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Abstract We consider anti-control of Hopf bifur-
cation for the Shimizu–Morioka system by using an
explicit criterion. We first provide the two conditions
for the existence ofHopf bifurcation, that is, eigenvalue
assignment and transversality conditions, which could
be formulated through the coefficients of characteristic
equation, and the obtained conditions do not need to
calculate the eigenvalue and eigenvalue’s derivatives.
The center manifold theory and normal form reduction
are utilized to derive the nonlinear gains for controlling
the stability of the created limit circle. In addition, we
further improve the computing formulas of amplitude
and frequency of Hopf limit cycle. Numerical analysis
also verifies the effectiveness of the proposed results.
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1 Introduction

Bifurcation control, chaos control and sliding mode
control have been extensively examined in control the-
ory over the past decades [1–6], among which bifur-
cation control has played a significant role in control
theory. It is well stated that bifurcation properties of a
system can be modified through various feedback con-
trol methods, the common approach is the use of linear
or nonlinear state-feedback control [7–9]. The objec-
tive of bifurcation control may include to delay the
arises of an inherent bifurcation, to change the param-
eter value at bifurcation point, to stabilize the bifurca-
tion solution, tomodify the bifurcation type, to alter the
amplitude and frequency of some limit cycles produced
by bifurcation, etc [1]. Compared with the bifurcation
control, anti-control of bifurcation means that a certain
type of bifurcation is generated or enhanced at a pre-
specified location with expected properties by proper
control when it is beneficial and useful. The goal of
anti-control is aimed to introduce new bifurcations to
the nominal branch of the system output [10]. In our
work,we intend to discuss anti-control ofHopf bifurca-
tion in the Shimizu–Morioka system. Hopf bifurcation
is a local bifurcation in which a fixed point of a dynam-
ical system loses stability as a pair of complex conju-
gate eigenvalues cross imaginary axis, small-amplitude
limit cycle branches from the fixed point. Hopf bifurca-
tion is a universal phenomenon and extensively exists
in systems among biological, physical, engineering,
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mechanical and computer networks [11–18] and so on.
The classical Shimizu–Morioka system is
⎧
⎨

⎩

ẋ = y,
ẏ = x − by − xz,
ż = −az + x2,

(1)

where (x, y, z) ∈ R3 are the states variables,a andb are
the real parameters. The Shimizu–Morioka system is a
simpler model instead of the Lorenz system, it was pro-
posed by [19], this model shows a similar bifurcation
as in the Lorenz model and exists a stable symmetric
limit cycle under someparameter values, the symmetric
cycle becomes unstable and bifurcates to two asymmet-
ric limit cycles when the parameter varies, in addition,
the Shimizu–Morioka system is more easy to handle
andget the analytic formof limit cycles compared to the
Lorenz system. For Shimizu–Morioka system, most of
the researches mainly focus on the bifurcation analysis
[20–22] and various of synchronization issues [23–25].
To the best of our knowledge, until now anti-control of
Hopf bifurcation for Shimizu–Morioka system using
an explicit criterion has not been found. Anti-control of
bifurcation is motivated by observation in some appli-
cations such as mixing, low-energy navigation control,
monitoring and fault diagnosis [10,26]. Anti-control
of Hopf bifurcation for Shimizu–Morioka system can
be regarded as a method to design limit cycle or non-
linear oscillation into it. This new bifurcation solution
may be served as a new andmore appropriate operating
condition or region which can not be obtained through
conventional controlmeans. Especially, it can be served
as a warning signal of impending disaster or suspen-
sion in an electric system by generating a supercritical
Hopf bifurcation near the bifurcation point. Besides,
anti-control of bifurcation not only can be available
for bifurcation itself but also provide an effective way
for anti-control of chaos [10,27]. In addition, the tradi-
tional conditions for the existence of Hopf bifurcation
are stated in terms of the properties of eigenvalues.
Even though numerical computation of eigenvalues is
feasible in general. It is ideal to have a criterion stated in
terms of the coefficients of the characteristic equation
for theoretical analysis especially when it is difficult
to find characteristic roots for high-order equation, this
explicit criterion is put forward in [28], which is closely
related to the Routh-Hurwitz criterion.

Anti-control of bifurcation makes with the aid of
washout filter in general [26,27,29], themain benefit of
usingwashout filters is that all the equilibrium points of

the open-loop systemare preserved;moreover,washout
filters facilitate automatic track the targeted operating
point [30]. By incorporating the feedback control and
washout filters into the Shimizu–Morioka system, we
obtain the closed-loop control system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ = y + u1,
ẏ = x − by − xz + u2,
ż = −az + x2,
ẇ1 = A1x + A2y + A3z − d1w1,

ẇ2 = A4x + A5y + A6z − d2w2,

(2)

in the expanded system we choose μ = a as the bifur-
cation parameter, the nonlinear feedback controller u1
and u2 are designed as follows
{
u1 = k11s1 + k21s21 + k31s31 ,

u2 = k12s2 + k22s22 + k32s32 ,
(3)

where s1 = A1x + A2y + A3z − d1w1 and s2 =
A4x + A5y + A6z − d2w2. When si = 0(i = 1, 2),
the controller ui = 0, (i = 1, 2). This preserves the
equilibrium structure of the original system (1) during
a control process. The control gains k11 and k12 control
the Hopf bifurcation parameter location, whereas the
gains k21, k22, k31 and k32 have influenced on the stabil-
ity of the Hopf bifurcation solutions and the amplitude
and frequency of the created limit circle.

2 Anti-control of Hopf bifurcation
in Shimizu–Morioka system

In this section, we first discuss the existence of Hopf
bifurcation for system (2).

2.1 The linear control gains for the existence of Hopf
bifurcation

The system (2) can be rewritten as

Ẋ = F̃(X, μ, K1, K2, K3), (4)

where

X = (x, y, z, w1, w2)
T ,

F̃ =

⎛

⎜
⎜
⎜
⎜
⎝

y + k11s1 + k21s21 + k31s31
x − by − xz + k12s2 + k22s22 + k32s32
−az + x2

A1x + A2y + A3z − d1w1

A4x + A5y + A6z − d2w2

⎞

⎟
⎟
⎟
⎟
⎠

,
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K1 =
[
k11 0
0 k12

]

, K2 =
[
k21 0
0 k22

]

,

K3 =
[
k31 0
0 k32

]

.

There are three equilibria in system (1), which are
(0, 0, 0), (

√
a, 0, 1) and (−√

a, 0, 1), respectively. In
the following discussion, we only consider the local
Hopf bifurcation nearby the equilibrium (

√
a, 0, 1), the

analysis of other two equilibria is similar to (
√
a, 0, 1),

so we omit it.
The Jacobian matrix of system (4) at equilibrium

X∗ = (√
a, 0, 1, (A1

√
a+ A3)/d1, (A4

√
a+ A6)/d2

)

has the form

JX F̃ =

⎡

⎢
⎢
⎢
⎢
⎣

k11A1 k11A2 + 1 k11A3 −k11d1 0
k12A4 k12A5 − b k12A6 − √

a 0 −k12d2
2
√
a 0 −a 0 0

A1 A2 A3 −d1 0
A4 A5 A6 0 −d2

⎤

⎥
⎥
⎥
⎥
⎦

,

(5)

the characteristic equation of the Jacobian matrix JX F̃
is written as

a5λ
5 + a4λ

4 + a3λ
3 + a2λ

2 + a1λ + a0 = 0, (6)

where

a5 = 1, a4 = a + b + d1 + d2 − k11A1 − k12A5,

a3 = ab + ad1 + ad2 + bd1 + bd2 + d1d2

+ k11k12A1A5 − ak11A1 − bk11A1 − d2k11A1

− 2
√
ak11A3 − k11k12A2A4 − ak12A5 − k12A4

− d1k12A5,

a2 = 2a + ab(d1 + d2) + d1d2(a + b) + 2ak11A2

+ ak11k12A1A5 + 2
√
ak11k12A3A5 − abk11A1

− ad2k11A1 − bd2k11A1 − 2
√
abk11A3 − ak12A4

− 2
√
ad2k11A3 − d1k12A4 − ad1k12A5

− 2
√
ak12A6 − ak11k12A2A4 − 2

√
ak11k12A2A6,

a1 = 2a(d1 + d2) + abd1d2 + 2ad2k11A2 − abd2k11A1

− 2
√
abd2k11A3 − ad1k12A4 − 2

√
ad1k12A6,

a0 = 2ad1d2.

In order to create Hopf bifurcation of system (4),
the eigenvalues of characteristic Eq. (6) should be sat-
isfied with the conditions that there exists a pair of
purely imaginary roots, the real parts of other eigenval-
ues are negative and guarantee the transversality when
the bifurcation parameter passes through the critical
value. However, it is not easy to obtain the root’s ana-
lytical expression for (6), so we employ an explicit

criterion of Hopf bifurcation without using eigenvalues
[28], the explicit criterion of Hopf bifurcation is formu-
lated through the coefficients of characteristic equation.

Lemma 1 [28] There exists a Hopf bifurcation for sys-
tem (4) if the following two conditions hold.

(C1)D0(μ0) > 0, D1(μ0) > 0, . . . , Dn−1(μ0) = 0;
(C2)dDn−1(μ0)/dμ �= 0. (7)

It is obvious that Dn(μ0) = 0 since Dn(μ) =
an(μ)Dn−1(μ) and an(μ) = 1.

For the characteristic Eq. (6), the two conditions in (7)
can be expressed as follows:

(C1) :
D0(μ0) = a0(μ0) > 0,

D1(μ0) = a1(μ0) > 0,

D2(μ0) = det

[
a1 a0
a3 a2

]

= a1(μ0)a2(μ0) − a0(μ0)a3(μ0) > 0,

D3(μ0) = det

⎡

⎣
a1 a0 0
a3 a2 a1
a5 a4 a3

⎤

⎦

= a1a2a3 + a0a1a5 − a0a
2
3 − a21a4 > 0, μ = μ0,

D4(μ0) = det

⎡

⎢
⎢
⎣

a1 a0 0 0
a3 a2 a1 a0
a5 a4 a3 a2
0 0 a5 a4

⎤

⎥
⎥
⎦

= 2a0a1a4a5 + a0a2a3a5 + a1a2a3a4 − a20a
2
5

− a0a4a
2
3 − a21a

2
4 − a22a1a5 = 0, μ = μ0,

(C2) :
dD4(μ0)/dμ=(−2a0a

2
5 − a4a

2
3 + 2a1a4a5

+ a2a3a5)a
′
0 + (−2a1a

2
4 + 2a0a4a5 + a2a3a4

− a22a5)a
′
1 + (−2a1a2a5 + a1a3a4 + a0a3a5)a

′
2

+ (a1a2a4 + a0a2a5 − 2a0a3a4)a
′
3

+ (−2a21a4 + 2a0a1a5 + a1a2a3 − a0a
2
3)a

′
4

�= 0, μ = μ0, (8)

where a
′
i (i = 0, . . . , 4) denote the derivative of

ai (μ, K1) with respect to μ at μ = μ0. From for-
mula (8), the condition D4(μ0) = 0 ensures that a pair
of conjugate eigenvalues of characteristic Eq. (6) are
located on the imaginary axis whenμ = μ0, the condi-
tion Di (μ0) > 0, (i = 0, . . . , 3) ensures that the other
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eigenvalues have negative parts when μ = μ0, and the
condition dD4(μ0)/dμ �= 0 guarantees that the pair
of complex conjugate eigenvalues crosses imaginary
axis at nonzero rate when the bifurcation parameter μ

varies.

2.2 The nonlinear control gains for the stability of
Hopf bifurcation

Next, we provide the stability condition of Hopf limit
circle in this subsection.

Assume that λ1(μ0) = iω0, λ2 = λ̄1(μ0) = −iω0

with ω0 = Im(λ1(μ0)) is a pair of purely imagi-
nary conjugate eigenvalues of characteristic Eq. (6),
and we let P = (Rev1, -Imv1, r3, r4, r5), where v1 is
the eigenvector of λ1(μ0) and r3, r4, r5 are any set of
real 5-dim vectors which span the union of the (gener-
alized)eigenspaces for λ3, λ4, λ5. Perform the change
of variables X = X∗ + PY , Y = (y1, . . . , y5)T , then
we can convert the system (4) into the form

Ẏ = F(Y, μ) = (F1, F2, F3, F4, F5)T , (9)

with zero equilibrium and its Jacobian matrix has the
real canonical form

JY F(0, μ0)) =
⎡

⎣
0 −ω0 0
ω0 0 0
0 0 D

⎤

⎦ . (10)

According to bifurcation theory [11,12], the stability
condition of Hopf limit circle is

β(μ0, K2, K3) = 2Re[c1(0)], (11)

where

c1(0) = i

2ω0

[

g20g11 − 2|g11|2 − 1

3
|g02|2

]

+ g21
2

,

(12)

g11(μ0, K2) = 1

4

[
∂2F1

∂y21
+ ∂2F1

∂y22

+i

(
∂2F2

∂y21
+ ∂2F2

∂y22

)]

,

g02(μ0, K2) = 1

4

[
∂2F1

∂y21
− ∂2F1

∂y22
− 2

∂2F2

∂y1∂y2

+i

(
∂2F2

∂y21
− ∂2F2

∂y22
+ 2

∂2F1

∂y1∂y2

)]

,

g20(μ0, K2) = 1

4

[
∂2F1

∂y21
− ∂2F1

∂y22
+ 2

∂2F2

∂y1∂y2

+i

(
∂2F2

∂y21
− ∂2F2

∂y22
− 2

∂2F1

∂y1∂y2

)]

,

g21(μ0, K2, K3) = G21

+
3∑

k=1

(

2Gk
110w

k
11 + Gk

101w
k
20

)

, (13)

where

G21(μ0, K3) = 1

8

[
∂3F1

∂y31
+ ∂3F1

∂y1∂y22
+ ∂3F2

∂y21∂y2

+∂3F2

∂y32
+ i

(
∂3F2

∂y31
+ ∂3F2

∂y1∂y22

− ∂3F1

∂y21∂y2
− ∂3F1

∂y32

) ]

,

Gk−2
110 (μ0, K2) = 1

2

[
∂2F1

∂y1∂yk
+ ∂2F2

∂y2∂yk

+i

(
∂2F2

∂y1∂yk
− ∂2F1

∂y2∂yk

)]

, k = 3, 4, 5,

Gk−2
101 (μ0, K2) = 1

2

[
∂2F1

∂y1∂yk
− ∂2F2

∂y2∂yk

+i

(
∂2F1

∂y2∂yk
+ ∂2F2

∂y1∂yk

)]

, k = 3, 4, 5.

In Eq. (13), wk
11 and wk

20 are the components of the
3-dim vectors w11 = (w1

11, w
2
11, w

3
11)

T and w20 =
(w1

20, w
2
20, w

3
20)

T , respectively. The vectors w11 and
w20 are the solutions of the following linear equations,
respectively,

Dw11 = −h11, (D − 2iω0 I )w20 = −h20, (14)

where D is given in Eq. (10) and I denotes the
unit matrix, h11 = (h111, h

2
11, h

3
11)

T and h20 =
(h120, h

2
20, h

3
20)

T are 3-dimvectorswith the components
of the form

hk−2
11 (μ0, K2) = 1

4

(
∂2Fk

∂y21
+ ∂2Fk

∂y22

)

, k = 3, 4, 5,

hk−2
20 (μ0, K2) = 1

4

(
∂2Fk

∂y21
− ∂2Fk

∂y22
− 2i

∂2Fk

∂y1∂y2

)

,

k = 3, 4, 5.

The sign of β(μ0, K2, K3) of the condition (11) indi-
cates the stability of the bifurcation periodic solutions
for system (4). The created Hopf bifurcation is stable if
β(μ0, K2, K3) < 0 and unstable if β(μ0, K2, K3) >

0. By the formulas (9)–(14), it is evident that the stabil-
ity condition (11) could be available for the coefficients
of the corresponding expression of system (9). Conse-
quently, we can choose suitable K2, K3 to adjust the
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Anti-control of Hopf bifurcation 1457

sign of β(μ0, K2, K3) and then change the stability of
the desired bifurcation periodic solutions.

2.3 The nonlinear control gains for amplitude and
frequency of Hopf bifurcation

Once the Hopf limit cycle of system (4) is generated
in virtue of the control gains in Sects. 2.1 and 2.2,
the amplitude and frequency of the created limit cycle
could be adjusted by the designed controller (3).

Lemma 2 [26]The amplitude of the created limit cycle
after Hopf bifurcation in system (4) is given by the form

ε(K2, K3)

=
[

− D
′
4(μ0)

2Re[c1(0)]∏1,...,5
p<q

(
λp(μ0) + λq(μ0)

)μ1

]1

2 ,

(15)

whereμ1 = (μ−μ0), D
′
4(μ0) denotes the derivative of

D4 with respect to μ at μ = μ0, D4 is the same in (8).
c1(0) is the expression in (12). λp(μ0) and λq(μ0) are
two eigenvalues of characteristic Eq. (6), but (λp+λq)

does not include the term of (λ1 + λ2).

Based on the center manifold theory and normal
form reduction, the approximate amplitude of Hopf
limit cycles in nonlinear systems near the bifurcation
point μ0 has the form

ε =
√

μ − μ0

v2
, (16)

where

v2 = − Re[c1(0)]
α

′
(0)

, α
′
(0) = d(Re(λ1(μ)))

dμ

∣
∣
∣
∣
μ=μ0

.

(17)

By using the formula of Orlando Dn−1 = (−1)n(n−1)/2

an−1
n

1,...,5∏

i< j

(
λi +λ j

)
[31], the determinant D4(μ) can be

expressed in terms of the highest coefficient a5 and the
roots of characteristic Eq. (6)

D4 = a45
1,...,5∏

i< j

(
λi + λ j

)
. (18)

The formula (18) can be rewritten as

D4 = a45(λ1 + λ2)
1,...,5∏

p<q

(
λp + λq

)
, (19)

where
(
λp+λq

)
does not include the term of

(
λ1+λ2

)
.

By calculating the derivative on both sides of Eq. (19)
with respect to μ at μ = μ0, we obtain

D
′
4(μ0) = 2a45

d(Re(λ1(μ)))

dμ

∣
∣
∣
∣
μ=μ0

1,...,5∏

p<q

(
λp + λq

)

= 2a45α
′
(0)

1,...,5∏

p<q

(
λp + λq

)
. (20)

From the expression (20) and a5 = 1, we have

α
′
(0) = D

′
4(μ0)

2
1,...,5∏

p<q

(
λp + λq

)
. (21)

Substituting the formula (21) into (16) and (17), the
formula (15) is obvious.

Lemma 3 [26] The frequency of the created limit cycle
after Hopf bifurcation in system (4) is given by the form

f (K2, K3)= ω0

2π

(

1− Im(c1(0))+v2 Im(ψ1)

ω0
ε2

) ,

(22)

where ω0 = Im(λ1(μ0)), v2 =
−2Re[c1(0)]∏1,...,5

p<q

(
λp + λq

)

D
′
4(μ0)

, ψ1 = VL1(X∗,

μ0, K1)
∂
(
JX F̃(X∗, μ0, K1)

)

∂μ
VR1(X∗, μ0, K1),

VL1(X∗, μ0, K1) and VR1(X∗, μ0, K1) are the left and
right eigenvectors of the Jacobianmatrix JX F̃(X∗, μ0,

K1), ε is the amplitude of the limit cycle in Lemma 2.

We know that the approximate period in close vicin-
ity to the Hopf bifurcation point is

T = 2π

ω0

(
1 + τ2ε

2), (23)

where

τ2 = −Im(c1(0))+μ2ω
′
(0)

ω0
, μ2=−Re[c1(0)]

α
′
(0)

,

ω
′
(0) = d(Im(λ1(μ)))

dμ

∣
∣
∣
∣
μ=μ0

. (24)

In the following, we show that ω
′
(0) in (24) can be

expressed in the form

ω
′
(0) = d(Im(λ1(μ)))

dμ

∣
∣
∣
∣
μ=μ0

= Im(ψ1). (25)

123



1458 Y. Yang et al.

According to the definitions for the left and right eigen-
vectors of the matrix, we have

VL1(X
∗, μ, K1)JX F̃(X∗, μ, K1)

= λ1(μ)VL1(X
∗, μ, K1),

JX F̃(X∗, μ, K1)VR1(X
∗, μ, K1)

= λ1(μ)VR1(X
∗, μ, K1), (26)

where the left and right eigenvectors satisfy the normal
condition

VL1(X
∗, μ, K1)VR1(X

∗, μ, K1) = 1. (27)

From Eqs. (26) and (27), it can be shown that

VL1(X
∗, μ, K1)Jx F̃(X∗, μ, K1)

VR1(X
∗, μ, K1)=λ1(μ). (28)

By differentiating (28) with respect toμ atμ = μ0 and
using the following formula

∂VL1(x∗, μ0, K1)

∂μ
Jx F̃(x∗, μ0, K1)VR1(x

∗, μ0, K1)

+VL1(x
∗, μ0, K1)Jx F̃(x∗, μ0, K1)

∂VR1(x∗, μ0, K1)

∂μ

= λ1(μ0)

[
∂VL1(x∗, μ0, K1)

∂μ
VR1(x

∗, μ0, K1)

+VL1(x
∗, μ0, K1)

∂VR1(x∗, μ0, K1)

∂μ

]

= 0,

we have

ψ1 = VL1(x
∗, μ0, K1)

∂
(
Jx F̃(x∗, μ0, K1)

)

∂μ

VR1(x
∗, μ0, K1) = d(Re(λ1(μ)))

dμ

∣
∣
∣
∣
μ=μ0

+i
d(Im(λ1(μ)))

dμ

∣
∣
∣
∣
μ=μ0

. (29)

From the expression (29), we easily obtain the expres-
sion (25). Then, we substitute the expressions (25) and
(21) into (23) and (24), and use the relation of frequency

and period f = 1

T
, the expression (22) is obtained.

As we stated earlier, the eigenvalues λi (μ0)(i =
1, . . . , 5) and the expression D

′
4(μ0) in the formula

(15) and (22) are only related with the linear gain
K1 due to the expressions (6) and (8). Moreover, it
is clear that the control of amplitude of limit cycle
without calculating the derivative of eigenvalue λ1(μ),
which ismore convenient than the original classic form.
Although the generating of limit cycle is only related

to the linear gain K1 according to Lemma 1. Never-
theless, the approximate expressions of amplitude and
frequency of the limit cycle can be influenced by the
nonlinear control gain matrixes K2 and K3 because of
the term c1(0) according to Lemma 2 and 3. Generally,
we pay attention to the stable limit cycle of Hopf bifur-
cationwhenβ(μ0, K2, K3) < 0 to adjust the amplitude
and frequency of limit cycle. In other words, once the
bifurcation parameter μ is determined, the amplitude
and frequency of limit cycle could be controlled by the
nonlinear gains K2 and K3.

3 Numerical analysis

In this section, some numerical results of simulating
system (4) are presented to verify the main conclusion
of the second part. First, let b = 0.75, u1 = 0, u2 =
0, bifurcation parameter a varies at the interval [0, 1],
the bifurcation diagram of system (1) without feedback
control is given (see Fig. 1). From Fig. 1, we can see
that the system undergoes the alternation of bifurcation
and chaotic dynamical behaviors at first, and then it
reaches a steady state. For instance, when a = 0.18,
system (1) lies in the chaotic region, but at a = 0.22,
system (1) falls back to stable state, If a is increased
to 0.4, system (1) locates at chaotic region again, and

a
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Fig. 1 Bifurcation diagram of system (1) with respect to a and
b = 0.75
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Fig. 2 Comparison of periodic and chaotic states for system (1)
with respect to a. a a=0.18, b a=0.22, c a=0.4, d a=0.8

whena increases further to 0.8, system (1) returns to the
stable state, the corresponding phase diagrams (where
we only provide y-z planes, the phase portraits for other
planes are omitted) are given in Fig. 2a–d respectively.

In this paper, we aim to let the system produce Hopf
limit cycle through washout filter feedback control.
From Lemma 1, system (4) will produce Hopf limit
cycle if the condition (7) is satisfied. We fix bifur-
cation parameter μ = a = 0.5, system (1) without
feedback control is under chaotic state (see Fig. 1).
However, system (4) will produce Hopf limit cycle if
we choose suitable parameters k11 and k12. By Fig. 3,
the green area indicates that D0 > 0, D1 > 0, D2 >

0, D3 > 0, D4 > 0, the cyan area indicates that
D0 > 0, D1 > 0, D2 > 0, D3 > 0, D4 < 0, when
k11 and k12 locate in the two areas, the system will not
generate Hopf limit cycle, because the condition (7) is
not satisfied owing to D4 > 0 or D4 < 0. The two red
lines show D4(μ0) = 0whenwechoose certain k11 and
k12, while the two black lines show dD4(μ0)/dμ = 0
when we choose other k11 and k12, therefore, when k11
and k12 locate on the red line l1 except the intersec-
tion point P1 with the line dD4(μ0)/dμ = 0 (P1 does
not satisfy the transversality condition), system (4) will
generate Hopf limit cycle.

Next, we consider the stability of the limit cycle.
Supposing that the nonlinear gain k21 (or k22) in the
matrix K2 and the k31 (or k32) in the matrix K3 are

−4 −3 −2 −1 0 1 2 3 4
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4

k
11

k 1
2
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l1
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D
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D
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>0,D

3
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4
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D
0
>0, D

1
>0,

D
2
>0,D

3
>0,D

4
<0

Fig. 3 The range of linear feedback control for generating Hopf
limit cycle. A1 = 1, A2 = −1, A3 = 1, A4 = 1, A5 =
−1, A6 = 1, d1 = 2, d2 = 2, a = 0.5, b = 0.85

chosen as the control parameters. The stability condi-
tion derived by the center manifold theory and normal
form reduction is as follows:

β(μ0, k22, k31) = −0.00051476∗k222+0.01153 ∗ k22

+ 0.076654 ∗ k31+0.048809, (30)

or

β(μ0, k21, k32) = 0.038076 ∗ k221 + 0.17928 ∗ k21

+ 0.0076547 ∗ k32 + 0.048809,

(31)

by using the analytical expressions (30) and (31), and
the stability region of limit cycle is shown in the Fig.
4 a, b respectively. The cyan area in Fig. 4a stands for
the stable region of limit cycle where the inequality
β(μ0, k22, k31) < 0 holds and the cyan area in Fig.
4b stands for the stable region of limit cycle where the
inequality β(μ0, k21, k32) < 0 holds(for simplicity, we
fix k21 = 0, k32 = 0 in Fig. 4a, and k22 = 0, k31 = 0
in Fig. 4b). As an example, we choose two points
in stable region as the nonlinear control gains, one
point is (k22, k31, k21, k32) = (30,−20, 0, 0) which
ensures β(μ0, k22, k31) < 0 holds and the other
is (k22, k31, k21, k32) = (0, 0,−2, 5) which ensures
β(μ0, k21, k32) < 0 holds, thus if we choose the two
points as the nonlinear feedback control which can
ensure that the created limit cycles are stable (see Fig.
5a, b). Besides, we can also adjust the amplitude of
limit cycle through nonlinear feedback control. In Fig.
6, we continue to fix linear feedback control k11, k12
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Fig. 5 Control parameter bifurcation diagram with respect to
a = 4.5, b = 8.85, A1 = 1, A2 = −1, A3 = 1, A4 = 1, A5 =
−1, A6 = 1, d1 = 2.5, d2 = 2.5, k11 = 0.98420365, k12 =
2; a k22 = 30, k31 = −20, k21 = 0, k32 = 0; b k22 = 0, k31 =
0, k21 = −2, k32 = 5

as same as Figs. 4 and 5, other three nonlinear feed-
back control fix as k22 = 1, k21 = 0, k32 = 0(Fig.
6a) or k22 = 0, k31 = 0, k21 = −2(Fig. 6b), from
Fig. 6a, b, we obtain that the amplitude of the limit
cycle increases with the feedback control k31 or k32.
It is obvious that k31 = −20,−2,−1, 0.5, 0 (see
Fig. 6a) all locate in the stable region in Fig. 4a and
k32 = −20, 0, 15, 18, 19, 20 (see Fig. 6b) all locate in
the stable region in Fig. 4b.

From the numerical simulation, we can see that gen-
erating Hopf bifurcation only refers to the linear feed-
back control k11 and k12, if we fix other parameters
of system (4), the linear control k11 and k12 can be
determined to generate Hopf bifurcation (see Fig. 3).
However, the stability of limit cycle as well as the
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Fig. 6 The limit circles under different nonlinear gains. μ =
μ0 − 0.05, a = 4.5, b = 8.85, A1 = 1, A2 = −1, A3 =
1, A4 = 1, A5 = −1, A6 = 1, d1 = 2.5, d2 = 2.5, k11 =
0.98420365, k12 = 2; a k22 = 1, k21 = 0, k32 = 0; b k22 =
0, k31 = 0, k21 = −2

amplitude will be changed by the nonlinear feedback
control. We also can be easy to find the stable region
for limit cycle about the nonlinear feedback control
k21, k22, k31, k32(see Fig. 4). Similarly, the amplitude
will be adjusted by the nonlinear feedback control, we
fixed other three nonlinear control, varied one nonlin-
ear feedback control, and it is seen that the amplitude
becomes greater when the nonlinear feedback control
increases (see Fig. 6).

4 Conclusion

In this paper, we have considered anti-control of Hopf
bifurcation for Shimizu–Morioka system. The exis-
tence conditions of Hopf limit cycle needed to derive
the roots of the characteristic equation for the work of
Hopf bifurcation in the past, to verify whether there
exists a pair of purely imaginary eigenvalues, and the
transversality condition is satisfied. These two condi-
tions are related to the eigenvalues and the derivative
of one of conjugate eigenvalues. However, it is diffi-
cult to find characteristic roots for high-order equation.
We have adopted the explicit criterion to describe the
existence of Hopf bifurcation, that is, the explicit cri-
terion is formulated through the coefficients of char-
acteristic equation instead of calculating the eigenval-
ues directly. The two conditions are expressed by the
form of Hurwitz determinant and the derivative of the
coefficients of characteristic equation with respect to
bifurcation parameter, and the coefficients of the char-
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acteristic equation are relatively easy to obtain. Thus,
our approach has effectively avoided to compute the
eigenvalues and eigenvalue’s derivative. Besides, the
formulas of amplitude and frequency of limit cycle are
also improved on account of the amplitude and fre-
quency of limit cycle no longer need to calculate the
derivative of the eigenvalue.
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