
Nonlinear Dyn (2017) 89:1371–1383
DOI 10.1007/s11071-017-3522-1

ORIGINAL PAPER

Onset of colored-noise-induced chaos in the generalized
Duffing system

Youming Lei · Mengjiao Hua · Lin Du

Received: 14 October 2016 / Accepted: 3 April 2017 / Published online: 17 April 2017
© Springer Science+Business Media Dordrecht 2017

Abstract The effects of colored noise, red noise and
green noise, on the onset of chaos are investigated theo-
retically and confirmed numerically in the generalized
Duffing systemwith a fractional-order deflection. Ana-
lytical predictions concerning the chaotic thresholds in
the parameter space are derived by using the stochastic
Melnikov method combined with the mean-square cri-
terion. To qualitatively confirm the analytical results,
numerical simulations obtained from the mean largest
Lyapunov exponent are used as test beds. We show that
colored noise can induce chaos, and the effects for the
case of red noise on the onset of chaos differ from those
for the case of green noise. The most noteworthy result
of this work is the formula, which relates the chaotic
thresholds among red, green and white noise, holds for
noise-induced chaos in the Duffing system. We also
show that Gaussian white noise can induce chaos more
easily than colored noise.

Keywords Colored noise · Chaos · Stochastic
Melnikov method · The largest Lyapunov exponent

1 Introduction

When considering the onset of chaos in a realistic sys-
tem, noise in the external perturbation is inevitable
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present since the natural system is undeniably subject
to random fluctuations [1]. As Tél and Lai [2] pointed
out, noise-induced chaos is a generic phenomenon in
the real world, especially in biological sciences where
the concept of noise-induced chaos plays an important
role in the dynamical evolution of biological systems
[3,4]. Therefore, many researchers have attempted to
explore themechanismof noise-induced chaos [5].As a
pioneeringwork, Crutchfield et al. [6] studied the effect
of noise on the onset of chaos associated with period
doubling bifurcations. They found that noise tends to
smooth out the transition to chaos and lower the thresh-
old value for the onset. By developing a renormaliza-
tion approach for a noisymap,Hirsch et al. [7] derived a
formulation of the transition to chaos via intermittency.
Based on simulations in a Josephson systemwith a frac-
tal boundary between basins of periodic attractors, Ian-
siti et al. [8] showed that the addition of noise pushes
the orbit into the basin boundary, induces an intermit-
tent motion, and thus leads to a strange attractor, which
is similar to an interior crisis in intrinsically chaotic
systems. For a nonchaotic attractor coexisting with a
nonattracting chaotic saddle, Liu et al. [9,10] discov-
ered, under the influence of noise, the topology of the
flow is destroyed due to unstable-dimension variability,
and obtained in the continuous-time dynamical system
a general scaling law for the largest Lyapunov expo-
nent. The scaling law, however, is based on numerical
evidence and a heuristic analysis. Based on the con-
cept of quasi potentials [2], Tél and Lai provided a
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novel analytical approach to derive in such continu-
ous flow the same scaling law, whereas they uncovered
the same order of magnitude, but somewhat different,
scaling law for the noisy map.

As an effective global perturbation technique to pre-
dict deterministic chaos in the sense of Smale horse-
shoes, theMelnikov method has been applied to homo-
clinic or heteroclinic chaos in noisy systems. Taking
into account the effect of weak additive noise on the
homoclinic threshold, Bulsara et al. [11] derived a
generalized Melnikov function, which is shifted by a
correction term that depends on noise characteristics.
They demonstrated that, on average, additive noise ele-
vates the threshold for chaos. In a different way, Frey
and Simiu [12] defined a Melnikov process based on
the fact that the stochastic excitation can be closely
approximated by finite sums of harmonic excitations
with random parameters, and concluded that the pres-
ence of weak noise cannot suppress chaotic motion.
However, a rigorous proof of the existence of chaos via
horseshoes is still to be carried out for the stochastic
system. Even for the deterministic system, the stan-
dard Melnikov function only renders a necessary con-
dition for the existence of chaos. In view of this, in
order to provide an upper bound of possible chaotic
domain, Lin and Yim [13] developed a generalized
stochastic Melnikov method with the mean-square cri-
terion and observed that the presence of noise low-
ers the threshold and enlarges the possible chaotic
domain in the parameter space. Later on, this method
has been employed to consider homoclinic or hetero-
clinic chaos in nonlinear systems driven by various
types of noise [14–18], such as dichotomous noise,
bounded noise, and red noise (Ornstein–Uhlenbeck
process). In particular,Gan [19,20] stated that the exter-
nal Gaussian white noise excitation is robust for induc-
ing chaos while the colored noise excitation is weak,
implying that the former can induce chaos more eas-
ily.

Contrary to intuition, as it is now well known,
stochastic excitations in nonlinear systems can inter-
act with nonlinearities to enhance regular behaviors
such as stochastic resonance, coherence resonance,
and pattern [1,21,22]. More interestingly, Maritan and
Banavar [23] showed that in a pair of chaotic sys-
tems common noise can induce synchronization. How-
ever, Pikovsky [24] pointed out that this is a numer-
ical illusion from the insufficient precision of calcu-
lations. Sanchez et al. [25] concluded that this kind

of synchronization is induced by a nonzero mean of
the signal, not by its stochastic character, and claimed
that unbiased noise cannot lead to synchronization.
This claim was invalidated by Lai and Zhou [26].
They showed that synchronization can be achieved
by zero-mean noise in a chaotic map with large con-
vergence regions. Considering the effect of colored
noise on chaotic arrays, Lorenzo and Pérez-Muñuzuri
[27] uncovered for some values of the time corre-
lation red noise can improve synchronization of the
arrays. Also, Wang et al. [28] investigated synchro-
nization among chaotic oscillators driven by colored
noise, red and green noise and obtained colored-noise-
induced synchronization. Importantly, they found that
the onset of synchronization is different for different
types of noise. More precisely, they provided a for-
mula relating the critical noise amplitudes among red,
green and white noise for synchronization. Inspired by
their work on synchronization, in this study, we aim to
investigate the effect of colored noise on the onset of
chaos in the generalized Duffing system, since noise-
induced synchronization and noise-induced chaos are
two opposite transitions in terms of the sign of the
largest Lyapunov exponent. We will consider whether
the formula, which relates the synchronization thresh-
olds of red, green and white noise, still holds for chaos.
Instead of a heuristic analysis, this study uses the
stochastic Melnikov method with the mean-square cri-
terion to derive chaotic thresholds of colored and white
noise. The remainder of this study is organized as fol-
lows. In Sect. 2, we will introduce the mathematical
model and the generation of colored noise. Section 3
presents analytical estimates of chaotic thresholds in
the parameter space obtained through the stochastic
Melnikov method. Since the power spectrum of white
noise is equivalent to the sum of spectrums of red and
green noise, we prove that the formula, relating white
noise and colored noise, still holds for noise-induced
chaos. Subsequently, to verify the results acquired from
theoretical prediction more comprehensively, numer-
ical simulations are performed in Sect. 4, in which
the algorithm for the mean largest Lyapunov expo-
nent from Rosenstein et al. [29] is employed. Sec-
tion 5 is devoted to presenting conclusions and fur-
ther discussions of the major findings. Ultimately,
we present the detailed steps leading to the second-
order stochastic Runge–Kutta algorithm to integrate
the stochastic differential equations under green noise
in “Appendix”.
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2 Mathematical model and colored noise

2.1 Mathematical model

In this work, we will concentrate on the effect of the
onset of chaos induced by colored noise in the pervasive
Duffing-type differential equation with a fractional-
order nonlinear term:

ẍ − x + x |x |α−1 = ε(−δ ẋ + μG(t)). (1)

Equation (1) has a physical meaning that it can repre-
sent the oscillatory motion of the buckled beam with
hinged or simply supported ends for the modal dis-
placement x(t) [30]. The exponent α > 1 is an integer
or a fraction that depends on the bending and material
properties of the beam. For example, the piano hammer
is a wooden beam that coated with several layers of the
compressed wool felts. The elastic force in the piano
hammer is nonlinear, and the values of the exponent α
range from1.5 to 2.8 for newhammers and 2.2 to 3.5 for
hammers taken from the pianos [31]. The phenomena
in electronics can also be describedwith the differential
Eq. (1). The nonlinearity of the restitution force plays
an important role in micro-electromechanical systems
like micro-actuators [32], micro-oscillators [33], and
micro-filters [34]. For the micro-actuators [32], the
optimal values for α range from 4 to 7.

By introducing a new variable y = ẋ , one can
rewrite Eq. (1) in the following form:

ẋ = y,

ẏ = x − x |x |α−1 + ε(−δy + μG(t)), (2)

where 0 < ε � 1 is a perturbative parameter, δ is the
amplitude of linear damping, and μ is the amplitude
that represents the intensity of noiseG(t). As discussed
in Sect. 1, three types of noise, red, green and white
noise, will be considered in the stochastic dynamical
system (2), separately. In addition, we select the four
cases, i.e. α = 5/3, 3, 11/3, 14/3 to study the effects
of colored noise on the onset of chaos. We always set
ε = 0.1, δ = 0.15 in the following study if there are
no special statements.

2.2 The generation of colored noise

It is shown that both red and green noise can be gen-
erated from a first-order linear stochastic differential

equation as long as the additive stochastic component
corresponds to the Gaussian white noise and violet
noise separately.

Red noise can be constructed with the following
equation:

ξ̇ = −γ ξ + γ η, (3)

where γ is a positive parameter, η(t) is taken as Gaus-
sian white noise and D is the amplitude of white noise.
The properties for Gaussian white noise are assumed:
〈η〉 = 0, 〈η(t)η(t ′)〉 = D2δ(t − t ′), with an initial
condition 〈ξ(0)〉 = 0, we obtain (for t → ∞):

〈ξ 〉 = 0, (4)

〈ξ(t)ξ(t + τ)〉 = D2 γ

2
e−γ |τ |, (5)

SR(ω) = D2

2π

γ 2

γ 2 + ω2 , (6)

where the positive parameter γ stands for the inverse
correlation time of the stochastic process ξ(t), and
SR(ω) denotes the power spectrum of ξ(t). In addition,
there is no denying that the autocorrelation function
in Eq. (5) decays exponentially, which is just comply-
ing with the characteristic of red noise. That is to say,
ξ(t) is the stochastic process that generates red noise
(see, for instance, Refs. [35,36]). Note that in the past
years researchers have developed different algorithms
[37,38] to simulate Langevin equations with colored
noise, whose algorithms can also be introduced and
utilized to integrate the set of stochastic differential
equations under red noise.

Similar to the generation of red noise, green noise
can be generated if the additive stochastic term γ η is
substituted as −η̇ in Eq. (3), where η̇ denotes violet
noise. Owing to the reason that the numerical inte-
gration concerning the derivative term of a stochastic
process is difficult to calculate, and hence, a numeri-
cally feasible way is selected to generate green noise
[28]:{
ż = f (z) + ξ − η.

ξ̇ = −γ ξ + γ η.
(7)

In system (7), η(t) is taken as Gaussian white noise.
Accordingly, red noise is generated from the stochastic
process ξ(t). Then, we can compute the power spec-
trum of the stochastic process ξ(t) − η(t) as:
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Fig. 1 (Color online) The spectral density of red and green noise
depicted in a and b indicates that with the growth of γ , the band-
width of red noise become wider, i.e. its randomness becomes

much stronger, whereas green noise is relatively complemented
to red noise. c The sum of the spectral densities of red and green
noise is always the spectrum of white noise

Sξ−η(ω) =
[
ξ̃ (ω) − η̃(ω)

] [
ξ̃∗(ω) − η̃∗(ω)

]

= D2

2π

[
γ

γ + iω
− 1

]
×

[
γ

γ − iω
− 1

]

= D2

2π

ω2

γ 2 + ω2 , (8)

which just obeys the characteristic of green noise. Thus,
the autocorrelation function of the stochastic process
can be obtained:

Rξ−η(t, t + τ) = D2δ(τ ) − D2 γ

2
e−γ |τ |. (9)

To integrate the stochastic dynamical systems under
green noise numerically, the second-order Runge–
Kutta algorithm is introduced and utilized, which can
also be utilized to simulate dynamical systems under
white noise if the system (7) contains no ξ−related
term, and under red noise if the first equation of system
(7) contains no white noise term [39], respectively. The
algorithm for computing system (7) is as follows:

z(t + �t) = z(t) + �t (F1 + F2)
/
2 − D

√
�tφ,

ξ(t + �t) = ξ(t) + �t (H1 + H2)
/
2 + Dγ

√
�tφ,

(10)

where

H1 = −γ ξ(t),

H2 = −γ [ξ(t) + �t H1 + Dγ
√

�tφ],
F1 = f [z(t)] + ξ(t),

F2 = f [z(t) + �t F1 − D
√

�tφ] − H2
/
γ ,

and φ ∼ N (0, 1) is a standard Gaussian random num-
ber. It should be noted that in this study the value of D
is always set as 4.

Figure 1 displays the spectral density of colored
noise for several values of parameter γ . It is confirmed
clearly in Fig. 1a, b that the bandwidth of red and green
noise depends mainly on γ . In addition, the larger γ is,
thewider the bandwidth could be,whichmeans the ran-
domness of red noise will become much stronger fol-
lowing with the increase of the parameter γ , whereas
green noise is contrary to red noise. In fact, white noise
has a flat power spectrum, i.e. Sη = D2/2π ≡ SW does
not depend on γ . Nonetheless, there always exists an
expression between the spectral densities of the three
types of noise, namely, SR + SG = SW , which is ver-
ified in Fig. 1c. As a result, their effects on the onset
of chaos in the Duffing system (2) should be related
to each other, which will be illustrated in this work,
theoretically and numerically.

3 Chaos prediction

As discussed in Sect. 1, the Melnikov method is an
effective approach to detect chaotic dynamics. More-
over, the Melnikov function is introduced and exten-
sively employed to forecast whether chaos occurs by
surveying the distance between the perturbed stable and
unstable manifolds of homoclinic/heteroclinic orbits.
Thus, in this section we aim to apply the stochastic
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Melnikov method to analyze and compare the effects
of the three processes above on the onset of chaos.

In order to employ the Melnikov method, Eq. (2) is
primarily rewritten in the following equivalent form:

Ẋ = f (X) + εg(X, t), (11)

where

X = (x, y)T, g(X, t) =
(

0
μG(t) − δy

)
,

and

f (X) =
(

∂H(x, y)

∂y
, −∂H(x, y)

∂x

)T

=
(

y
x − x |x |α−1

)
.

If we assume ε = 0, then the stochastic dynamical
system (2) can be regarded as an unperturbed system:
i.e.

ẋ = y,

ẏ = x − x |x |α−1. (12)

Meanwhile, the Hamiltonian function H(x, y) asso-
ciated with the unperturbed system is obtained in the
following form:

H(x, y) = 1

2
y2 − 1

2
x2 + x2|x |α−1

α + 1
. (13)

It is easy to verify that there exist three equilibrium
points for α > 1 : O = (0, 0) denotes the hyperbolic
saddle and C1,2 = (±1, 0) can be considered as the
centers. Then, the analytical solutions of the homo-
clinic orbits Γ ±

hom can be expressed as:

Γ +
hom(t) = (x0+(t), y0+(t)),

Γ −
hom(t) = (x0−(t), y0−(t)) = −Γ +

hom(t),

where

x0+(t) =
(

α + 1

2

) 1
α−1

(
sech

(
α − 1

2
t

)) 2
α−1

,

y0+(t) = −
(

α + 1

2

) 1
α−1

(
sech

(
α − 1

2
t

)) 2
α−1

× tanh

(
α − 1

2
t

)
.

Similar to the deterministic Melnikov method, we
derive the stochastic Melnikov process for system (2)
in the following equation:

M±(t0) =
∫ +∞

−∞
f (Γ ±

hom(t)) ∧ g(Γ ±
hom(t), t + t0)

=
∫ +∞

−∞
y0±(t)(μG(t + t0) − δy0±(t))dt (14)

=
∫ +∞

−∞
μy0±(t)G(t + t0)dt

−
∫ +∞

−∞
δ(y0±(t))2dt

�= Ms
± + Md

±,

where the integral Ms
± and Md

± are given by the fol-
lowing relations:

Ms
± = μ

∫ +∞

−∞
y0±(t)G(t + t0)dt,

Md
± = −δ

∫ +∞

−∞
(y0±(t))2dt.

MeanwhileMd
± is the deterministic part ofM±(t0),

i.e. the mean value of the Melnikov integral. And Ms
±

is the corresponding stochastic portion of M±(t0) due
to the noise excitation, where E[Ms

±] = 0. Particu-
larly, the stochastic portion, instead of directly inte-
grated, can be calculated by considering the convo-
lution integral as a filtering process, i.e. a stationary
process G(t) passing through a linear time-invariant
filter given by the homoclinic orbit [40,41]. Owing to
the symmetry, the two homoclinic orbits will induce
the same parameter sets corresponding to the onset of
chaos. Thus, we only need to calculate the Melnikov
function of the right homoclinic orbit. Considering
G(t) an input of system (2), the function h(t) = y+

0 (t)
can be taken as an impulse response function of the
time-invariant linear system. Accordingly, the corre-
sponding frequency response function can be obtained
in the following form:

H(ω) =
∫ +∞

−∞
h(t)e−iωt dt

=
∫ +∞

−∞
y0+(t)e−iωt dt

= i

(
α + 1

2

) 1
α−1

(
2

α − 1

)

×
∫ +∞

−∞
sinh(t)

cosh
α+1
α−1 (t)

sin

(
2ωt

α − 1

)
dt. (15)
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Thus, the mean of M2
s can be calculated as follows:

E[M2
s ] = μ2

∫ +∞

−∞
|H(ω)|2S(ω)dω

= μ2
(

α + 1

2

) 2
α−1

(
2

α − 1

)2

×
∫ +∞

−∞
(Q0)

2S(ω)dω. (16)

where

Q0 =
∫ +∞

−∞
sinh(t)

cosh
α+1
α−1 (t)

sin

(
2ωt

α − 1

)
dt .

Note that the mean of the stochastic Melnikov pro-
cess M±(t0) is always negative and has no simple
zero, implying that in this sense we cannot obtain the
chaotic threshold. Since the standardMelnikovmethod
only renders a necessary condition for the existence
of chaos, the criterion for noisy chaotic responses can
be depicted by a mean-square representation in view
of energy [41]. Consequently, if E[Ms

2] = Md
2, the

stochastic Melnikov process will have a simple zero
point under the mean-square sense. Thus, the thresh-
old μ for the onset of chaos can be expressed as:

μ =
δ

(
α + 1

2

) 1
α−1

Q1

√
Q2

, (17)

where

Q1 =
∫ +∞

−∞
sinh2(t)

cosh
2(α+1)
α−1 (t)

dt,

Q2 =
∫ +∞

−∞
(Q0)

2S(ω)dω.

Note that the spectral densities of red, green and white
noise have been calculated as the following forms:

SR(ω) = D2

2π

γ 2

γ 2 + ω2 ,

SG(ω) = D2

2π

ω2

γ 2 + ω2 ,

SW (ω) = D2

2π
.

Then, the threshold μ of the three processes for the
onset of chaos can be marked as μR , μG and μW

respectively, as follows:

μR =
δ

(
α + 1

2

) 1
α−1

Q1

√
QR

2

, (18)

μG =
δ

(
α + 1

2

) 1
α−1

Q1

√
QG

2

, (19)

μW =
δ

(
α + 1

2

) 1
α−1

Q1

√
QW

2

, (20)

where

QR
2 =

∫ +∞

−∞
(Q0)

2SR(ω)dω, (21)

QG
2 =

∫ +∞

−∞
(Q0)

2SG(ω)dω, (22)

QW
2 =

∫ +∞

−∞
(Q0)

2SW (ω)dω. (23)

The analytical results shown in Eqs. (18–20) pro-
vide a threshold for the onset of chaos, i.e. all the
three process can indeed induce chaotic responses as
long as the value of μ exceeds the corresponding
threshold. In addition, Fig. 2 illustrates the relation
between the parameter γ and the threshold μ for the
onset of chaos induced by red and green noise, respec-
tively. It is clear that the different stochastic excitations,
red and green noise, have opposite effects on chaotic
responses. We can observe that with the increase of γ ,
the chaotic threshold induced by red noise decreases,
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Fig. 2 (Color online) The analytical threshold for the onset of
chaos induced by colored noise is shown for different values of
parameter α: a red noise; b green noise. We can observe that:
with the increase of γ , the chaotic threshold induced by red noise
decreases, while the threshold induced by green noise increases;
with the increase of α, red noise raises the chaotic threshold,
while green noise lowers it
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whichmeans that the presence of red noise enlarges the
possible chaotic domain in the parameter space, while
the threshold induced by green noise increases. The
reason is that the enhancement of randomness of the
stochastic excitation lowers the threshold for chaotic
responses in system (2) as the parameter γ describ-
ing the inverse correlation time of red noise increases.
Since green noise is relatively complemented to red
noise and can be obtained by subtracting white noise
from red noise, the opposite effect of green noise is
expected. We can also observe that with the increase of
α, red noise raises the chaotic threshold, while green
noise lowers it. When we consider white noise the
stochastic excitation, the thresholdμW does not depend
on γ accounting for the reason that white noise has a
flat power spectrum [see Eq. (20)].

From the discussion above, it is not surprising to
learn that both red and green noise can indeed induce
chaos, but the onset of chaos, as characterized by the
value of the critical noise amplitude above which chaos
occurs, can be different for noise of different colors.
Furthermore, the expressions of Eqs. (18–20) indicate
that the thresholds of different stochastic excitations
depend mainly on their spectrums. Just as the analy-
sis of the spectral density shown in Sect. 2, the spec-
tral properties of red and green noise are different,
but are complementary with respect to the spectrum
of white noise. Thus, according to the study of Wang
et al. [28] on the onset of colored-noise-induced syn-
chronization, we shall conjecture whether it still exists
a certain relation among their impacts on the rising of
chaotic responses.

We choose two cases, α = 5/3 and α = 3, in
the generalized Duffing system to verify the relation
between critical values of chaotic thresholds induced
by red, green and white noise. To compare the effects
of different stochastic excitations, we plot the chaotic
thresholds in system (2) under red, green and white
noise in Fig. 3a, c for α = 5/3 and α = 3, respec-
tively. The results indicate that the threshold required
for the onset of chaos is smaller for Gaussian white
noise than for colored noise, which means Gaussian
white noise can induce chaos more easily than the lat-
ter. Furthermore, when we take γ = 1, α = 5/3 as
an example, we obtain analytical threshold values of
the onset of chaos μG ≈ 0.07387, μR ≈ 0.04597,
and μW ≈ 0.03903. That is, we have the formula
1/μ2

R + 1/μ2
G = 1/μ2

W approximately. In further, we
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Fig. 3 (Color online) The chaotic thresholds in system (2) under
red, green and white noise, and the relation between them for
two cases: a, b α = 5/3; c, d α = 3. We show that μ∗, which is
defined by 1/μ∗ �=

√
1/μ2

R + 1/μ2
G , is approximately equal to

μW for all values of γ

define 1/μ∗ �=
√
1/μ2

R + 1/μ2
G . Fig. 3b, d display the

function of μ∗ and the analytical threshold μW versus
γ . It is verified that the value of μ∗ is approximately
equal to μW for all values of γ in both cases. Further-
more, Eqs. (18–20) also provide the heuristic justifica-
tion that for the larger values of γ , we have μG → ∞
and μR → μW ; for the smaller values of γ , μR → ∞
and μG → μW . Therefore, we can conclude that the
formula 1/μ2

R + 1/μ2
G ≈ 1/μ2

W even holds in the lim-
iting cases of γ .

In fact, the formula relating the chaotic thresholds
of red, green, and white noise can be obtained by math-
ematical derivation. Based on the derivation process of
the chaotic thresholds and the analysis of the expres-
sions of Eqs. (18–20), we obtain

1

μ2
R

= QR
2

δ2
(

α+1
2

) 2
α−1 Q2

1

,

1

μ2
G

= QG
2

δ2
(

α+1
2

) 2
α−1 Q2

1

,

1

μ2
W

= QW
2

δ2
(

α+1
2

) 2
α−1 Q2

1

.
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Since the sum of the spectral densities of red and
green noise is always the spectrum of white noise, i.e.
SR + SG = SW , it is easy to get QR

2 + QG
2 = QW

2 .

Finally, the formula concerning the thresholds of the
three processes can be derived, i.e.

1

μ2
R

+ 1

μ2
G

= 1

μ2
W

. (24)

The Melnikov theory requires that the perturbative
parameter ε must be sufficiently small. In fact, theMel-
nikov theory is still valid when the perturbation is rel-
atively large. In the above study, we discuss the effect
of γ on the chaotic thresholds in a generalized Duff-
ing system with ε = 0.1, δ = 0.15. In addition, the
analytical threshold shown in Eq. (17) also reveals the
positive correlation between the chaotic threshold and
the damping coefficient δ, i.e. the larger δ is, the higher
the chaotic threshold will be.

4 Numerical simulations

Since the stochastic Melnikov method only renders a
parameter threshold for possible chaotic responses in
system (2) driven by red, green or white noise, it is
necessary to employ numerical simulations to confirm
the analytical predictions above.

As is well known, the most striking feature of chaos
is the unpredictability for the future, which exhibits
sensitive dependence on the initial conditions. It can be
quantified by the Lyapunov exponent, which character-
izes the asymptotic rates of exponential divergence or
convergence of nearby trajectories in the state space and
quantifies the strength of chaos in dynamical systems.
Thus, in this section we plan to apply the mean largest
Lyapunov exponent to identifying noise-induced chaos
and to verifying the chaotic thresholds obtained by the
stochastic Melnikov method.

The largest Lyapunov exponent for deterministic
systems can be computed by using the Rosenstein’s
approach [29], and the mean largest Lyapunov expo-
nent can be obtained through averaging largest Lya-
punov exponents of different orbits. Thus, we define
the mean largest Lyapunov exponent as

L = 1

N

N∑
i=1

Li , (25)

where i = 1, . . . , N , Li denotes the largest Lyapunov
exponent of orbit i , and N signifies the number of
orbits.

Here, the presence of a positive Lyapunov exponent
is used for diagnosing stochastic chaos and represents
local instability in a particular direction. Consequently,
the numerical threshold considering the onset of chaos
induced by red, green and white noise can be obtained,
respectively, when the mean largest Lyapunov expo-
nent L increases from zero to positive.

Throughvanishing themean largest Lyapunov expo-
nent, Fig. 4 depicts the thresholds for numerical chaos
inducedby red andgreen noise, respectively. It is shown
that with the increase of the parameter γ , the thresh-
old of red noise presented in Fig. 4a monotonically
decreases for a fixed value of the parameter α. Con-
trary to red noise, the critical values of green noise
increase following the increase of the parameter γ ,
as displayed in Fig. 4d. Apparently, when fixing the
value of the parameter γ , the threshold μR increases
with the growth of the fractional-order deflection α.
When it comes to green noise, the amplitude thresh-
old μG decreases. We verify that the numerical conse-
quences of red noise depicted in Fig. 4a have a similar
varying trend in comparison with the analytical results
displayed in Fig. 2a. Meanwhile, the varying trend of
threshold among numerical and analytical results for
green noise is also similar by comparing Figs. 4d and
2b. Figure 4 also verifies the accuracy of the analytical
results obtained in Sect. 3. For both red and green noise,
we can conclude from Fig. 4b, c, e, f that the analyt-
ical thresholds calculated by the stochastic Melnikov
method agree well with the numerical ones obtained
through vanishing themean largest Lyapunov exponent
due to the fact that for a larger parameter α, the relative
error between numerical and analytical results is much
smaller. Therefore, we confirm that the stochastic Mel-
nikovmethod, together with the mean-square criterion,
provides reasonable analytical results for the onset of
chaos.

The results confirmed by the stochastic Melnikov
method show that the effects of the three processes on
the onset of chaos can be connected with each other
in the form presented in Eq. (24). Then, we will ver-
ify this conclusion through vanishing the mean largest
Lyapunov exponent. Note that, for large values of γ ,
the correlation property of red noise tends to that of
white noise, while the autocorrelation function associ-
ated with green noise tends to zero. For small values
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Fig. 4 (Color online) The thresholds for numerical chaos
induced by red and green noise are displayed in a–c and d–f,
respectively, for ε = 0.1, δ = 0.15, and D = 4. Analytical
chaotic thresholds obtained by the stochastic Melnikov method
are plotted in b, c, e, f with dashed lines for comparison.We show

that with the increase of γ , the numerical threshold induced by
red noise decreases, while the threshold induced by green noise
increases; with the increase of α, red noise raises the numeri-
cal threshold, while green noise lowers it. The variation trend of
numerical thresholds agrees well with the analytical predictions

of γ , the opposites occur. Thus the relation between
the numerical thresholds of colored noise and white
noise can be interpreted. As shown in Figs. 5a and
6a, with the increase of γ , the threshold of red noise
decreases and then tends to that of white noise, while
the threshold induced by green noise increases. In addi-
tion, we obtain the critical values μR ≈ 0.08666 and
μG ≈ 0.11333, when we fix α = 5/3, γ = 1.
When it comes to white noise, we get the critical value:
μW ≈ 0.07333. The three numerical thresholds sat-
isfy the formula Eq. (24) approximately. Similarly, the
relation can also be acquired for the case α = 3 with
the threshold values μR ≈ 0.12666, μG ≈ 0.09333,
and μW ≈ 0.07333 when fixing γ = 1. Furthermore,
Figs. 5b and 6b display, as γ increases, the formula
1/μ2

R +1/μ2
G = 1/μ2

W always holds. This agrees well

with the analytical result with the stochastic Melnikov
method.

Note that there exists difference between the thresh-
olds obtained through the analytical and numerical
methods. This can be comprehended accounting for
the reason that simple zero points of the stochastic
Melnikov method combined with the mean-square cri-
terion just provide a necessary rising of noise-induced
chaotic responses. Ultimately, we can conclude the for-
mula relating the synchronization thresholds among
red, green and white noise indeed holds for chaos in
the generalized Duffing dynamical system.

Additionally, the effects of ε and δ on the onset
of chaos have been discussed theoretically in Sect. 3.
Without loss of generality, we choose the case α = 3
and change the values of ε and δ to verify their effects
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Fig. 5 (Color online) a The chaotic thresholds in system (2)
under red, green and white noise for α = 5/3 through vanish-
ing the mean largest Lyapunov exponent; b the relation between
chaotic thresholds induced by colored noise and white noise,

where 1/μ∗ �=
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Fig. 6 (Color online) a The chaotic thresholds in system (2)
under red, green and white noise for α = 3 through vanish-
ing the mean largest Lyapunov exponent; b the relation between
chaotic thresholds induced by colored noise and white noise,

where 1/μ∗ �=
√
1/μ2

R + 1/μ2
G

on the onset of chaos in the generalized Duffing system
under green noise. It is clear that, for the fixed values of
the parameter ε and δ, the varying trends of the chaotic
thresholds are similar to the conclusions obtained in
the above study, i.e. with the increase of γ , the chaotic
threshold induced by green noise increases. But the
effects of ε and δ on the onset of chaos are different.
In the case of small perturbation, i.e. the perturbation
parameter ε satisfies 0 < ε � 1, we decrease the value
of ε from 0.1 to 0.01 and find that the chaotic thresholds
depicted in Fig. 7a have a small level of change for the
fixed value of δ and γ . In theory, the parameter ε has lit-
tle effect on the chaotic threshold. Owing to the reason
that only the first-order approximation is considered
when we survey the distance between the perturbed
stable and unstable manifolds of homoclinic orbits by
employing the Melnikov function, the slight deviation
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Fig. 7 (Color online) The effect of ε and δ on the thresholds for
numerical chaos induced by green noise are displayed in a and b,
respectively. We show that the perturbation parameter ε has little
effect on the chaotic thresholds depicted in a for the fixed value
of δ and γ , while the chaotic thresholds depicted in b increase
following with the increase of δ for the fixed value of ε and γ

between the numerical and the analytical results can be
comprehended. Contrary to the effect of the parameter
ε, the chaotic thresholds depicted in Fig. 7b increase for
the fixed value of ε and γ when we increase the value
of the parameter δ from 0.1 to 0.2. It is in accordance
with the analytical result displayed in Sect. 3.

5 Conclusion and discussion

Our focus in this study is to investigate how colored
noise, especially red and green noise, influences the
onset of chaos. To this aim, both the analytical and
numerical methods are adopted to verify that both red
and green noise can induce chaotic responses, whereas
their effects on the onset of chaos are quite different.
Nonetheless, in view of the energy, their critical noise
amplitudes required for the onset of chaos can also be
related in a certain way. Due to the fact that the sum of
the power spectra of red and green noise is the spectrum
of white noise, i.e. the spectrums of red and green noise
are complementary to each other. Consequently, the
formula, a quantitative expression relating the chaotic
thresholds of red, green and white noise, has been ver-
ified by both analytical and numerical methods in the
generalizedDuffingdifferential equation, carryingwith
a fractional-order nonlinear term. This indicates that
the critical amplitude required for chaos is generally
smaller for white noise as compared to colored noise,
which agreeswellwith the result ofGan [19,20], imply-
ing that theGaussianwhite noise excitation is beneficial
to induce chaos, while the colored noise excitation is
weak, namely the former can induce chaos more eas-
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ily. In practical applications such as the performance
optimization of circuit where chaos is undesirable, a
simple control strategy is to install filters so as to make
the noise source in the system as colored as possible.
Another practical application is that we can place fil-
ters in the situations where chaos is desirable (such as
the information security and secure communications),
so as to make the noise source as white as possible.
Nonetheless, understanding how these processes inter-
act to induce chaos and employing them in practical
application still remains a major challenge.
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Appendix

Here,wewill clarify theproposed second-order stochas-
tic Runge–Kutta algorithm for integrating the differen-
tial equations under green noise. The basic idea of the
algorithm is similar to that in [37] where white or red
noise is treated.

We start with formally integrating Eq. (7) from time
0 to time �t :

z(�t) = z0 +
∫ �t

0
f (z(t ′))dt ′ +

∫ �t

0
ξ(t ′)dt ′

−
∫ �t

0
η(t ′)dt ′,

ξ(�t) = ξ0 +
∫ �t

0
(−γ ξ(t ′))dt ′ +

∫ �t

0
γ η(t ′)dt ′.

(26)

Defining

Γ0(t) ≡
∫ t

0
η(t ′)dt ′,

Γi (t) ≡
∫ t

0
Γi−1(t

′)dt ′, i = 1, 2, . . . ,

and using the identity [37]

< Γm(t)Γn(t) >= D2 tm+n+1

m!n!(m + n + 1)
,

we can expand Eq. (26) about z0 to (�t)2 . Then, we
have

z(�t) = z0 + f0�t + 1

2
f0 f

′
0(�t)2 + 1

2
ξ0 f

′
0(�t)2

+ ξ0�t − 1

2
γ ξ0(�t)2 + Sz,

ξ(�t) = ξ0 − γ ξ0�t + 1

2
γ 2ξ0(�t)2 + Sξ ,

in which f0 = f (z0), and

Sz = −Γ0(�t) + 1

2
f ′′
0

∫ �t

0
dt ′Γ 2

0 (t ′)

+ γΓ1(�t) − f ′
0Γ1(�t),

Sξ = γΓ0(�t) − γ 2Γ1(�t).

Then, we get the mean and variance of Sz and Sξ to the
order of (�t)2 :

< Sz > = D2

4
f ′′
0 (�t)2,

< S2z > = D2�t − D2γ (�t)2 + D2 f ′
0(�t)2,

< Sξ > = 0,

< S2ξ > = D2γ 2�t − D2γ 3(�t)2. (27)

Parallelly, starting directly from Eq. (7) by using a
second-order Runge–Kutta algorithm, we have

z(�t) = z0 + 1

2
(F1 + F2)�t − D

√
�tφ0,

ξ(�t) = ξ0 + 1

2
(H1 + H2)�t + Dγ

√
�tφ0, (28)

in which

H1 = −γ
(
ξ0 + Dγ

√
�tφ1

)
,

H2 = −γ
(
ξ0 + �t H1 + Dγ

√
�tφ2

)
,

F1 = f
(
z0 − D

√
�tφ1

)
+ ξ0 + Dγ

√
�tφ1,

F2 = f
(
z0 + �t F1 − D

√
�tφ2

)
+ ξ0 + �t H1

+ Dγ
√

�tφ2,

andφ0,φ1, andφ2 are three independent standardGaus-
sian randomnumbers, each ofwhich has zeromean and
unit variance. Expanding Eq. (28) about z0 to order
(�t)2, we obtain

z(�t) = z0 + f0�t + 1

2
f0 f

′
0(�t)2 + 1

2
f ′
0ξ0(�t)2

+ξ0�t − 1

2
γ ξ0(�t)2 + S′

z,

ξ(�t) = ξ0 − γ ξ0�t + 1

2
γ 2ξ0(�t)2 + S′

ξ ,
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where

S′
z = −D

√
�tφ0 − 1

2
D( f ′

0 − γ )(
√

�t)3φ1

+D2

4
f ′′
0 (�t)2φ2

1

−1

2
D( f ′

0 − γ )(
√

�t)3φ2 + D2

4
f ′′
0 (�t)2φ2

2 ,

S′
ξ = Dγ

√
�tφ0 − 1

2
Dγ 2(

√
�t)3φ1

−1

2
Dγ 2(

√
�t)3φ2.

Themeans and the variances of S′
z and S

′
ξ are calculated

to be

< S′
z > = D2

4
f ′′
0 (�t)2 < φ2

1 >

+D2

4
f ′′
0 (�t)2 < φ2

2 >,

< S′2
z > = D2�t < φ2

0 >

+D2( f ′
0 − γ )(�t)2 < φ0(φ1 + φ2) >,

< S′
ξ > = 0,

< S′2
ξ > = D2γ 2�t < φ2

0 >

−D2γ 3(�t)2 < φ0(φ1 + φ2) > . (29)
Equating Eqs. (27)–(29) leads to

< φ2
0 >= 1,

< φ2
1 > + < φ2

2 >= 1,

< φ0(φ1 + φ2) >= 1.

Due to the reason that there are three equations and
three unknowns, it is possible for us to define a stan-
dardGaussian randomnumberψ so thatφi = aiψ, i =
0, 1, 2. To maintain the structure, we can conveniently
choose a0 = a2 = 1 and a1 = 0. Then, these consider-
ations lead to the second-order stochastic Runge–Kutta
algorithm as represented by Eq. (10).
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