]
can now be written

as:

ζ k = Akζ k−1 + bk + vζ
k (13)

yk = H Cζ k + vyk (14)

where the state vector ζ k ∈ R
3l collects the retained

DOFs and their time derivatives, according to:

ζ k =
⎧
⎨

⎩

αk

α̇k

α̈k

⎫
⎬

⎭
(15)

and

C =
⎡

⎣
Φl

Φl

Φl

⎤

⎦ (16)

C ∈ R
3m×3l is a matrix introduced to deal with the

observation equation (6), and so to move from the
reduced-order space to the full-order one while sort-
ing out the system DOFs actually observed. Matrix
Ak ∈ R

3l and vector bk ∈ R
3l×3l are not reported

here for brevity, as they can be obtained from Eqs.
(4) and (5) simply by switching from the full-order
properties M,D,Kk, f k to the reduced-order ones
M ∈ R

l×l ,D ∈ R
l×l ,Kk ∈ R

l×l , fk ∈ R
l , see Eq.

(10).
As real systems evolve in a noisy environment, they

are affected by uncertainties. Accordingly, Eqs. (13)
and (14) have been provided with additive terms vζ

k and
vyk , respectively, representing the time-varying process
and measurement noises. In what has been developed
here above, it is worth noting that the process noise also
stems from the loss of accuracy of the ROM, as stated
in Eq. (12) where it is typically set p < 1 for reasons
linked to the computational costs.

Each noise source is usually assumed to bewhite and
uncorrelated in time; this assumption largely simplifies
the analysis, since only the relevant mean and covari-
ance terms need to be handled. In case of a colored
noise, it is necessary to determine the structure of cor-
relations in the noise sequence and autoregressive (AR)
models of some order, say nAR, are used to capture such
dependencies. The noise process at time tk can be then
rewritten as a linear combination of a white noise ε

ζ
k

and of the noise terms at the nAR preceding time steps,
according to vζ

k = ∑nAR
i=1 τiv

ζ
k−i + ε

ζ
k , where τi are the

AR coefficients. Dealing with colored noise processes,
the process itself is commonly added to the state vector
and the state-space formulation is appropriately refor-
mulated, see [72]; in some cases, an AR model may
not be adequate and an autoregressive moving average
(ARMA) model is required to extract the correlations
in the noise signals, see [73]. In [47], a detailed sta-
tistical investigation was reported for errors linked to
the formulation of POD-based ROMs; as the accuracy
of such models gets higher close to the POM frequen-
cies, the residual error due to POD (which is part of
vζ
k ) turns out to be far from being white. Anyhow, by
increasing the number of POMs retained in the analysis,
a consistent reduction of the amplitude of the noise sig-
nal and of its spectral power was reported. Therefore,
to systematically avoid issues related to colored noise
the number of POMs can be increased without making
recourse to ARMA models, which inherently increase
the dimension of the state vector and act against reduc-
ing the order of the model. As the emphasis of this
paper is on how to deal with the curse of dimension-
ality, which shows up if the number of model DOFs
gets increased, inaccuracies caused by colored noise
are neglected even if a suboptimal performance of the
filter to be introduced next is expected. The effects of
uncertainties in Eqs. (13) and (14) are thus handled as
in any standard recursiveBayesian inference algorithm,
see [74].

In the stochastic framework defined above, stiffness
parameters can be assumed affected by uncertainties
due to imperfections, or incepted damage processes. By
estimating their evolution during the analysis, themon-
itoring system is able to provide a forecast of the devel-
oped damage pattern.Model parameters to be identified
are so collected in a vector ϑ ∈ R

Np , to be considered
as material or structure dependent. Fluctuations of this
vector are thus allowed for to improve the estimates or
to identify the evolution of damage leading to a reduc-
tion of the structural stiffness, moving from an initial
guess at time t0. To cope with both these goals, the vec-
tor is assumed to evolve according to a random walk:

ϑk = ϑk−1 + vϑ
k (17)

where vϑ
k is an additional white and uncorrelated arti-

ficial noise.
In the forthcoming numerical examples, we con-

sider the mass properties of the structure to be known
with a high level of fidelity. Furthermore, the structural
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response is supposed to bemonitored in the special case
of known damping; the effect of damping on filtering in
dynamics was already considered in [62] and is not fur-
ther discussed here. Therefore, all the terms ofmatrices
M and D are not to be identified and included in the
vector ϑ ; parameters to tune are only the entries of the
stiffness matrix K. It is also to be noted that model
order reduction can detrimentally affect the capability
of identifying the exact location and amount of damage.
In fact, by projecting the stiffness matrix over the sub-
space of the retained POMs according toK = ΦT

l KΦ l ,
see Eq. (10), different damagemechanisms can become
correlated; in other words, a single POM can excite
simultaneously different damaged zones of the struc-
ture, and the estimated evolution of the entries of ϑk

would be a smeared measure of the structural dam-
age. Anyhow, as shown in Results section, the shape
of POMs provides additional, helpful information con-
cerning the location of possible multiple damage sites.

To deal with the dual estimation problem, see, e.g.,
[75], we now augment the state vector of the ROM, so
that at time tk it reads:

χk =
{

ζ k
ϑk

}

(18)

By joining together state and model parameters in the
vector χk ∈ R

3l+Np , the state-space equations become
nonlinear.We therefore formulate the system evolution
equations as:

χk = ψk

(
χk−1

) + vχ
k (19)

yk = HLχk + vyk (20)

where matrix L ∈ R
3m×(3l+Np) reads:

L = [C 0
]

(21)

and links the reduced-order augmented state of the
system to the full-order one. Furthermore, function
ψk ∈ R

3l+Np maps the augmented state of the system
in time, and vχ

k is the state error that accounts for both

the contributions vζ
k and v

ϑ
k introducedbefore. Errors v

χ
k

and vyk are still assumed as zero-mean white Gaussian
processes, featuring time-invariant covariancematrices
Vχ and V y .

In Sect. 3, an extended Kalman filter will be pro-
posed to handle the state-space model (19)–(20), so as
to simultaneously track the state ζ k and calibrate the
parameters in ϑk . In case of damage evolution leading

to a drift of the structural response, a further Kalman
filter is adopted to tune on the fly the retained POMs,
and so matrix Φl affecting L.

2.3 Sensitivity of POMs to damage events

In vibration-based SHM methods, it is assumed that
damage may cause changes in the stiffness, damping
and sometimes mass properties of the system; there-
fore, it can also modify the vibration characteristics of
the structure. The sensitivity of POMs to damage has
been exploited by several authors, see, e.g., [58,59].
Galvanetto andViolaris showed that POMs can be used
to detect and locate damage in beam-type structures
[58]: They plotted the POMs of the reference (undam-
aged) structure versus those of the damaged one and
concluded that the difference between the two can be
used to identify damage location and severity. Shane
and Jha developed an offline algorithm for damage
identification in composite beams [59]: Adopting a
finite element model of the composite beam, differ-
ent damage scenarios were created featuring varying
degrees of stiffness reduction. Their algorithm, which
took advantage of POMs as dynamic invariants of the
structure, was successfully used to identify damage
even under changing loading and environmental con-
ditions.

It is thus clear that POMs can potentially be used
for quantifying damage in structures. In contrast to for-
mer works, the focus of the current study is on the
development of an algorithm for the online and real-
time update of POMs and relevant parameters of the
POD-based ROM of a damaging structural system, so
as damage quantification and location can be automati-
cally (or semi-automatically) obtained as a by-product.

3 Concurrent dual estimation of the reduced-order
model and model updating

As already pointed out, the dual estimation problem
here envisioned consists, at time tk , in the estimation of
the whole reduced-order state χk of the system, includ-
ing the stiffness parameters collected in ϑk .

For a non-damaging structure, such dual estimation
can be pursued without any update of the ROM as it
never changes; hence, matrix Φ l is calibrated in the
initial training stage of the analysis and handled as is
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along the whole SHM stage. On the contrary, the pro-
jectionmatrixΦ l of a damaging structure varies in time
due to a possibly non-uniform reduction of the stiffness
characteristics, causing a change of the POMs. As a
consequence, to avoid the state estimates to be affected
by drifts in time, the aforementioned dual estimation
procedure must be backed by an online update of the
projection subspace, i.e., of all the retained POMs.

Wepropose nowan approach for the online subspace
update and simultaneous estimation of the partially
observed state of the system and of model parameters
affected by uncertainties. In order to accomplish these
tasks online, the adopted engines are two Bayesian fil-
ters: An extended Kalman filter handles the dual esti-
mation task, which turns out to be nonlinear (actually,
bilinear) due to the joint estimation of terms in Ak

and ζ k in Eq. (13), as summarized by mapping ψk in
Eq. (19); a Kalman filter handles instead the subspace
update for the ROM.

To allow for the time variation of the model sub-
space, retained POMs (see Eq. 8) are now arranged in
vector form as:

�l,k =

⎧
⎪⎨

⎪⎩

ϕ1,k
...

ϕl,k

⎫
⎪⎬

⎪⎭
(22)

where Ξl,k ∈ R
ml and the index k has been added to

explicitly state that POMs can vary in time. Accounting
for the stochastic environment within which the system
evolves, the projection subspace evolution is described
by:

�l,k = �l,k−1 + vϕ
k (23)

where vϕ
k is a fictitious zero-meanwhiteGaussian noise,

whose time-invariant covariance Vϕ needs to be tuned
to get unbiased estimates of the POMs, and so of model
parameters to be identified.

Equation (23) has now to be supplemented by
an observation equation, to drive the update of �l,k

through the acquired measurements in yk . For this pur-
pose, Eq. (20) is written in a slightly rearranged ver-
sion so as to explicitly highlight the role of POMs.
Within the current time step, by assuming the state χk
to be independent of the subspace adopted, the follow-
ing relation is arrived at:

yk = H�l,k + vyk (24)

whereH ∈ R
n×ml is the mapping that links the obser-

vations to the subspace spanned by POMs. Two Eqs.
(23) and (24) provide now the state-space model for
subspace evolution: Due to its linearity, a Kalman fil-
ter, which is the optimal estimator for linear state-space
models, is then adopted for the recursive update of the
subspace.

Table 1 provides the algorithmic description of
the proposed procedure. As any Bayesian filtering
scheme, the algorithm consists in the initialization
of the solution at time t0, and the evolution of it
at all the subsequent discrete time instants tk , up to
tN . In turn, the evolution of the estimates is sub-
divided into two stages: a prediction one, which
rests on mapping Eqs. (19) and (23) to evolve the
expected values of augmented state and subspace,
and the relevant covariances; an update one, which
is driven by the Kalman gains Gχ,k ∈ R(3l+Np)×n

and Gϕ,k ∈ R
ml×n to account for the information

provided by measurements. Besides what has been

already defined above, here: F k = ∂ψk (χ)

∂χ

∣
∣
∣
χ=χ̂k−1

is the Jacobian of the reduced-order state mapping
ψk , computed with the state estimation χ̂k−1 avail-
able at the beginning of the time step; the super-
posed hat denotes the estimated values of augmented
state and POMs, provided by the filtering scheme; the
covariance terms for state and subspace are, respec-

tively, defined as Pk = E

[(
χk − χ̂k

) (
χk − χ̂k

)T
]

and �k = E

[(
�l,k − Ξ̂l,k

) (
�l,k − Ξ̂l,k

)T
]
, where

E is the expectation operator; gains Gχ ,k and Gϕ,k ,
respectively, drive the update of χ̂k and Ξ̂l,k ; matrixL
becomes time dependent too, since POMs in �l,k vary
in time. A summary of the whole procedure is reported
in Fig. 1, where a possible postprocessing phase has
been also added in case a specific feature extraction
step looks necessary to finely identify the damage state.

As already reported in [76] for a different approach,
wherein damage indices (each one assumed constant
inside a subdomain of the discretized structure) were
included into the augmented state vector in place of the
reduced-order stiffness terms here handled, the main
advantage of the splitting of χk and �l,k reported in
Table 1, in comparison with other methods conven-
tionally used for model updating (see, e.g., [77]), is
that the linearity of the state-space subspace model
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Table 1 Algorithm for the concurrent dual estimation of the ROM and subspace update

of Eqs. (23) and (24) is explicitly exploited. For the
online estimation of POMs, the Kalman filter there-
fore provides a closed-form, optimal solution to the
problem. A problem may anyway arise as the obser-
vation equation and the relevant innovation term in the
update stage, althoughwritten in the two slightly differ-
ent ways yk − HLkχ

−
k and yk − H�−

l,k for the reasons

discussed here above, are accounted for twice within
a single time step. It is therefore supposed that a cer-
tain degree of redundancy in the set of measurements
would help avoid biases in the estimates, or the gener-
ally reported filter instability, see [78]. At any rate, a
thorough discussion on the conditions (in terms, e.g.,
of sensor deployment and accuracy) to be attained to

123



1498 S. Eftekhar Azam et al.

Fig. 1 Simplified flowchart of the proposed procedure

guarantee the convergence of POMs toward a steady-
state solution in case of no further damage evolution,
is out of the scopes of this paper and left for future
investigations.

To assess the analysis speed-up or gain provided
by moving from the full-order model to the ROM, a
note on the computational complexity of the algorith-
mic prediction–update process of Table 1 is discussed
next. Within each time step, the aforementioned com-
putational complexity is provided in terms of the order
of the required floating-point operations. Concerning
the reduced-order modeling, as training is carried out
once and in an offline manner, the complexity associ-
ated with it is not included in the assessment; Table 2
then summarizes the complexities of all the stages in
Table 1. The prediction of the state scales quadratically
with its dimension 3l + Np, whereas the prediction of
its covariance scales cubically with the same dimen-
sion. The prediction of the subspace and of its covari-
ance scales instead quadratically with the dimension

ml of �l,k . As for the update stage, in the computation
of the two Kalman gains a square n × n matrix must
be inverted, and the related computational complex-
ity is O

(
n3

)
if a standard Gauss–Jordan procedure is

adopted [79]. Concerning theHmatrix, the complexity
associatedwith its calculation is O (lmn). In the update
of POMs, the procedure also includes a normalization
of the subspace estimates, whose complexity is O (lm);
however, the complexity of this stage is dominated by
the other matrix operations. Overall, the computational
complexity of the whole procedure at time tk turns out
to be:

O
(
n3 + n

(
3l + Np

)2 + n2
(
3l + Np

)

+ n
(
3n + 3m + Np

) (
3l + Np

) + lmn2 + n (lm)2

+ (
3l + Np

)3
)

(25)

If the full-order model is used within the same frame-
work, the relevant numerical complexity will instead
read:
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Table 2 Computational complexity of each stage of the proposed algorithm (for stage indices, see Table 1)

Stage Computational complexity (flops)

Prediction 1 O
((
l + Np

)3
)

2 O
(
m2

)

Update 1 O
(
n3 + n

(
l + Np

)2 + n
(
3l + Np

)2 + n2
(
3l + Np

) + n
(
3n + Np

) (
3l + Np

) + lmn2 + (lm)2 n
)

2 O
(
n

(
3l + Np

) (
3m + Np

) + (
3l + Np

)3
)

3 O
(
lmn2 + (l m)2 n

)

O
((

Np + 3m
)3 + n

(
Np + 3m

)2 + n2
(
Np + 3m

) + n3
)

(26)

where account has been taken that POMs do not have
to be estimated and updated in time.

As already discussed in [75], an estimate of the anal-
ysis speed-up provided by reduced-order modeling can
be given as the ratio between the computational com-
plexities furnished by Eqs. (26) and (25); such estimate
will be adopted in Sect. 4 to discuss the performance
of the proposed procedure. The complexities discussed
here above anyway refer to asymptotic scenarios;
the real CPU times and the corresponding speed-ups
could be different from them due to, e.g., processor
architecture, hardware settings and structure of the
matrices.

It must be finally noted that, within a determinis-
tic setup, even small variations of the structural health
can lead to detectable changes in the measurable struc-
tural response yk to loadings. In real situations, vari-
ous sources of uncertainty linked to the measurements,
to the excitation and to the structural properties in
the initial state can all lead to significant scattering
in the estimates of modal parameters; consequently,
only the effects of significant levels of damage could
be observed and detected. The currently proposed intri-
cate Bayesian framework for the online and real-time
update of a ROM of the structural system is aimed at
mitigating the aforementioned issues related to mod-
elling errors and observation noises, due to the concur-
rent use of two Kalman filters that provide estimates of
the whole state. Accordingly, the proposed approach is
expected to be more robust, and to allow detection of
small levels of damage independently of the structural
scheme.

4 Numerical results: damage detection in an
eight-story shear building

To assess the capability of the proposed approach,
the benchmark problem proposed in [80] is now con-
sidered. An eight-story shear building features con-
stant floor mass of 625 ton, and inter-story stiffness
of 106 kN/m; as the problem of non-classical damp-
ing is not addressed here, at variance with what has
been reported in [80] aRayleighdampingwith damping
ratio of 2% for the first two structural modes has been
assumed. Concerning the possible detrimental effects
of damping on the identifiability of dynamic systems, a
discussion was already reported in [62]; overall, it was
claimed that, if the structure is continuously excited,
damping has onlymarginal effects in this regard. Load-
ing is provided by a force applied to the last floor of the
building, varying sinusoidally for the entire duration of
monitoring, according to f (t) = 5 · 106 sin π t N.

Pseudo-experimental data have been created by run-
ning a direct analysis, sampling the target structural
output (in terms of story displacements) every 0.01s
and then corrupting it with uncorrelated zero-mean
white Gaussian noises featuring a standard variation
0.0032m to allow for the uncertainties in measure-
ments.

4.1 Preprocessing of the baseline model and
damage-sensitive features

Focusing first on the outcome of the training stage of
POD, Fig. 2 provides the shape of the retained POM for
l = 1, both for the undamaged structure andwhen dam-
age of a varying intensity d is located only between the
fourth and fifth floors. The scalar damage variable d has
to be intended as in standard damage mechanics, see
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Fig. 2 l = 1: Trained POM
for the undamaged structure
(black line), and for a
damage of varying intensity
d located at the inter-story
between fourth and fifth
floors
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[81], so scaling the inter-story stiffness terms accord-
ing to Kd

i j = (1 − d) Ki j , where Ki j is the virgin value,

Kd
i j is the corresponding damaged one, and i j are the

indices relevant to the two adjacent stories. This defini-
tion of the dependence on damage of the properties of
the full-ordermodelmeans that only the terms related to
a specific inter-story stiffness are affected, while all the
others are not varied.Wedonot consider here the simul-
taneous presence of multiple damage states at different
stories, so no ambiguity results from what has been
reported here above; alternatively, a different damage
index would be defined for each inter-story stiffness
term.

The plots in Fig. 2 clearly show that a kink shows
up only at the inter-story affected by a reduction of the
stiffness. Similar results, showing kinks in the POMs
where a damage or a crack is located, were already
reported, e.g., in [68] for beams. This feature would
be of help if training of the ROM were continuously
carried out after the inception of damage, as it immedi-
ately allows locating it and also estimating its intensity
on the basis of the local change in slope. As such time-
consuming approach is purposely avoided within the
proposed framework, the output of the SHM proce-
dure needs to be postprocessed to get insights into the
damage state, see also below. Results of Fig. 2 can be
easily extended to allow for a damage located at differ-
ent floors: Plots of relevant POM shapes are reported
in Fig. 3 for the exemplary case d = 0.5 .

If l = 2, Fig. 4 provides the shapes of both POMs,
still in the undamaged case and when d = 0.5 at the
inter-story between the fourth andfifth floors.Although
the shape of POM #1 obtained with the two ROMs
(featuring orders l = 1 and l = 2) look the same, the
model is not necessarily order invariant as the projec-
tors onto the two different subspaces are different. A

thorough discussion on the relationship between POMs
and vibration modes in the linear regime was proposed
in [49]: Formulti-DOFsystems, itwas shown that train-
ing provides POMs converging toward the eigenmodes
at resonance. For the considered excitation mentioned
above, resonance does not occur and so it can be only
claimed that POMs and eigenmodes are similar, with
the former ones also varying with l, and they can bring
similar information concerning the damage location. In
fact, the graphs show that damage gives rise to kinks
in both the damaged POMs, accompanied by a local
amplification of the relative story displacements.

As far as the overall accuracy of the two ROMs fea-
turing l = 1 and l = 2 is concerned, Table 3 gathers the
relevant values of index p (see Eq. 12) for the undam-
aged and damaged states, the first one as given at the
end of training and the second one computed (to be
reported here even if not handled in the proposed pro-
cedure) when a steady-state solution is attained by the
identified entries of the reduced-order stiffness matrix.
It is shown that, due to the system geometry and load-
ing conditions, one POM proves sufficient to obtain an
extremely high energetic accuracy, which is indeed not
detrimentally affected by damage.

Although this issue is not to be discussed here in
detail, before the SHM procedure based on the ROM
is started one needs to ensure that all the POMs have
already attained a stationary solution, and so training
has been completely accomplished (typically, for the
initial damage-free state). Two alternate proposalswere
discussed in this regard in [48] and [82]: In the first one,
the trainingdurationwas heuristically set on the basis of
the fundamental vibration period of the structure; in the
second one, a self-setting strategy was proposed, based
on the so-called SVD update [83], to allow reducing
the computational costs of training to a minimum. In
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Fig. 3 l = 1: Trained POM for the undamaged structure (black line), and for a damage d = 0.5 (orange line) located at a varying
inter-story level. (Color figure online)

Fig. 4 l = 2: Trained
POMs for the undamaged
structure (black line), and
for a damage d = 0.5
(orange line) located at the
inter-story between fourth
and fifth floors. (Color
figure online)
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Table 3 Effect of the order l of the ROM on its accuracy, as measured via index p for both the undamaged and damaged states, and on
the analysis speed-up, as provided by computational complexity and CPU time

Order Accuracy Speed-up

l pundamaged(%) pdamaged(%) Computational complexity CPU time

1 99.983 99.894 22.6 6.5

2 99.999 99.999 8.6 4.4
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what follows, results are presented as obtained with the
former approach.

4.2 Dual estimation and online updating of the ROM

Moving now to the application of the proposed identi-
fication procedure, results are reported next in the case
of all the floor lateral displacements gathered in the
observation vector yk . It is therefore assumed that the
system can be fully observed as far as story lateral dis-
placements are concerned; since the full-order model
of the structure gathers not only displacements but also
velocities and accelerations for tracking purposes in
a stochastic environment, the system is accordingly
only partially observed. An optimization procedure to
deploy a minimal amount of sensors on the structure
is beyond the scope of the present study and will be
addressed in future contributions.

According to what has been reported, in the anal-
yses it results to be m = n = Np = 8, and the
dimension 3l + Np of the joint state vector, respec-
tively, amounts to 11 if l = 1 and to 14 if l = 2; cases
featuring larger l values have not been considered due
to the limited number of stories and to the high ener-
getic accuracy p of the ROMs with l = 1, 2. As far
as filtering is concerned, the algorithmic covariance
matrices have been set as follows, I being an iden-
tity matrix of appropriate dimension: P0 = 10−10I;
�0 = 10−12 I ; Vϕ = 10−10I; V y = 10−5I; Vχ diag-
onal with entries on the order of 10−6−10−8 for the
structural state χk , and 108 − 10−10 (KN/m)2 for the
stiffness coefficients. The aforementionednoise param-
eters are called the tuning knobs of the Kalman filter,
and most often are adjusted via a trial-and-error proce-
dure in an offline stage prior to the application of the
filter itself [84]. These parameters should be as large
as possible to allow the filter to react in real time (or
close to real time) to the changing environment, but
cannot be increased beyond critical thresholds to avoid
filter instabilities, and so divergence of the estimates.
Recently, handful approaches have been proposed in
the literature for the optimal and autonomous tuning of
the parameters of recursive Bayesian filters, see [85–
89].

The damage event foreseen in Sect. 4.1 and of an
assigned intensity d = 0.5 is now assumed to instan-
taneously occur at t = 20 s. Figures 5 and 6 provide
for l = 1 and l = 2 the final estimation of the retained

POM(s) at t = 200 s, and their evolution along the
SHM phase; for comparison purposes, also the initial
undamaged solutions at t0 are reported. It is shown
that, in both cases, POM #1 is modified after damage
inception; then, convergence to a steady-state solution
is soon attained. The estimated shape of POM #2 is
instead somehow different from the actual one reported
in Fig. 4; also, its time evolution does not provide
any evidence of a clear switch to a damage-affected
solution. As discussed in Sect. 3, the POMs here pro-
vided for the damaged case have not been obtained by
retraining the ROM; instead, they have been contin-
uously updated by the Kalman filter to better match
the measured structural response. Hence, they are pro-
vided by the online procedure and do not require addi-
tional offline (retraining or postprocessing) stages to
be completed as soon as a damage evolution is sensed;
right after damage inception, some discrepancies with
respect to those obtained by retraining the ROM are
therefore expected.

In Fig. 7, the singular values relevant to the undam-
aged and damaged states are plotted. This graph is pro-
vided to compare the features of the two states, but it
must be noted that the values related to the damaged
case are never computed in the proposed approach,
since the ROM is never retrained to avoid a loss of com-
putational efficiency. Although the hierarchy of singu-
lar values relevant to the virgin state is somehowbroken
by the considered damage, as evidenced, e.g., by the
couples of values getting closer in the damaged state,
the ROMs built with l = 1 and l = 2 provide a rea-
sonably high accuracy, always featuring p > 99% as
reported in Table 3. So, even if POVs and also natu-
ral frequencies are affected by damage, the accuracy
of the ROMs does not get reduced significantly by it,
thanks to the beneficial effect of Kalman filtering. Such
accuracy could be further increased by procedures like
that proposed in [66], and based on Ritz vectors possi-
bly featuring appropriate discontinuities at the damage
location(s). The relevant topic of ROM enhancement is
not addressed in thiswork, due to the following reasons:
As reported, the ROMs given by l = 1, 2 are already
accurate enough to represent the full displacementfield,
as testified by the relevant p values; Ritz vectors featur-
ing appropriate discontinuities would require a priori
knowledge of damage location or, conversely, the han-
dling of a set of vectors, each one with a discontinuity
at a single inter-story level, with an increase in the over-
all computational burden. In place of additional modes
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Fig. 5 l = 1, damage
d = 0.5 located at the
inter-story between fourth
and fifth floors: a
comparison between the
trained POM for the
undamaged structure (black
line) and the finally
indentified POM for the
damaged structure (orange
line); b time evolution of
the POM estimate. (Color
figure online)
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or predefined vectors, the Kalman filter is exploited to
progressively increase the accuracy of the ROMs when
damage inception/growth gives rise to a drift of the
measured structural response away from the expected
undamaged one.

The relatively lower contribution of POM #2 to the
whole structural response, as shown in Fig. 7, is sup-
posed to detrimentally affect the solution in terms of
estimated components of the reduced-order stiffness
matrix K. Figures 8 and 9 provide charts of the time
evolution of such stiffness components, once again for
l = 1 and l = 2, respectively. Although the displayed
convergence rate is not high, if l = 1 the information
content brought by observations allows attaining an
almost invariant and unbiased solution within around
50 s. The reduced-order model obtained with l = 2 is
supposed to feature a higher accuracy concerning the
dynamic behavior of the structure and the effects of
damage. Accordingly, the convergence rate shown by

the K terms is higher if compared to the case l = 1,
and a quasi-stationary solution for the damaged state is
attained after around 20 s. But, somehow surprisingly
in view of the mentioned higher content of information
about the structural properties, the damaged K terms
converge toward a biased solution, which cannot be
improved even if observations are continuously han-
dled by the filters. The convergence rates shown in the
figures can be somehow improved by increasing the
values of the algorithmic filter parameters given above
and related tomodel uncertainties, but at the risk of esti-
mation instability. As already mentioned, the adopted
setting implies a trade-off between convergence rate
(and so readiness of the identification procedure to soon
track damage evolution) and algorithmic stability (to
avoid diverging estimates).

To assess the issue of the biased estimates, it is
worth noting again that stability and convergence of the
Kalman filtering procedure can be difficult to assure
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Fig. 6 l = 2, damage
d = 0.5 located at the
inter-story between fourth
and fifth floors: a
comparison between the
trained POMs for the
undamaged structure (black
lines) and the finally
indentified POMs for the
damaged structure (orange
lines); b time evolutions of
the POM estimates. (Color
figure online)
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in the presence of damage. The stochastic analyses
described in [90] and [78] have to account for the uncer-
tainty levels in the state-space formulation, ultimately
linked to the process and measurement noises; for the
present approach, the additional mutual effects of the
two filtering processes running simultaneously and of
the reduced-order modeling should be accounted for

too. What is shown in Fig. 9 is that the addition of
POM #2 to the model leads to a bias in the estimate
of K11. To understand the physical reasons of this out-
come, the sensitivity of K11, K12 and K22 to a damage
of varying intensity d, located at each inter-story or
floor level, is reported in Fig. 10. It emerges that K11

smoothly depends on both d and floor index; hence, the
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Fig. 7 Damage d = 0.5
located at the inter-story
between fourth and fifth
floors: singular values for
the undamaged and
damaged states

Fig. 8 l = 1, damage
d = 0.5 located at the
inter-story between fourth
and fifth floors: time history
of the estimated component
K11 of the reduced-order
stiffness matrix

0 20 40 60 80 100 120 140 160 180 200
2.5

3

3.5

4 x 107

 t (s)

 K
11

 (N
/m

)

estimated target

Fig. 9 l = 2, damage
d = 0.5 located at the
inter-story between fourth
and fifth floors: time history
of the estimated
components K11, K12 and
K22 of the reduced-order
stiffness matrix
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identifiability of damage based on the capability of the
procedure to discern the effects of damage looks good.
K12 instead does not vary monotonically with the floor
index; this is clearly visible for the maximum damage
value d = 0.5 reported in the graph, but it holds true
also for smaller damage values. Such non-monotonic
dependence on the floor index looks even enhanced for
K22; for this stiffness component, it is further shown
that the dependence on d is rather weak if damage is
located around the fourth floor.

To show the effects of the mentioned low, or even
null sensitivity to damage ofK components, results are

depicted in Fig. 11 in terms of the lateral displacement
at the fifth floor. The time evolution of it is given, as
provided by the trained ROM and by additional mod-
els whose components of the stiffnessmatrix have been
in turn artificially modified by ±10%; for comparison
purposes and to also assess the accuracy of the POD-
based model, the same time history is also shown as
furnished by the full-order model. Graphs show that
the variations of K11 effectively modify the time his-
tory, whereas variations ofK12 andK22 do not: In these
last two cases, results all look almost perfectly super-
posed to each other. This outcome has been selected

123



1506 S. Eftekhar Azam et al.

Fig. 10 l = 2 Sensitivity of
the components K11, K12
and K22 of the
reduced-order stiffness
matrix to a damage of
varying location and
intensity d
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to show a kind of pathological feature of the ROM at
the considered floor; since all the story displacements
are collected in the measurement vector yk , the null
sensitivity at this floor is partially compensated for by
the algorithm through the exploitation ofmeasurements
collected elsewhere. Such strategy is in line with the
mentioned requirement of redundancy in the observ-
ables.

To assess the capability of the approach to track the
whole structural dynamics, granted that only measure-
ments of the story displacements are collected in yk ,
results are reported in Fig. 12 in terms of estimated dis-
placement, velocity and acceleration at the fifth floor,
for l = 1 and l = 2; the target time evolutions are
also given for comparison. Very similar results can be
reported for all the other stories. The figure provides
close-ups at three different stages of the analysis: at the
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Fig. 11 l = 2 Sensitivity of
the time history of
displacement at the fifth
floor to a damage-induced
variation of the components
a K11, b K12 and c K22 of
the reduced-order stiffness
matrix
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Fig. 12 Damage d = 0.5
located at the inter-story
between fourth and fifth
floors: time histories of
displacement, velocity and
acceleration at the fifth
floor, and comparison
among the target solution
(black dotted line) and
estimated ones at varying
order of l the ROM

beginning of the excitation, where a steady-state solu-
tion is not attained yet, and ROMs might fail to catch
the effects of higher-order vibration modes; around the
inception of the damage event, to show that within a
short time interval after t = 20 s the estimated state
converges toward the target; close to the end of the
analysis, to also show that in the long time range the

estimates are not spoiled by error accumulation, and
so do not lead to dangerous artificial drifts from the
target structural response that can be interpreted by the
SHM procedure as a growing damage. As for this task,
graphs clearly show that, by increasing the order l of
the model, the accuracy of the estimates gets increased
too.
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Fig. 13 Damage d = 0.5
located at the inter-story
between fourth and fifth
floors: phase-space plots
relevant to the fifth floor,
and comparison among the
target solution (black dotted
line) and estimated ones
(orange lines) for l = 1
(left) and (right) l = 2.
(Color figure online)

In Fig. 13, phase-space plots relevant to the same
fifth floor are reported, to further assess the perfor-
mance of the proposed approach in tracking the struc-
tural state. As already shown in Fig. 12, the accuracy
in terms of tracked displacement (the observed state
component) is the highest. The plot provided by the
proposed filtering procedure does not perfectly match
the target solution, especially in the case l = 1; any-
how, as in any joint system identification procedure,
the overall accuracy of state tracking gets enhanced as
time grows and additional observations are handled.
This outcome, which is partially hidden in Fig. 13 by
the discrepancy between target and identified solutions
at the beginning of the identification phase, has been
clearly shown by the time histories in Fig. 12.

As discussed in Sect. 4.1, a change in the value of
the stiffness parameters or in the slope of POMs of the
ROM is a damage signal. However, in order to quan-
tify the severity of the damage one needs to establish a
relationship among a set of damage indices, the POMs
and the stiffness parameters in the damaged state(s). A
common method for damage identification by exploit-
ing the tracked changes in the vibration characteristics
of the structure is based on artificial neural networks,
see, e.g., [91,92].

Finally, concerning the speed-up provided by the
reduced-ordermodeling, results are compared inTable 3
as obtained through both floating-point operation and
CPU time metrics. Data have been obtained by run-
ning the procedure implemented in MATLAB (release
2010a) on a personal computer featuring an Intel Core
(TM) i7-2630 QM @ 2.00 GHz processor, with 8.00
GB of RAM and Windows 7 64-bit as OS. As already

highlighted in [76], Table 3 shows that the speed-up
computed through the algorithmic complexity repre-
sents anupper boundon the real one; althoughan imple-
mentational optimization of the code can be foreseen to
provide better outcomes, a noteworthy computational
gain is reported.

5 Conclusion

In this paper, an approach for the concurrent dual esti-
mation and reduced-order modelling of a damaging
structure has been proposed. As for the reduced-order
modelling task, proper orthogonal decomposition has
been adopted to define the subspace that optimally cap-
tures the dynamics of the system. As for the dual esti-
mation task, an extendedKalman filter has been instead
adopted. When the identification of a ROM is studied,
a reconstruction of full state of the system is required to
compare the latest observations with the relevant filter
prediction; this looks possible only if the subspace is
known.

In the case of a damaging structure, the proposed
approach can automatically update the ROM through
an additional Kalman filter. The relevant online tun-
ing of the ROM, without any need of time-consuming
retraining stages, has been shown to allow the detection
of damage in the structure, in terms of both location and
(potentially) intensity.

In future works, the proposed approach will be
extended to deal with more complex, real-life appli-
cations. An explicit identification of the damage state
will be allowed for by appropriatelymodifying the aug-
mented state vector handled by the intricate Bayesian
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procedure: identifiability of damage, linked to the opti-
mal deployment of a sensor network, and reduced-order
modeling featuring minimal dimension, will be fully
addressed.
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