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Abstract This article is interested in presenting and
implementing two new numerical algorithms for solv-
ing multi-term fractional differential equations. The
idea behind the proposed algorithms is based on estab-
lishing a novel operational matrix of fractional-order
differentiation of generalized Lucas polynomials in the
Caputo sense. This operational matrix serves as a pow-
erful tool for obtaining the desired numerical solutions.
The resulting solutions are spectral, and they are built
on utilizing tau and collocation methods. A new treat-
ment of convergence and error analysis of the sug-
gested generalized Lucas expansion is presented. The
presented numerical results demonstrate the efficiency,
applicability and high accuracy of the proposed algo-
rithms.
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1 Introduction

Standard spectral methods have vital roles in numeri-
cal analysis in general. These methods are capable of
providing numerical solutions to various kinds of dif-
ferential equations. They employ global polynomials
as trial functions. Moreover, they provide very accu-
rate approximate solutions with a relatively small num-
ber of unknowns. Many important problems in applied
science and engineering can be treated by employing
the different versions of spectral methods. For some
of these applications, one can consult [1–5]. There are
three popular versions of spectral methods; they are the
collocation, tau and Galerkin methods. The choice of
the suitable version of these methods depends on the
type of the differential equation under investigation and
also on the initial/boundary conditions governed by it.
For some articles employ spectral methods for solving
different kinds of differential equations, see [6–9].

Fractional calculus is a pivotal branch of mathemat-
ical analysis. This kind of calculus deals with deriva-
tives and integrals to an arbitrary order (real or com-
plex). Due to the frequent appearance of differential
equations of fractional order in various disciplines such
as fluid mechanics, biology, engineering and physics,
many researchers focused on studying them from the-
oretical and practical points of view. It is rarely that
we can obtain analytical solutions of fractional dif-
ferential equations (FDEs), so it a challenging prob-
lem to develop efficient and applicable numerical algo-
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rithms to handle them. In this regard, serval numerical
schemes are proposed to investigate different kinds of
FDEs. Some of these schemes are, the Taylor colloca-
tion method [10]; Adomian’s decomposition method
[11,12]; finite difference method [13]; variational iter-
ation method [14], homotopy analysis and homotopy
perturbation methods [15] and [16]. For some relevant
recent papers in the area of FDEs and their applications,
one can be referred to [17–24].

It is well known that many number and polynomial
sequences can be generated by recurrence relations of
second order. Of these important sequences are the
celebrated sequences of Fibonacci and Lucas. These
sequences of polynomials and numbers are of great
importance in a variety of branches such as number
theory, combinatorics and numerical analysis. These
sequences have been studied in several papers from a
theoretical point of view (see, [25–28]). However, there
are very few articles that employ these sequences prac-
tically. In this regard, a collocation procedure based
on using the Fibonacci operational matrix of deriva-
tives is implemented and presented for solving BVPs in
[29,30]. Recently, a numerical approachwith error esti-
mation to solve general integro-differential–difference
equations using Dickson polynomials is introduced in
[31].

Various kinds of differential equations were han-
dled by employing spectral methods along with uti-
lization of operational matrices of various orthogonal
polynomials. This approach has many advantages. It
is simple, applicable and yields very efficient solu-
tions. Many articles follow this approach. For exam-
ple, Abd-Elhameed in [32,33] has established and
used novel operational matrices of derivatives for solv-
ing linear and nonlinear even-order BVPs. In addi-
tion, Napoli and Abd-Elhameed in [34] have devel-
oped another harmonic numbers operational matrix of
derivatives to solve initial value problems of any order.
The operational matrices are not only used to solve
ordinary differential equations, but they are also fruit-
fully employed to solve FDEs. For some articles in this
direction, one can be referred for example to [18,35–
39].

The principal aims of this research article can be
summarized in the following items:

(i) Establishing operational matrices for integer and
fractional derivatives of the generalized Lucas
polynomials.

(ii) Constructing two numerical algorithms for solving
multi-term fractional-order differential equations
based on employing spectral methods together with
the introduced operational matrices of derivatives.

The rest of the paper is as follows. The next section
is devoted to presenting some fundamentals and also
some formulae of the generalized Lucas polynomials
which are useful in the sequel. Section 3 is interested
in establishing operational matrices of integer and frac-
tional derivatives of generalized Lucas polynomials.
Treatment of multi-term fractional-order differential
equations is discussed in detail in Sect. 4 via presenting
two spectral algorithms for solving the linear and non-
linear fractional differential equations. In Sect. 5, we
investigate carefully the convergence and error analy-
sis of the proposed generalized Lucas expansion. Some
numerical tests and comparisons are given in Sect. 6 to
validate the efficiency and applicability of the proposed
algorithms. Finally, Sect. 7 displays some conclusions.

2 Fundamentals and used formulae

This section is devoted to presenting some fundamen-
tals of the fractional calculus. Besides, some relevant
properties and formulae of the introduced generalized
Lucas polynomials are stated and proved.

2.1 Some definitions and properties of fractional
calculus

Definition 1 The Riemann–Liouville fractional inte-
gral operator 0 I ν

t of order ν on the usual Lebesgue
space L1[0, 1] is defined as: for all t ∈ (0, 1)

(0 I
ν
t f )(t) =

⎧
⎨

⎩

1
�(ν)

∫ t

0
(t − τ)ν−1 f (τ ) dτ, ν > 0,

f (t), ν = 0.

(1)

Definition 2 The right side Riemann–Liouville frac-
tional derivative of order ν > 0 is defined by

(Dν∗ f )(t) =
(
d

dt

)n

(0 I
n−ν
t f )(t), n − 1 ≤ ν < n,

n ∈ N. (2)
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Definition 3 The fractional differential operator in
Caputo sense is defined as

(Dν f )(t) = 1

�(n − ν)

∫ t

0
(t − τ)n−ν−1 f (n)(τ ) dτ,

ν > 0, t > 0, (3)

where n − 1 ≤ ν < n, n ∈ N.

Remark 1 It is worthy to note here that the fractional
derivative in the Caputo sense is the most commonly
used definition among the definitions of the fractional
derivative. The definition of Caputo is mathematically
rigorous than the Riemann–Liouville definition (see,
Changpin et al. [40] and Li and Zhao [41]). The Caputo
derivative exists in the whole interval (0, 1). In addi-
tion, Caputo definition is very welcome in applied sci-
ence and engineering (Changpin et al. [42]). Further-
more, properties of the Caputo derivative are helpful in
translating the higher fractional-order differential sys-
tems into lower ones ([43]). For a comparison between
Caputo and Riemann–Liouville operators, the inter-
ested reader is referred to [44].

The following properties are satisfied by the operator
Dν for n − 1 ≤ ν < n,

(Dν I ν f )(t) = f (t),

(I νDν f )(t) = f (t) −
n−1∑

k=0

f (k)(0+)

k! (t − a)k, t > 0,

Dν tk = �(k + 1)

�(k + 1 − ν)
tk−ν,

k ∈ N, k ≥ �ν�, (4)

where �ν� denotes the smallest integer greater than or
equal to ν. For more properties of fractional derivatives
and integrals, see for example, [45,46].

2.2 Relevant properties and relations of generalized
Lucas polynomials

The sequence of Lucas polynomials Li (t)may be con-
structed by means of the recurrence relation:

Li+2(t) = t Li+1(t) + Li (t), L0(t) = 2,

L1(t) = t, i ≥ 0. (5)

The Binet’s form of Lucas polynomials is

Li (t) =
(
t + √

t2 + 4
)i +

(
t − √

t2 + 4
)i

2i
, i ≥ 0.

Also, the Lucas polynomials have the following power
form representation:

Li (t) = i

⌊
i
2

⌋

∑

k=0

1

i − k

(i−k
k

)
t i−2k, i ≥ 1, (6)

and the notation 	z
 represents the largest integer less
than or equal to z.

The first few Lucas polynomials Li (t) are:

L0(t) = 2, L1(t) = t,

L2(t) = t2 + 2, L3(t) = t3 + 3 t,

L4(t) = t4 + 4 t2 + 2, L5(t) = t5 + 5 t3 + 5 t.

In this paper, we aim to generalize the sequence of
Lucas polynomials. For this purpose, let a, b be any
nonzero real constants, we define the so-called gener-
alized Lucas polynomialswhichmay be generatedwith
the aid of the following recurrence relation:

ψ
a,b
i (t) = a t ψa,b

i−1(t) + bψ
a,b
i−2(t), i ≥ 2, (7)

with the initial values: ψa,b
0 (t) = 2 and ψ

a,b
1 (t) = a t .

The first fewgeneralizedLucas polynomialsψ
a,b
i (t)

are:

ψ
a,b
0 (t) = 2, ψ

a,b
1 (t) = a t,

ψ
a,b
2 (t) = a2 t2 + 2 b, ψ

a,b
3 (t) = a3 t3 + 3 a b t,

ψ
a,b
4 (t) = a4 t4

+ 4 a2 b t2 + 2 b2, ψ
a,b
5 (t) = a5 t5 + 5 a3 b t3 + 5 a b2 t.

It is worthy to mention here that the generalized
Lucas polynomials ψ

a,b
i (t) generalize the Lucas poly-

nomials Li (t). In fact, Lucas polynomials can be
deduced formψ

a,b
i (x) for the case: a = b = 1. In addi-

tion, some other important polynomials can be deduced
as special cases of ψ

a,b
i (x). Explicitly, we have

Qi (t) = ψ
2,1
i (t), fi (t) = ψ

3,−2
i (t),

2 Ti (t) = ψ
2,−1
i (t), Di (t, α) = ψ

1,−α
i (t),

where Qi (t), fi (t), Ti (t) and Di (t, α) are, respec-
tively, the Pell–Lucas, Fermat–Lucas, first kind Cheby-
shev and first kind Dickson polynomials, each of
degree i .

The power form representation of ψ
a,b
i (t) can be

written explicitly in the following two equivalent forms
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ψ
a,b
i (t) = i

⌊
i
2

⌋

∑

m=0

ai−2m bm
(i−m

m

)

i − m
ti−2m, (8)

and

ψ
a,b
i (t) = 2 i

i∑

k=0

ak b
i−k
2 ξi+k

( i+k
2

i−k
2

)

i + k
tk (9)

where

ξr =
{
1, r even,

0, r odd.

Moreover, the Binet’s form for ψ
a,b
i (t) is

ψ
a,b
i (t) =

(
a t + √

a2 t2 + 4 b
)i +

(
a t − √

a2 t2 + 4 b
)i

2i
,

i ≥ 0.

Now, the following two theorems are of fundamental
importance in establishing our proposed algorithms in
this paper. The first theorem gives an inversion formula
to the power form representation given in (8), while the
second introduces an expression for the first derivative
of the generalized Lucas polynomials in terms of their
original polynomials .

Theorem 1 For every nonnegative �, the following
inversion formula is valid

t� = �! a−�
�∑

j=0
( j+�) even

(−1)
�− j
2 b

�− j
2 δ j

(
�− j
2

)
!
(

�+ j
2

)
!

ψ
a,b
j (t), (10)

where δ j is defined as

δ j =
{

1
2 j = 0,

1, j > 0.
(11)

Proof To prove relation (10), it is enough to prove its
alternative form

t� = a−�

⌊
�
2

⌋

∑

i=0

(−1)i
(

�

i

)

bi δ�−2i ψ
a,b
�−2i (t). (12)

Weproceedby inductionon �. Identity (12) is obviously
satisfied for � = 0. Now, assume the validity of (12),
and therefore to complete the proof, we have to show
the validity of the following identity:

t�+1 = a−�−1

⌊
�+1
2

⌋

∑

i=0

(−1)i
(

� + 1

i

)

bi

δ�−2i+1 ψ
a,b
�−2i+1(t). (13)

If we multiply both sides of (12) by t , and make use
of the recurrence relation (7), then we get

t�+1 = a−�−1

⌊
�
2

⌋

∑

i=0

(−1)i
(

�

i

)

bi δ�−2i ψ
a,b
�−2i+1(t)

+ b a−�−1

⌊
�
2

⌋

∑

i=0

(−1)i
(

�

i

)

bi δ�−2i ψ
a,b
�−2i−1(t).

(14)

The last relation can bewritten alternatively—after per-
forming some manipulations—as

t�+1 =

⌊
�
2

⌋

∑

i=1

[

(−1)i a−�−1
(

�

i

)

bi δ�−2i

+(−1)i a−�−1
(

�

i − 1

)

bi δ�−2i+2

]

ψ
a,b
�−2i+1(t)

+ a−�−1 δ� ψ
a,b
�+1 + (−1)

⌊
�
2

⌋
+1

δ
�−2

⌊
�
2

⌋ a−�−1 b

⌊
�
2

⌋
+1

(
�
⌊

�
2

⌋

)

ψ
a,b

�−2
⌊

�
2

⌋
−1

(t).

(15)

After some rather algebraic computations, it can be
shown that formula (15) takes the form

t�+1 = a−�−1

⌊
�+1
2

⌋

∑

i=0

(−1)i

(
� + 1

i

)

bi δ�−2i+1 ψ
a,b
�−2i+1(t).

Theorem 1 is now proved. ��

Theorem 2 The first derivative of the generalized
Lucas polynomials ψ

a,b
j (t) can be expressed as:

dψa,b
j (t)

dt
= a j

⌊
j−1
2

⌋

∑

�=0

(−1)� b� δ j−2�−1 ψ
a,b
j−2�−1(t).

(16)

Proof First, we differentiate the power form represen-
tation of the generalized Lucas polynomials ψ

a,b
j (t)

given in (9) with respect to t to get

dψa,b
j (t)

dt
= j

⌊
j−1
2

⌋

∑

k=0

(
j − k − 1

k

)

bk a j−2k t j−2k−1.

(17)
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Making use of the inversion formula (10), Eq. (17) can
be written equivalently as

dψa,b
j (t)

dt
= j

⌊
j−1
2

⌋

∑

k=0

bk a j−2k
(
j − k − 1

k

)

⌊
j−1
2

⌋
−k

∑

s=0

(−1)s bs a2k− j+1
(
j − 2k − 1

s

)

δ j−2k−2s−1 ψ
a,b
j−2k−2s−1(t). (18)

Expanding the right-hand side of the latter formula and
rearranging the similar terms lead to the following rela-
tion

dψa,b
j (t)

dt
=

⌊
j−1
2

⌋

∑

�=0

Hj,� ψ
a,b
j−2�−1(t), (19)

where Hj,� is given by

Hj,� = j a δ j−2�−1

�∑

p=0

(−1)�+p b�

(
j − 2p − 1

� − p

)(
j − p − 1

p

)

.

In order to obtain a reduction formula for Hj,�, we note
that it can be written equivalently as

Hj,� = (−1)� a b�

(
j

�

)

( j − �) δ j−2�−1

2F1

(−�,− j + � + 1
1 − j

∣
∣
∣
∣ 1

)

. (20)

Based on Chu-Vandermonde identity (see Koepf [47]),
the hypergeometric 2F1 in (20) can be summed to give

2F1

(−�,− j + � + 1
1 − j

∣
∣
∣
∣ 1

)

= ( j − � − 1)! �!
( j − 1)! , (21)

and therefore, Hj,� takes the following simplified form

Hj,� = (−1)� a b� j δ j−2�−1.

Theorem 2 is now proved. ��

3 Generalized Lucas operational matrix of integer
and fractional derivatives

This section is dedicated to establishing operational
matrices for both integer and fractional derivatives of
the generalized Lucas polynomials. These operational
matrices serve to approximate integer and fractional
derivatives.

3.1 Operational matrix of integer derivatives

Let u(t) be a square Lebesgue integrable function on
(0, 1), and assume that it can be written as a combi-
nation of the linearly independent generalized Lucas
polynomials, i.e.,

u(t) =
∞∑

j=0

c j ψ
a,b
j (t).

Assume that u(t) can be approximated as

u(t) ≈ uM (t) =
M∑

k=0

ck ψ
a,b
k (t) = CT �(t), (22)

where

CT = [c0, c1, . . . , cM ], (23)

and

�(t) = [ψa,b
0 (t), ψa,b

1 (t), . . . , ψa,b
M (t)]T . (24)

In order to approximate the successive derivatives of

the vector�(t), first note that
d�(t)

d t
can be expressed

as

d�(t)

d t
= G(1) �(t), (25)

where G(1) =
(
g(1)
i j

)
, is the (M +1)× (M +1) opera-

tional matrix of derivatives. With the aid of Theorem 2,
the entries of this matrix are given explicitly as

g(1)
i j =

{
(−1)

i− j+1
2 i ab

i− j−1
2 δ j , if i > j, (i + j) odd,

0, otherwise.

Equation (25) enables one to express
d� �(t)

d t�
, � ≥ 1

as powers of the operational matrix G(1). In fact, for all
� ≥ 1, one has

d� �(t)

d t�
= G(�) �(t) =

(
G(1)

)�

�(t). (26)
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3.2 Operational matrix of fractional derivatives

We establish in this section an operational matrix of
the fractional derivatives which generalizes the opera-
tional matrix of integer derivatives. The following the-
orem displays the fractional derivatives of the vector
�(t), from which a new operational matrix of frac-
tional derivatives can be obtained.

Theorem 3 If �(t) denotes the generalized Lucas
polynomial vector which defined in Eq. (24), then the
following relation holds for all α > 0

Dα�(t) = dα�(t)

dtα
= t−α G(α) �(t), (27)

where G(α) = (gα
i, j ) is a lower triangular matrix of

order (M+1)×(M+1). This matrix is the operational
matrix of fractional derivatives of orderα in theCaputo
sense. The entries of thismatrix canbewritten explicitly
in the form

G(α) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

θα(�α�, 0) θα(�α�, �α�) 0 . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

θα(i, 0) . . . θα(i, i) . . . 0
.
.
.

.

.

.
.
.
.

.

.

.

θα(M, 0) θα(M, 1) θα(M, 2) . . . θα(M, M)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(28)

Moreover, the elements
(
gα
i, j

)
are given explicitly in

the form

gα
i, j =

{
θα(i, j), i ≥ �α�, i ≥ j;
0, otherwise.

where

θα(i, j)

=
i∑

k=�α�

i k! ξi+k ξ j+k δ j (−1)
k− j
2 b

i− j
2
( i+k

2 − 1
)!

( i−k
2

)!
(
k− j
2

)
!
(

j+k
2

)
! �(1 + k − α)

.

(29)

Proof The application of the fractional differential
operator Dα to Eq. (9) together with relation (4) yields

Dα ψ
a,b
i (t)

=
i∑

k=�α�

i ak b
i−k
2 ξi+k (k + 1) i−k−2

2
k!

( i−k
2

)! �(k + 1 − α)
tk−α, (30)

which in turn with the aid of the inversion formula in
(10) gives

Dα ψ
a,b
i (t) = t−α

i∑

j=0

θα(i, j) ψ
a,b
j (t), (31)

where θα(i, j) is given in (29).
The last relation can be rewritten in the following

vector form:

Dαψ
a,b
i (t) = t−α [θα(i, 0), θα(i, 1), . . . ,

θα(i, i), 0, 0, . . . , 0] �(t),

�α� ≤ i ≤ M + 1, (32)

Moreover, we can write

Dαψ
a,b
i (t) = t−α [0, 0, . . . , 0] ,

0 ≤ i ≤ �α� − 1. (33)

Now, Merging Eq. (32) with Eq. (33), the desired for-
mula can be obtained. ��

4 Treatment of FDEs based on the introduced
operational matrix

This section focuses on constructing two numerical
algorithms for treating linear and nonlinear FDEs. For
this purpose, the two spectral methods, namely tau and
collocation methods, are utilized. To be more precise,
we propose a generalized Lucas tau method (GLTM)
for handling linear FDEs, while a generalized Lucas
collocation method (GLCM) is proposed for handling
nonlinear FDEs.

4.1 Handling linear FDEs

In this section, we are interested in solving the follow-
ing linear fractional differential equation with variable
coefficients

Dαq u(t) +
q−1∑

i=1

λi (t) D
αi u(t) + μ(t) u(t)

= f (t), t ∈ (0, 1), (34)

where

αi < αi+1, and i < αi ≤ i + 1, i=1, 2, . . . , q−1,

governed by the following initial conditions

u(i)(0) = ai , i = 0, 1, . . . , q − 1, (35)
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where λi (t), μ(t) and f (t) are known continuous func-
tions. From (22), it can be assumed that u(t) has the
following approximation

u(t) ≈ uM (t) = CT �(t). (36)

Thanks to Theorem3, Dαi u(t) can be approximated
as

Dαi u(t) ≈ t−αi CT G(αi ) �(t). (37)

With the aid of the approximations in (36) and (37), the
residual of (34) can be calculated by the formula

tαq R(t) = CT G(αq ) �(t)

+
q−1∑

i=1

tαq−αi λi (t)CT G(αi ) �(t)

+ tαq μ(t)CT �(t) − tαq f (t).

(38)

As a result of tau method (see for example [48]), the
following system of equations can be obtained
∫ 1

0
tαq R(t) ψ

a,b
i (t) dt = 0, i = 0, 1, 2, . . . M − q.

(39)

In addition, the initial conditions (35) give

CT G(i) �(0) = ai , i = 0, 1, . . . , q − 1. (40)

Now, Eqs. (39) and (40) constitute a linear system of
algebraic equations in the unknown expansion coef-
ficients ci of dimension (M + 1). The solution of this
system can be obtained through employing any suitable
numerical algorithm.

4.2 Handling nonlinear FDEs

In this section, we are interested in solving he following
nonlinear fractional-order differential equation:

Dαq u(t) = �
(
t, u(t),

Dα1 u(t), Dα2 u(t), . . . , Dαq−1 u(t)
)
,

t ∈ (0, 1), (41)

where

αi < αi+1, and i < αi ≤ i + 1, i = 1, 2, . . . , q − 1,

governed by the following initial conditions

u(i)(0) = ai , i = 0, 1, . . . , q − 1.

If u(t), Dαi u(t) are approximated as in Sect. 4.1, then
the residual R̃(t) of Eq. (41) takes the form

R̃(t) = t−αq CT G(αq ) �(t)

−�
(
t,CT �(t), t−α1 CT G(α1) �(t), . . . ,

t−αq−1 CT G(αq−1) �(t)
)

. (42)

Thephilosophyof the applicationof collocationmethod
is based on enforcing the residual to vanish at cer-
tain interior points. There are several choices for
these points. For example, they may be selected as:(

i
M+1

)
, i = 1, 2, . . . M − q, and therefore

R̃

(
i

M + 1

)

= 0, i = 1, 2, . . . M − q + 1. (43)

Now, Eqs. (43) with (40) constitute a nonlinear system
of equations in the unknown expansion coefficients ci
of dimension (M + 1), which may be solved via New-
ton’s iterative technique, and accordingly, the desired
approximate solution can be obtained from (36).

5 Investigation of convergence and error analysis

In this section,we investigate carefully the convergence
and error analysis of the proposed generalized Lucas
expansion. In order to proceed in our study, the follow-
ing lemmas are required.

Lemma 1 Let f (t) be an infinitely differentiable func-
tion at the origin. Then, it has the following generalized
Lucas expansion

f (t)=
∞∑

k=0

∞∑

j=0

(−1) j δk a−k−2 j b j f (k+2 j)(0)

j ! (k+ j)! ψ
a,b
k (t).

(44)

Proof First, we expand f (t) as

f (t) =
∞∑

n=0

an t
n, an = f (n)(0)

n! . (45)

Inserting the inversion formula (10) into (45) enables
one to write

f (t) =
∞∑

n=0

an

n∑

r=0
(n+r) even

ηr,n ψa,b
r (t), (46)

where ηr,n = (−1)
n+r
2 δr a−n b

n−r
2 n!

( n−r
2 )! ( n+r

2 )! .
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Expanding the right-hand side of (46), and rearranging
the similar terms, the following expansion is obtained

f (t) =
∞∑

k=0

∞∑

j=0

ak+2 j ηk,k+2 j ψ
a,b
k (t). (47)

This immediately proves (44). ��

Lemma 2 [49] Let Iμ(t) denote the modified Bessel
function of orderμ of the first kind. The following iden-
tity is valid

∞∑

j=0

tk+2 j

j ! ( j + k)! = Ik(2 t). (48)

Lemma 3 [50] The following inequality is satisfied by
the modified Bessel function of the first kind Iμ(t)

|Iμ(t)| ≤ tμ cosh(t)

2μ �(μ + 1)
, ∀ t > 0. (49)

Lemma 4 For all t ∈ [0, 1], the following inequality
holds for generalized Lucas polynomials

|ψa,b
k (t)| ≤ 2

(
a +

√
a2 + b

)k
. (50)

Proof The above inequality follows from the Binet’s
formula along with the triangle inequality. ��

Now, we are in a position to state and prove the
following two theorems concerning the convergence
and error analysis of the proposed generalized Lucas
expansion.

Theorem 4 If f (t) is defined on [0, 1] and | f (i)(0)| ≤
Li , i ≥ 0, where L is a positive constant, and if f (t)
has the expansion f (t) = ∑∞

k=0 ck ψ
a,b
k (t), then one

has:

1. |ck | ≤ |a|−k Lk cosh(2 |a|−1 b
1
2 L)

k! .

2. The series converges absolutely.

Proof Lemma 1 implies that

|ck | =
∣
∣
∣
∣
∣
∣

∞∑

j=0

(−1) j δk a−k−2 j b j f (2 j+k)(0)

j ! ( j + k)!

∣
∣
∣
∣
∣
∣
,

and accordingly, and based on the assumption | f (i)(0)|
≤ Li , i ≥ 0, the following inequality holds

|ck | ≤
∞∑

j=0

|a|−k−2 j |b| j L2 j+k

j ! ( j + k)! , (51)

which in turn, after the application of Lemma 2 leads
to the inequality

|ck | ≤ |b|− k
2 Ik(2 |a|−1 |b| 12 L).

If we make use of the last inequality along with
Lemma3, then the following estimate for the expansion
coefficients is obtained

|ck | ≤ |a|−k Lk cosh(2 |a|−1 b
1
2 L)

k! . (52)

The first part of Theorem 4 is now proved.
Now, we prove the second part of the theorem. Start-

ing with the inequality in (52), we have

∣
∣
∣ck ψ

a,b
k (t)

∣
∣
∣

≤
∣
∣
∣
∣
∣

|a|−k Lk cosh(2 |a|−1 b
1
2 L)

k! ψ
a,b
k (t)

∣
∣
∣
∣
∣
,

and therefore, the application of Lemma 4 yields

|ck ψ
a,b
k (t)|

≤

∣
∣
∣
∣
∣
∣
∣

2 |a|−k Lk
(
a + √

a2 + b
)k

cosh(2 |a|−1 b
1
2 L)

k!

∣
∣
∣
∣
∣
∣
∣

.

Now since
∑∞

k=0

∣
∣
∣
∣
∣
∣
∣

|a|−k Lk
(
a + √

a2 + b
)k

k!

∣
∣
∣
∣
∣
∣
∣

=

e
|a−1 L

(
a+√

a2+b
)
|
, so the series converges absolutely.

��

Theorem 5 Let f (t) satisfy the assumptions stated in
Theorem4.Moreover, let eM (t) =∑∞

k=M+1 ck ψ
a,b
k (t),

be the global error. The following inequality holds for
|eM (t)|
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|eM (t)| <
2 e

L
(
1+√

1+a−2 b
)

cosh
(
2 L
(
1 + √

1 + a−2 b
)) (

1 + √
1 + a−2 b

)M+1

(M + 1)! .

Proof The first part of Theorem 4 enables one to write

|eM (t)| ≤ 2 cosh
(
2 L
(
1 +

√
1 + a−2 b

))

∞∑

k=M+1

(
L(1 + √

1 + a−2 b)
)k

k! ,

and therefore, we have

|eM (t)| ≤ 2 eL
(
1+√

1+a−2 b
)

cosh
(
2 L
(
1 +

√
1 + a−2 b

))

(

1 − �(M + 1, L
(
1 + √

1 + a−2 b
)
)

�(M + 1)

)

, (53)

where �(.) and �(., .) are the so-called gamma and the
incomplete gamma functions, respectively, (see [51]).
The integral representations of gamma and incomplete
gamma functions together with the inequality, e−t <

1, ∀ t > 0, lead to the inequality

|eM (t)| <
2 e

L
(
1+√

1+a−2 b
)

cosh
(
2 L
(
1 + √

1 + a−2 b
)) (

1 + √
1 + a−2 b

)M+1

(M + 1)! .

��
Remark 2 If we let s = 1 + √

1 + a−2 b and n =
M + 1, we have now |en−1(t)| = O(sn/n!). From
Stirling approximation of factorial function [52], we
have
√
2π <

n!
nn+ 1

2 e−n
< e,

so, it is easy to see that |en−1(t)| = O((s e)n/nn+ 1
2 ),

which is a very rapid rate of convergence.

6 Numerical examples

This section concentrates on presenting some numeri-
cal results accompanied with comparisons with some
numerical results in literature in order to validate the
efficiency, high accuracy and applicability of the two

proposed algorithms. In the following tests, the error is
evaluated in maximum norm namely,

E = max
t∈[0,1] |u(t) − uN (t)|.

Example 1 [53] Consider the following linear frac-
tional initial value problem:

D2 u(t) + Dα u(t) + u(t) = 6 t3−α

�(4 − α)
+ t3 + 6 t,

t ∈ (0, 1), 0 < α < 1, u(0) = u′(0) = 0. (54)

The exact solution of the above equation is u(t) = t3. If
GLTM (generalized Lucas tau method) is applied with
N = 3, then the residual of Eq. (54) is calculated by
the formula

tα R(t) = tα CT G(2) �(t)

+CT G(α) �(t) + tα CT �(t)

− 6t3

�(4 − α)
− t3+α − 6 t1+α,

and the operational matrices G(2) and G(α) are given
explicitly as follows:

G(2) =

⎛

⎜
⎜
⎝

0 0 0 0
a
2 0 0 0
0 2a 0 0

− 3 a b
2 0 3 a 0

⎞

⎟
⎟
⎠ ,

G(α) =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 1

�(2−α)
0 0

− 2 b
�(3−α)

0 2
�(3−α)

0

0 3 b(α−5)α
�(4−α)

0 6
�(4−α)

⎞

⎟
⎟
⎟
⎠

.

The application of GLTM yields the following two
equations

35
√

π
(
39 a3c3 + 28 a2c2

+6a(3bc3 + c1) + 24bc2 + 24c0 − 39)

+16
(
24a3c3 + 28 a2c2 + 35 a(3bc3 + c1) − 24

)
= 0,

21
√

π
(
132 a3c3 + 75 a2c2 + 20 a(3bc3 + c1)
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Table 1 Maximum absolute error E for Example 3

a b M E M E M E M E M E

1 1 6 2.34 × 10−4 8 4.11 × 10−7 10 6.91 × 10−10 12 7.62 × 10−12 14 2.57 × 10−15

2 1 5.26 × 10−4 7.25 × 10−7 2.21 × 10−9 5.94 × 10−11 9.24 × 10−14

3 −2 6.21 × 10−4 2.71 × 10−6 8.12 × 10−9 2.86 × 10−11 5.62 × 10−14

2 −1 4.33 × 10−4 5.27 × 10−7 1.15 × 10−9 9.19 × 10−12 5.93 × 10−15

+60 bc2 + 60c0 − 132)

+16
(
56 a3c3 + 60 a2c2 + 63 a(3bc3 + c1) − 56

)
= 0.

(55)

Moreover, the initial conditions (55) yield

b c2 + c0 = 0,

3 b c3 + c1 = 0.
(56)

Equations (55) and (56) can be immediately solved to
give

c0 = 0, c1 = −3b

a3
, c2 = 0, c3 = 1

b3
,

and consequently u(t) = t3, which is the exact solu-
tion.

Note 1 It is worthy to note here that the maximum
pointwise error obtained in [53] for N = 512,and α =
1
2 , α = 3

4 are, respectively, 1.8626 × 10−9, 1.8624 ×
10−9. while our method yields the exact solution with
N = 3. This ascertains the advantage of our algorithm
if compared with the other algorithms.

Example 2 [53] Consider the following multi-term
nonlinear higher-order nonhomogeneous initial value
problem:

D
11
2 u(t) + D

5
4 u(t) + D

3
4 u(t) + u3(t)

= 128 t9/4

45�
( 1
4

) + 32 t7/4

21�
( 3
4

) + 5 t4/5

2�
( 4
5

) + t9

27
,

t ∈ (0, 1),

u(0) = u′(0) = u′′(0) = 0,

(57)

where 0 < α < 1, with the exact smooth solution
u(t) = t3/3. We apply the GLCM which is proposed
in Sect. 4.2 for the case corresponds to N = 3. The
residual of Eq. (57) takes the form

t
11
5 R(t) = CT G( 115 ) �(t) + t

19
20 CT G( 54 ) �(t)

+ t
29
20 CT G( 34 ) �(t) + t

11
5

(
CT �(t)

)3

− t56/5

27
− 128 t89/20

45�
(
1
4

) − 32 t79/20

21�
(
3
4

) − 5t3

2�
(
4
5

) ,

(58)

and the operational matrix G(α) is given by:

G(α) =

⎛

⎜
⎜
⎜
⎝

0 0 0 0
0 1

�(2−α)
0 0

− 2 b
�(3−α)

0 2
�(3−α)

0

0 3 b(α−5)α
�(4−α)

0 6
�(4−α)

⎞

⎟
⎟
⎟
⎠

.

The application of the collocation method yields the
following real solution

c0 = 0, c1 = − b

a3
, c2 = 0, c3 = 1

3a3
,

and two refused conjugate complex solutions, and con-
sequently u(t) = t3/3 which is the exact solution.

Note 2 It is worthy to note here that the maximum
pointwise error obtained in [53] for the case N = 256
is 2.392 × 10−6, while we obtained the exact solution
with N = 3. To the best of our knowledge, this is the
first numerical algorithm yield the exact solution for
nonlinear fractional problems.

Example 3 Consider the following linear Riccati FDE:

D
1
2 u(x) + u(x) = ex

(
erf
(√

x
)+ 1

)
,

x ∈ (0, 1), u(0) = 1. (59)

The exact solution of (59) is u(x) = ex , where erf(x)
is the well-known error function, namely

erf(x) = 2√
π

∫ x

0
e−u2 du.

We apply GLTM. Table 1 lists the maximum pointwise
error of Eq. (59) for different values of a and b. Figure 1
illustrates the absolute error for the case a = b = 1 and
M = 15.
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x

Error

0.0 0.2 0.4 0.6 0.8 1.0
0

2.×10–15

4.×10–15

6.×10–15

8.×10–15

Fig. 1 Absolute error of Example 3

Example 4 [54] Consider the following nonlinear Ric-
cati FDE:

Dα u(x) + u2(x) = 1, x ∈ (0, 1), α ∈ (0, 1],
u(0) = 0. (60)

The exact solution of (60) in case α = 1 is u(x) =
tanh x . GLCM is applied for the case a = b = 1.
Table 2 compares our results with those obtained in
[54]. Figure 2 indicates that the approximate solutions
for various values of α near the value 1 have a similar
behavior.

Example 5 [55,56] Consider the following linear frac-
tional oscillator equation

Dq u(t) + ω2 u(t) = 0, t ∈ (0, L), q ∈ (1, 2), (61)

subject the initial conditions

u(0) = 0 u′(0) = ω. (62)

The exact solution of (61) for q = 2 is u(t) = sin(ω t).
In this example, and due to the nonavailability of the

x

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Exact
0.95
0.9
0.85

Fig. 2 Different solutions of Example 4

Table 3 Comparison between GLTM and LTSM for Exam-
ple 5—Case 1

N GLTM LTSM

E τ E τ

4 1.3 × 10−4 12.35 8.3 × 10−3 19.47

8 5.4 × 10−7 33.58 2.5 × 10−6 45.17

16 2.2 × 10−14 67.59 5.4 × 10−14 95.24

32 4.4 × 10−16 91.27 9.3 × 10−15 174.12

exact solution in case of q ∈ (1, 2) , we evaluate the
stepwise error eN = maxt∈[0,1] |uN (t) − uN+1(t)|.
Now, We consider the following two cases:

Case 1: L = 1

In Table 3, we compare GLTM for the case: a = b =
ω = 1, with the Legendre tau spectral method (LTSM),
τ denote the computational time of each algorithm. In
addition, inTable 4,we list the values of eN for different
values of q, N .

Table 2 Comparison between CLMM and [54] for Example 4

x α = 0.7 α = 0.8 α = 0.9 Exact

Method in [54] GLCM Method in [54] GLCM Method in [54] GLCM

0.1 0.209216 0.171333 0.165498 0.138091 0.129138 0.101874 0.099684

0.2 0.335973 0.296421 0.285605 0.253251 0.238981 0.200768 0.197417

0.3 0.429549 0.393889 0.383197 0.351883 0.336448 0.295195 0.291316

0.4 0.500339 0.472838 0.463519 0.437126 0.422741 0.383814 0.379912

0.5 0.556331 0.537862 0.530743 0.510705 0.498915 0.465588 0.462083

0.6 0.603099 0.591777 0.587967 0.573921 0.565851 0.539863 0.537057

0.7 0.643854 0.636781 0.637215 0.628023 0.624307 0.606359 0.604405

0.8 0.679183 0.674632 0.679446 0.674214 0.674869 0.665128 0.664052

0.9 0.707567 0.706583 0.714519 0.713562 0.717972 0.716482 0.716264
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Table 4 Values of eN for Example 5—Case 1

N q = 1.7 q = 1.8 q = 1.9 Exact

4 3.5 × 10−4 4.2 × 10−4 2.6 × 10−4 6.1 × 10−4

8 4.9 × 10−7 2.7 × 10−7 9.5 × 10−7 5.4 × 10−7

16 2.2 × 10−14 6.7 × 10−14 4.7 × 10−14 5.7 × 10−14

32 5.1 × 10−16 2.9 × 10−16 8.6 × 10−16 8.2 × 10−16

Case 2: L > 1

We apply GLTM, in order to show the influence of the
values of L on the accuracy of the resulted numerical
solutions; we list in Table 5 the maximum pointwise
errors for the case a = b = ω = 1, N = 20 and q = 2
for different values of L . In addition, we plot Figs. 3, 4
and 5 to display the behavior of the numerical solutions
for the three cases corresponds to: L = 1, 5, 25 for
different values of q. The results of these figures along
with the results of Table 5 show that the accuracy of
the numerical solutions decreases as the values of L
increases.

Remark 3 It is worthy to mention here that the defini-
tion of the stepwise error used in the above example for
measuring error in case of the unavailability of exact
solution of the FDE. This definition is used in many
articles, see for example [57].

Example 6 [58] Consider the following nonlinear frac-
tional initial value problem:

D2 u(x) + x
7
2 D

3
2 u(x) + u2(x)

= 4x4√
π

+ x4 + 2, x ∈ (0, 1),

u(0) = u′(0) = 0,

(63)

whose exact solution is: u(x) = x2. We apply GLCM
for the case M = 2 to get

u(x) ≈ u2(x) = 2 c0 + a c1 x + c2(2b + a2 x2).

t

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

q 1.7
q 1.8
q 1.9
q 2

Fig. 3 Different solutions of Example 5—L = 1

t

0 1 2 3 4 5
–1.0

–0.5

0.0

0.5

1.0

q 1.7
q 1.8
q 1.9
q 2

Fig. 4 Different solutions of Example 5—L = 5

t

0 5 10 15 20 25

–1.0

–0.5

0.0

0.5

1.0

q 1.7
q 1.8
q 1.9
q 2

Fig. 5 Different solutions of Example 5—L = 25

The expansion coefficients can be calculated by
solving the nonlinear system:

a c1 = 0,

c0 + b c2 = 0,
(
1

9

(
c2
(
a2 + 18b

)
+ 3ac1

)
+ 2c0

)2

+ 4a2c2
81

√
π

+ 2a2c2 = 1

81

(

163 + 4√
π

)

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Table 5 Maximum pointwise error of Example 5—Integer Case (q = 2)

L 1 5 10 15 20 25

E 4.84 × 10−15 3.24 × 10−11 5.78 × 10−8 6.71 × 10−7 6.53 × 10−6 1.06 × 10−4
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Table 6 Comparison between the method in [59] and GLT M for Example 7

M 2 3 4 5 6 7 10

(a, b) = (1, 1) 2.4 × 10−2 5.3 × 10−4 6.1 × 10−5 3.6 × 10−6 7.3 × 10−7 2.1 × 10−8 8.5 × 10−13

(a, b) = (2, 1) 3.5 × 10−2 3.4 × 10−4 2.7 × 10−5 5.4 × 10−6 6.8 × 10−7 7.1 × 10−8 9.1 × 10−13

(a, b) = (3,−2) 4.1 × 10−3 2.5 × 10−4 3.7 × 10−5 1.8 × 10−6 5.2 × 10−7 3.8 × 10−9 4.4 × 10−13

(a, b) = (2,−1) 5.6 × 10−2 4.7 × 10−4 2.1 × 10−5 6.2 × 10−6 3.4 × 10−7 4.2 × 10−8 6.2 × 10−13

Results in [59] 7.4 × 10−3 7.0 × 10−4 1.1 × 10−4 9.7 × 10−6 2.3 × 10−6 2.7 × 10−7 –

The above nonlinear system can be solved exactly to
give

c0 = − b

a2
, c1 = 0, c2 = 1

a2
,

and therefore

u2(x) = −2
b

a2
+ 1

a2
(2b + a2 x2) = x2,

which is the exact solution.

Example 7 [59] Consider the following linear frac-
tional boundary value problem:

4(1 + x) D
4
3 u(x) + 4 D

1
4 u(x) + (1 + x)−

1
2 u(x)

= f (x), x ∈ (0, 1),

u(0) = √
π u(1) = √

2π.

(64)

where f (x) is chosen such that the exact solution of
(64) is given by

u(x) = √π(1 + x).

We apply GLTM. Table 6 displays a comparison
between the numerical scheme presented in [59] and
GLTM for different values of M . The displayed results
in this table ascertain that our approximations are closer
to the exact one than those obtained by the method
derived in [59] in almost all cases. This demonstrates
that our method is advantageous if compared with the
method developed in [59].

Remark 4 Aiming to illustrate the steps for the imple-
mentation of our two proposed algorithms, we add two
algorithms. In Algorithm 1, we summarize the steps
required for solving the nonlinear FDE inExample 4 by
the method, namely GLCM, while in Algorithm 2, we
summarize the steps required for solving the linear FDE
in Example 5—Case 1 by the method, namely GLTM.
The Mathematica program version 10 is employed for
executing the required computations.

Algorithm 1 Generalized Lucas collocation algorithm
for Example 4
Step 1. Given q and N
Step 2. Find G(q)

Step 3. Evaluate tα R(t) = CT G(α) �(t) +tα
(
CT�(t)

)2 −tα

Step 4. List R(ti ) = 0, i = 0, 1, 2, . . . N − 1
Step 5. Join[Output 4, CT �(0) = 0]
Step 6. Solve [Output 5]

Algorithm 2 Generalized Lucas tau algorithm for
Example 5
Step 1. Given q and N
Step 2. Find G(q)

Step 3. Evaluate tq R(t) = CT G(q) �(t) + tq ω2 CT �(t)

Step 4. List
∫ L

0
tαq R(t)ψa,b

i (t) dt=0, i=0, 1, 2, . . . N−2

Step 5. Join[Output 4, CT �(0) = 0, CT G(1) �(0) = ω]
Step 6. Solve [Output 5]

7 Conclusions

In this paper, the operationalmatrix of fractional deriva-
tives of generalized Lucas polynomials is established.
This operational matrix is novel, and it is fruitfully
employed for handling multi-term linear and nonlin-
ear fractional differential equations. Spectral solutions
are obtained via the application of the collocation
and tau methods. The convergence and error analy-
sis are discussed using a new approach. Furthermore,
the numerical results indicate that the proposed algo-
rithms are efficient, applicable and easy in implemen-
tation. We do believe that the proposed algorithms can
be applied to treat other kinds of fractional differential
equations.
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