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Abstract This paper puts forward a new nonlinear
adaptive controller for a small-scale unmanned heli-
copter with unknownmass. The controller is developed
under the framework of backstepping technique, with
the unknown mass estimated by a novel identifier and
the internal and external uncertainties approximated
by radial basis function neural networks (RBFNNs).
The overall closed-loop system,which consists of three
parts: longitudinal–lateral subsystem, heave subsys-
tem, and heading subsystem, is proved to be semi-
globally uniformly ultimately bounded by the strict
Lyapunov stability theory. Furthermore, the proposed
method is more practical in actual applications with an
improved online learning algorithm of the least param-
eters used in the RBFNNs. Finally, the effectiveness
and the robustness of the proposed strategy are exhib-
ited through two simulations compared with the classic
PID method.
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1 Introduction

With the developments of integrated circuits and
the advances in the computing ability of processors
promoting the development of the unmanned heli-
copter airborne hardware system significantly, the
autonomous flight technology of the unmanned heli-
copter has attracted more and more attention [1,9,11,
14,19,28,36]. Compared with full-size manned heli-
copters, unmanned helicopters can be made much
smaller in size, which can greatly reduce the cost of
industrial production.Moreover, small-scale unmanned
helicopters can replace full-size manned helicopters in
carrying out potentially life-threatening tasks, such as
monitoring of active volcanoes, forest fire-fighting, and
topographic surveys of remote areas, completely elim-
inating the potential risks borne by human pilots. In
addition, compared with fixed-wing unmanned aerial
vehicles (UAVs), an unmanned helicopter has unique
advantages. For example, it does not need any runways
used to take off or land, because it has the maneuver
ability of vertical takeoff and landing. Besides, it can
hover in the air and move in all directions in the Carte-
sian space. In spite of the above-described advantages
of small-scale unmanned helicopters, they are much
more difficult to be controlled for autonomous flight,
because they aremore vulnerable to aerodynamic inter-
ferences [26].

Although the autonomous flight of a small-scale
unmanned helicopter has been basically achieved [11,
29,32,35,38], the performances of those controllers are

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-017-3516-z&domain=pdf
http://orcid.org/0000-0002-7242-6647


1290 B. Zhou et al.

relatively conservative compared to a skilled pilot. For
instance, basic attitude control has been achieved by
[32] and [38], but the position control is not consid-
ered in both two literatures. In addition, the controller
in [32] is designed based on a linear model, which is
only effective in the vicinity of the equilibrium point,
and the control performance is relatively conservative
in [38] because the experiment is implemented on a
test bed and the effect of the test bed is disregarded
without any serious analysis. Thus, it is still a chal-
lenging problem to design a nonlinear controller with
high tracking accuracy and strong robustness, which
should fully consider the nonlinear characteristics of
the unmanned helicopter and is supposed to be com-
parable with skilled pilots. The small-scale unmanned
helicopter is a high-order complicated model with high
nonlinearity and strong coupling among different chan-
nels. How to deal with the nonlinearity and the cou-
pling is a very critical issue in the process of controller
design. Since obtaining its exact nonlinear model is
verydifficult,many researchers usePIDcontrolmethod
to design flight control system for an autonomous heli-
copter [11,29,36]. However, the selection of control
parametersmainly relies on the designers’ experiences,
resulting in a relatively cumbersome adjustment pro-
cess. And what is worse, the robustness of the PID
controller is quite weak in flight environments with
external interferences, e.g., wind gusts. In addition,
many controllers are designed based on the linearized
model around the equilibrium point in which dozens
of nonlinear characteristics are ignored to obtain sim-
ple linearization controllers [9,10,19,20]. But the lin-
ear controllers are effective only when the unmanned
helicopter flies near the balanced point. The control
performance may be severely degraded, even leading
to the instability of the closed-loop system, when the
helicopter states deviate from the equilibrium point. As
a result, linearization has brought about the application
conditions of the controller, and the flight envelope of
the unmanned helicopter is restricted. Although com-
bining gain scheduling technique and the linearization
method based on multi operating points can expand the
flight envelope of the unmannedhelicopter [10] to a cer-
tain degree, it needs a number of tedious calculations
and extra experiments.

In contrast, nonlinear control techniques are more
suitable for control systems with large flight enve-
lope, and plentiful research achievements have been
brought out in recent years [6,7,17,24,28,33,34,37,

41]. Second-order sliding mode control is adopted to
alleviate the chattering phenomena of the traditional
sliding model method in both [7] and [34]. In [7], the
multivariable super twisting control is combined with
backstepping control based on a sliding mode observer
to control an unmanned helicopter. While in [34], the
second-order slidingmode control method is combined
with an extended state observer to tackle the track-
ing problem of small-scale helicopters. Unfortunately,
like the most of the previous nonlinear controllers
[13,24,28,33,41], the second-order slidingmode flight
controller in [34] is constructed under the hypothesis
of two-timescale separation, which assumes that the
response of the outer-loop is much slower than that
of the inner-loop. But this assumption is probably not
established when the maneuver of the unmanned heli-
copter is large. A novel attitude kinematics represen-
tation using a rotation matrix is proposed in [31] to
transform the nonlinear model into a strict feedback
form for applying backstepping control without the
assumption of two-timescale separation. However, nei-
ther internal uncertainties nor external uncertainties are
taken into account. Considering the advantages of the
NNs with the ability of online learning over the NNs
trained offline [30], the researches in [4] use NNs to
learn the dynamics of an UAV online while assuming
full state feedback. To further remove the assumption,
Dierks [5] proposes a novel virtual control schemewith
a NN observer. The authors in [5,16,27,39] all adopt
NNs with online learning algorithms to compensate
small coupling forces and aerodynamic uncertainties
under backstepping control framework. Unfortunately,
so many updating laws of weight matrices may lead
to the calculation explosion of the airborne computer,
making the control system hard to be applied in real
flights. Calvo-Rolle [3] proposes an adaptive inverse
control using an online learning algorithm for system
identification, and the advantage of the method is that
it has the ability to deal with non-stationary environ-
ments. Unfortunately, it needs K × (K + J ) (K is the
number of hidden neurons and J is the number of out-
puts) times of iterative calculation at each sampling
point to obtain the optimal weights, and the calcula-
tion is obviously not small. In [15], the researchers
combine backstepping control and NNs to design a
flight control systemandpropose a new identifierwhich
can identify the inertial matrix asymptotically. How-
ever, the flapping dynamics of the main rotor is totally
neglected, which may lead to the deterioration of con-
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trol performance. Besides, the inertial matrix identifier
has nine adaptive laws, which results in huge compu-
tation workload despite using an optimized updating
law. Zou [42] also investigates the tracking problem of
an unmanned helicopter by combining backstepping
control approach with an adaptive RBFNN. Simula-
tions show the effectiveness of the method, neverthe-
less, the fact that the weights of the adaptive RBFNN
are directly estimated increases the computational bur-
den greatly and hinders the implementation of the
approach. To surmount this difficulty, an efficient learn-
ing algorithm with less learning parameters is intro-
duced in [18,22,23] where not only the computation
amount is reduced but also good control performances
are obtained.

The purpose of this paper is to propose a robust
and nonlinear adaptive backstepping controller which
needs no assumptions about multi-timescale separa-
tion and has a low computational complexity so as
to facilitate the practical implementation. Inspired by
[18,21–23], new adaptive RBFNNs with online learn-
ing algorithms of the least parameters are designed in
this paper to enhance the robustness of the flight control
system of an unmanned helicopter. In order to complete
the backstepping control design smoothly, the attitude
kinematics representation proposed in [31] is used.And
to avoid complex analytical solutions, the time deriva-
tives of some virtual controls in this paper are cal-
culated through command filters [8]. The main high-
lights of this paper are summarized as follows: First, a
novel identifier is designed to estimate the mass of the
unmanned helicopter, which is considered as a constant
by many previous researches [31,35,37,39]. However,
the mass of an unmanned helicopter decreases with
the reduction of fuel in real flights. Furthermore, when
an unmanned helicopter performs transport tasks, the
mass changes with loading or unloading of goods in the
air. The mass is a very important model parameter for
the control method based onmodel and a good adaptive
law for the mass can effectively improve the robust-
ness of the controller. Second, unlike the prior litera-
tures [5,16,27,39], an improved neural network learn-
ing algorithm with the least parameters is proposed to
reduce computation load [21]. With the increase in the
neurons in the hidden layer, the number of the updat-
ing laws proposed in [5,16,27,39] increases exponen-
tially, resulting in a heavy computational load. For the
learning algorithm of the least parameters introduced
in this paper, it only needs to estimate one parameter,

i.e., the square of the induced Euclidean norm of an
ideal weight matrix.

The remaining parts of this paper are arranged as
follows: Some preliminaries are introduced in Sect. 2.
Section3 describes the complete nonlinear model of a
small-scale unmanned helicopter. The detailed design
process of the nonlinear adaptive controller including
the stability analysis is elaborated in Sect. 4. Two simu-
lations and some discussions are carried out in Sect. 5.
At last, Sect. 6 concludes the paper.

2 Preliminaries

2.1 Mathematical notation

In this paper, the operands ‖·‖ and ‖·‖2 denote
Euclidean norm of column vectors and induced
Euclidean norm of matrices, respectively; the nota-
tion |·| represents absolute value for real numbers; the
abbreviations c(·) and s(·) indicate the trigonomet-
ric function cos(·) and sin(·), respectively; λmin(·) is
the minimum eigenvalue of a matrix; exp(·) means an
exponential function.

2.2 Modified RBFNNs

RBFNNs can approximate any nonlinear function with
an arbitrary precision and have a fast learning conver-
gence speed. A three-layered architecture of a mod-
ified RBFNN is illustrated in Fig. 1, whose output is
different from the traditional RBFNN, where Γ̂ is the
estimation of Γ which is defined by Γ = ‖W‖22 and
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Fig. 1 Modified RBFNN structure adopted in this paper
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the output is f̂ (x) = Γ̂ ‖H‖22. There are N , K , and
M nodes in the input layer, the hidden layer, and the
output layer, respectively, where N , K , and M are pos-
itive integers. And W ∈ RK×M is the idealized weight
matrix between the hidden layer and the output layer;
H (x) = [h1 (x) , h2 (x) , . . . , hK (x)]T ∈ RK . h j (x)
is the Gaussian basis function as the following form

h j (x) = exp

(
− 1

2b j

∥∥x − c j
∥∥2) , j = 1, 2, . . . , K ,

(1)

where c j = [c1 j , c2 j , . . . , cN j ]T ∈ RN and b j ∈ R
are the center and the width of the radial basis function
h j (x).

The advantage of this modified RBFNN is that there
is only one parameter, Γ̂ , which needs to be updated,
lessening the calculation burden dramatically. More
details about the modified RBFNN learning algorithm
are presented in Remarks 2 and 3.

3 Helicopter model

A nonlinear small-scale unmanned helicopter dynam-
ics model has been developed using the first principles
modeling approach, including twenty states and four
inputs. The system states and the control inputs are
summarized in Table1. Two reference frames, i.e., the
body frame and the inertial frame, are depicted in Fig. 2.
The small-scale unmanned helicopter can be described
by a hybrid nonlinear model, which is mainly com-
posed of the following three parts: fuselage rigid body
kinematics and dynamics, main rotor dynamics, and
simplified yaw dynamics.

3.1 Fuselage rigid body kinematics and dynamics

The nonlinear fuselage rigid body kinematics and
dynamics can be derived by Newton–Euler equation
[31] as follows

Ṗ = V, (2)

mV̇ = R(Θ)F + mgEz, (3)

Ṙ(Θ) = R(Θ)Sk(ω), (4)

I ω̇ = −ω × Iω + M, (5)

Table 1 Physical descriptions of states and inputs

Variable (unit) Physical description

x, y, z (m) Position vector along the inertial frame x-,
y-, and z-axes

vx , vy, vz (m/s) Velocity vector along the inertial frame x-,
y-, and z-axes

u, v, w (m/s) Velocity vector along the body frame x-,
y-, and z-axes

φ, θ, ψ (rad) Roll, pitch, and yaw attitude angles in the
inertial frame

p, q, r (rad/s) Roll, pitch, and yaw angular rates in the
body frame

a, b (rad) Flapping angles of the main blade in
longitudinal and lateral directions

c, d (rad) Flapping angles of the stabilizer in
longitudinal and lateral directions

δped,int Intermediate state in the yaw dynamics

δlat Aileron servo input

δlon Elevator servo input

δcol Collective pitch servo input

δped Rudder servo input

Fig. 2 Sketch of the body frame and the inertial frame

where P = [x, y, z]T and V = [vx , vy, vz]T are the
position vector and the linear velocity vector of the cen-
tre of gravity of the unmanned helicopter in the inertial
frame, respectively; m is the mass of the helicopter;
Θ = [φ, θ, ψ]T denotes the attitude angle vector of
the fuselage; R(Θ) indicates the transformmatrix from
the body frame to the inertial frame, specified by

R(Θ)

=
⎡
⎢⎣

c(θψ) s(φθ)c(ψ) − c(φ)s(ψ) c(φψ)s(θ) + s(φψ)

c(θ)s(ψ) s(φθψ) + c(φψ) c(φ)s(θψ) − s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φθ)

⎤
⎥⎦ ,
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where c(φθψ) = c(φ)c(θ)c(ψ), s(φθψ) = s(φ)s(θ)

s(ψ), and so on; Ez is a unit vector along the z axis of
the inertial frame, i.e., Ez = [0, 0, 1]T ; ω = [p, q, r ]T
denotes the angular velocity vector of the unmanned
helicopter represented in the body frame; Sk(ω) is the
skew-symmetric matrix defined as

Sk(ω) =
⎡
⎣ 0 −r q

r 0 −p
−q p 0

⎤
⎦ ; (6)

I = diag{Ix , Iy, Iz} is the inertial matrix; F and M
denote all the external forces except the gravity and
all the external moments expressed in the body frame,
respectively.

To be more exact, F and M can be, respectively,
specified by

F =
⎡
⎣ Fx
Fy

Fz

⎤
⎦ =
⎡
⎣ Xmr + X f d

Ymr + Y f d + Yvt

Zmr + Z f d

⎤
⎦ (7)

and

M =
⎡
⎣Mx

My

Mz

⎤
⎦ =
⎡
⎣ Lmr + Lvt

Mmr

Nmr

⎤
⎦ , (8)

where Xmr ,Ymr , Zmr and X f d ,Y f d , Z f d are, respec-
tively, the components of the main rotor force and the
fuselage drag force along the body frame x-, y-, and z-
axes; Yvt and Lvt are the vertical tail force andmoment;
Lmr , Mmr , and Nmr are the components of the main
rotor moment along the body frame x-, y-, and z-axes.
Because the yaw control in manual flight of a small-
scale helicopter is very challenging due to the high
sensitivity to the control input and the strong coupling
effect between themain rotor and the tail rotor, an angu-
lar vector control system (AVCS) is usually equipped
to facilitate the pilot for heading hold. Thus, the forces
and moments of the tail rotor can be disregarded.

It is known that the dominant forces and moments
are mainly produced by the main rotor. According to
[2], disregarding the effect of the flapping angles and
assuming there exist no twists at the blades of the main
rotor, the thrust of the main rotor can be expressed as
follows

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T = (wb − vim)
ρΩR2Clαbmcm

4
,

v2im =
√

(
v2int

2
)2 + (

T

2ρπR2 )2 − v2int

2
,

v2int = ū2 + v̄2 + w̄(w̄ − 2vim),

(9)

with wb = w̄ + aū − bv̄ + 2

3
ΩRθcol , θcol =

Kcol Kaδcol , where vint is an intermediate variable in
the calculation process of the main rotor thrust; vim
indicates the induced velocity of the main rotor; wb

is the resultant velocity at the main rotor in vertical
direction; bm denotes the number of the main blades;
cm is the chord length of the main blade; θcol is the
collective pitch angle controlled by the collective actu-
ator; Vw = [uw, vw,ww]T denotes the wind velocity
vector in the body frame; ū = u − uw, v̄ = v − vw,
w̄ = w −ww; Kcol is the linkage gain from the collec-
tive actuator to themain blade; δcol indicates the control
signal of the collective actuator. Subsequently, the force
components and the moment components generated by
the main rotor can be written as follows

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xmr = −T sin(a),

Ymr = T sin(b),
Zmr = −T cos(a) cos(b),
Lmr = (kβ + T Hmr ) sin(b),
Mmr = (kβ + T Hmr ) sin(a),

(10)

where kβ and Hmr denote themain rotor spring constant
and the vertical distance between the main rotor hub
and the centre of gravity, respectively.

The fuselage drag forces are calculated [1,12] as
follows

X f d =
{−0.5ρS f ux ūvim, if |ū| ≤ vim;

−0.5ρS f ux ū |ū|, if |ū| > vim .
(11)

Y f d =
{−0.5ρS f uy v̄vim, if |v̄| ≤ vim;

−0.5ρS f uy v̄ |v̄|, if |v̄| > vim .
(12)

Z f d = −0.5ρS f uz (w̄ − vim) |w̄ − vim | , (13)

where S f ux , S f uy , and S f uz are longitudinal, lateral,
and vertical effective fuselage areas, respectively.

The vertical tail force is defined by

Yvt =
{−0.5ρClα,vt Svtvvt |ū|, if |vvt | ≤ 0.3 |ū|;

−0.5ρSvtvvt |vvt |, if |vvt | > 0.3 |ū|.
(14)
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Here vvt = v̄−vi t −r Dvt , and vi t denotes the induced
velocity of the tail rotor. Then the vertical tail moment
is given by Lvt = Yvt Hvt , where Hvt means the verti-
cal distance between the vertical tail and the centre of
gravity.

Remark 1 In spite of the fact that the fuselage drag
forces and the vertical tail force and moment are taken
into account in the modeling process of the small-scale
unmanned helicopter to improve the precision of the
model, they are omitted in the design procedure of the
flight control system for simplicity, testing the robust-
ness of the controller to some extent.

3.2 Main rotor dynamics

Rotor flapping dynamics is a unique feature of a small-
scale unmanned helicopter. The dynamics of the sta-
bilizer mounted on the main rotor to facilitate manual
operation should also be considered. Then the main
rotor flapping dynamics and the stabilizer flapping
dynamics are modeled, respectively, as follows

[
ȧ
ḃ

]
= γmΩ

(γm)2 + 64

⎡
⎢⎢⎢⎣
− 4kβ

IβΩ2 − 8 γm − 32kβ
γm IβΩ2

32kβ
γm IβΩ2 − γm − 4kβ

IβΩ2 − 8

⎤
⎥⎥⎥⎦
[
a
b

]

−
[
q

p

]
+ γmΩ

(γm )2 + 64

[
−γm 8
8 γm

][
Bm
1 + Kmix d

Am1 + Kmix c

]
,

(15)[
ċ
ḋ

]
= γ sΩ

(γ s )2 + 64

[
−8 γ s

−γ s −8

][
c
d

]

−
[
q

p

]
+ γ sΩ

(γ s )2 + 64

[
−γ s 8
8 γ s

][
Bs
1

As1

]
,

(16)

where (a, b) and (c, d) are the flapping angles of the
main rotor and the stabilizer in the longitudinal direc-
tion and the lateral direction, respectively; (Am

1 , Bm
1 )

and (As
1, B

s
1) indicate the cyclic pitch angles of themain

blade and the stabilizer, determined by pitch angles of
swash plate as follows
⎧⎪⎪⎨
⎪⎪⎩

Am
1 = Kbel A1,

Bm
1 = Kbel B1,

As
1 = Ksb A1,

Bs
1 = KsbB1,

(17)

where Kbel and Ksb are the mechanical gains from the
swash plate to the main blade and the stabilizer, respec-

tively; A1 and B1 denote the pitch angles of the swash
plate in longitudinal and lateral directions, respectively,
which can be calculated from

{
A1 = KlonKaδlon + θlon0,

B1 = Klat Kaδlat + θlat0,
(18)

θlon0 is the initial tilting angle in the longitudinal direc-
tion and θlat0 is the initial tilting angle in the lateral
direction; Ka denotes the gain of the actuators; Klon

and Klat are the linkage gains from the elevator actuator
and the aileron actuator to the swash plate, respectively.

3.3 Yaw dynamics

The fundamental yaw dynamics can be written as fol-
lows

ṙ = Nrr + Nped δ̄ped , (19)

where Nr and Nped are model parameters; δ̄ped is the
output of the AVCS mentioned in Sect. 3.1, which is
composed of a low-cost rate gyro and an embedded PI
controller. Therefore, δ̄ped can be further expressed as
follows

δ̄ped = kP
(
Kcδped − r

)+ kI

∫ (
Kcδped − r

)
dt,

(20)

where kP and kI are the proportional coefficient and
the integral coefficient of the embedded PI controller,
respectively.

Then, the integrated yaw dynamics including the
dynamics of the AVCS can be modeled as follows

{
δ̇ped,int = Kcδped − r ,
ṙ = (Nr − N1) r + N2δped,int + N1Kcδped ,

(21)

where N1 = NpedkP ; N2 = NpedkI .

4 RBF neural networks-based nonlinear adaptive
backstepping control design

The design of a robust and nonlinear adaptive flight
controller is conducted in this section. Theflight control
system is divided into three parts: longitudinal–lateral
subsystem, heave subsystem, and heading subsystem.
Its structure diagram is portrayed in Fig. 3. The control
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Fig. 3 Diagram of the nonlinear adaptive backstepping control system based on RBF neural networks

design for longitudinal–lateral subsystem is described
in Sect. 4.1; the design procedures for heave subsystem
and heading subsystem are presented in Sects. 4.2 and
4.3, respectively; the stability analysis of the closed-
loop system is revealed in Sect. 4.4, in which the rel-
ative updating laws are also derived by means of the
Lyapunov stability theory.

4.1 Longitudinal–lateral subsystem

Since the dominating force is the thrust component
along the z axis of the body frame, for simplicity, Xmr

andYmr are disregarded and included in the lumped dis-
turbance, which also contains other neglected forces in
the design procedure. Generally, it can be assumed that
c(a) ≈ 1 and c(b) ≈ 1 because the flapping angles
are ordinarily very small. Then the external force F is
divided into the following two parts

F = [0, 0,−T ]T︸ ︷︷ ︸
F0

+ [dx , dy, dz]T︸ ︷︷ ︸
dF

, (22)

where dF is the lumped disturbance resulting from
other neglected forces, such as the fuselage drag force
and the vertical tail force. Similarly, assuming s(a) ≈ a

and s(b) ≈ b, the external torque exerted on the
unmanned helicopter can be written as

M = [(kβ + T Hmr
)
b,
(
kβ + T Hmr

)
a, 0
]T

︸ ︷︷ ︸
M0

+ [dp, dq , dr ]T︸ ︷︷ ︸
dM

, (23)

where dM is the lumped disturbance produced by other
neglected torques. The flapping dynamics composed
of Eqs. (15) and (16) is too complicated for control
design. For convenience, under the assumptionof ċ ≈ 0
and ḋ ≈ 0, the flapping dynamics is reduced to the
following lumped form

β̇m = Amβm + Aωω2 + Bδcyc, (24)

where βm = [a, b]T ; ω2 = [p, q]T ; δcyc =
[δlat , δlon]T ; Am and Aω are the coefficient matrices
calculated from Eqs. (15) and (16).

Input formulas (22) and (23) into the fuselage rigid
body kinematics and dynamics (2)–(5), one can extract
the longitudinal–lateral subsystem as follows

Ṗ2 = V2, (25)
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V̇2 = 1

m
R2(dz − T ) + 1

m
RNdF̄ , (26)

Ṙ2 = RMω2 (27)

ω̇2 = Rωω2 + Rββm + dM̄ , (28)

β̇m = Amβm + Aωω2 + Bδcyc, (29)

where P2 = [x, y]T ; V2 = [vx , vy]T ; R2 =
[R13, R23]T ;
dF̄ = [dx , dy]T ; RN =

[
R11 R12
R21 R22

]
; RM =

[
−R12 R11
−R22 R21

]
;

dM̄ = [dp, dq ]T + d̄T Hmr

[
0 1/Ix

1/Iy 0

]
βm ;

Rω =
[

0 r(Iy − Iz)/Ix
r(Iz − Ix )/Iy 0

]
;

Rβ = (kβ + Tint Hmr )

[
0 1/Ix

1/Iy 0

]
; Ri j indicates the

element in the i th row and the j th column of the trans-
formation matrix R(Θ); T is expressed as

T = Tint + d̄T , (30)

where Tint is the intermediate control in the heave sub-
system and d̄T is the lumped disturbance.

Step 1Define Pe = P2− P2r , and differentiate Pe with
respect to the time variable to get

Ṗe = V2 − Ṗ2r . (31)

By defining the horizontal velocity error as Ve = V2 −
αP , and substituting it into Eq. (31), one can obtain

Ṗe = V2 − Ṗ2r = Ve + αP − Ṗ2r , (32)

where αP is the pseudocontrol. To stabilize the hori-
zontal position error dynamics (32), the pseudocontrol
is chosen as

αP = −KP Pe + Ṗ2r , (33)

where KP is a positive definite diagonal matrix. Apply-
ing the pseudocontrol (33) into equation (32), the hor-
izontal position error dynamics becomes

Ṗe = Ve − KP Pe. (34)

Now, define the Lyapunov function candidate for Pe
as follows

LP = 1

2
PT
e Pe. (35)

Differentiating (35) and substituting (34) into the dif-
ferential equation of (35) yield

L̇ P ≤ −λmin (KP ) ‖Pe‖2 + PT
e Ve. (36)

Step 2 For convenience, the horizontal translational
dynamics (26) can be rewritten as

V̇2 = − 1

m̂
R2Tint

+ 1

m̂
R2
(
T − d̄T

)+ 1

m
(R2dz + RNdF̄ − R2T )︸ ︷︷ ︸
�F

,

(37)

where m̂ is the estimation of the unmanned helicopter’s
mass, which is derived by the adaptive law (69e) pre-
sented in Sect. 4.4.�F denotes the lumped disturbance.
Then, the time derivative of Ve can be denoted as fol-
lows

V̇e = − 1

m̂
(Re + αV )Tint + KP Ṗe − P̈2r + �F , (38)

where �F = WT
1 H1(V2) + σ1(V2); W1 ∈ RK1×2 is

the ideal neural network weight matrix; K1 is the num-
ber of the nodes in the hidden layer; σ1(V2) ∈ R2 is
the bounded neural network approximation error, and
H1(V2) ∈ RK1 is the Gaussian basis function of V2; Re

is specified by Re = R2 − αV .
Subsequently, to stabilize the horizontal velocity

error dynamics (38), the pseudocontrol αV is designed
as

αV = m̂

Tint

(
KV Ve + Pe + KP Ṗe − P̈2r

)

+ m̂

2Tintε21
VeΓ̂1HT

1 (V2)H1(V2),
(39)

where KV is a positive definite diagonal matrix and ε1
is a designed positive constant; Γ̂1 is the estimation of
Γ1, which is the square of the induced Euclidean norm
about W1, defined as Γ1 = ‖W1‖22.
Remark 2 A point worth emphasizing is that in some
previous literatures [16,27,39] the ideal neural net-
work weight matrix W1 is directly estimated without
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No
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Optimization of RBF, see figure 2

Error calculation

Control laws, equation (49,56,65)

Time derivative of L, inequation (73)

Closed-loop system stabel?

Yes

End

Adaptive laws (learning algorithms), 
Equation (69)

ˆ
i i i

ˆ
i

Fig. 4 Sequential flowchart of the learning algorithm

any optimization, leading to as many as K1 × 2 adap-
tive laws. With the increase in the nodes in the hid-
den layer or the output layer, the number of the updat-
ing laws grows exponentially, resulting in the calcula-
tion explosion of the online embedded computer sys-
tem. Differently from the foregoing documents, this
paper adopts an improved learning algorithm of the
least parameters, which compensates the uncertainties
utilizing only one parameter to estimate the square of
the induced Euclidean norm regarding W1 indirectly,
bringing about a more efficient control system in prac-
tical applications. In addition, a sequential flowchart
illustrated in Fig. 4 is provided to further explain this
algorithm.

Remark 3 In [18] the dynamic surface control app-
roach is combined with “minimal learning parame-
ters” algorithm for MIMO systems. While in [23]
and [22] a reinforcement learning algorithm with less
learning parameters is put forward to tackle the adap-

tive tracking control and fault-tolerant control issue
for MIMO discrete-time systems. Although the sim-
ilar RBFNN is used in [18,23] and [22], the focus of
this paper is to propose an adaptive backstepping con-
troller with a learning algorithm of the least parame-
ters for unmanned helicopters, which is different from
the works in the above papers. Moreover, the learning
algorithms used here are very different from those in
[18,23] and [22]. What they estimated indirectly in the
RBF neural network is the Euclidean norm of unknown
weights, which is actually different from the modified
adaptive neural network designed in this paper. In order
to combine the modified RBFNN and the backstepping
control technique, and ensure the asymptotic stability
of the whole closed-loop system, it is necessary to esti-
mate the square of the norm of the weights rather than
the norm itself and this is the difference in dealing with
adaptive neural networks between this paper and the
literatures mentioned above.

Then, the Lyapunov function candidate for Ve is
defined by

LV = 1

2
V T
e Ve. (40)

Combining Eqs. (38) and (39), one obtains the time
derivative of LV

L̇V = −V T
e KV Ve − V T

e Pe − 1

m̂
Tint V

T
e Re

+V T
e σ1(V2) + V T

e WT
1 H1(V2)

− 1

2ε21
V T
e VeΓ̂1H

T
1 (V2)H1(V2)

≤ − (λmin (KV ) − ςV ) ‖Ve‖2 + V T
e σ1(V2)

−‖Ve‖ ‖σ1(V2)‖ −
(√

ςV ‖Ve‖ − ‖σ1(V2)‖
2
√

ςV

)2

−V T
e Pe − 1

m̂
Tint V

T
e Re + V T

e WT
1 H1(V2)

− 1

2ε21
V T
e VeΓ̂1H

T
1 (V2)H1(V2) + ‖σ1(V2)‖2

4ςV

≤ − (λmin (KV ) − ςV ) ‖Ve‖2 − V T
e Pe

− 1

m̂
Tint V

T
e Re + V T

e WT
1 H1(V2)

− 1

2ε21
V T
e VeΓ̂1H

T
1 (V2)H1(V2) + ‖σ1(V2)‖2

4ςV
,

(41)
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where ςV is a constant and 0 < ςV < λmin (KV ).

Step 3 Taking the time derivative of Re and combining
(27) bring about

Ṙe = RM (ωe + αR) − ˆ̇αV + ˜̇αV , (42)

where ωe = ω2 − αR is the roll-pitch angular velocity
error, αR is the pseudocontrol. A second-order com-
mand filter [8] is used here to estimate the time deriva-
tive of αV due to the extremely tedious solving process
of analytic solution for the time derivative of αV . ˆ̇αV

is the estimation of α̇V , and ˜̇αV = ˆ̇αV − α̇V is the
estimation error of the second-order command filter.

Then, design the pseudocontrol αR as

αR = R−1
M

(
−KRRe + 1

m̂
Tint Ve + ˆ̇αV

)
, (43)

where KR is a positive definite diagonal matrix.
The Lyapunov function candidate including Re is

specified by

LR = 1

2
RT
e Re. (44)

Taking the time derivative of LR and utilizing Eqs. (42)
and (43), it generates

L̇ R = −RT
e KR Re + 1

m̂
Tint R

T
e Ve

+RT
e RMωe + RT

e
˜̇αV

≤ −λmin (KR) ‖Re‖2 + 1

m̂
Tint R

T
e Ve

+RT
e RMωe + RT

e
˜̇αV

≤ − (λmin (KR) − ςR) ‖Re‖2

+ 1

m̂
Tint R

T
e Ve + RT

e RMωe +
∥∥∥ ˜̇αV

∥∥∥2
4ςR

, (45)

where ςR is a constant that satisfies the following con-
straints: 0 < ςR < λmin (KR).

Step 4Because of the much faster response of the main
rotor compared with the fuselage, the flapping dynam-
ics is approximated by a steady state equation, which
is proved to be acceptable and effective for control
design in [40]. Then, the simplified flapping dynam-
ics is denoted by

βm = −A−1
m

(
Aωω2 + Bδcyc

)
. (46)

With Eq. (46) substituted into (28), the roll-pitch angu-
lar velocity dynamics becomes

ω̇2 =
(
Rω − Rβ A

−1
m Aω

)
ω2 − Rβ A

−1
m Bδcyc + dM̄ .

(47)

Subsequently, the time derivative ofωe can be rewritten
as follows

ω̇e =
(
Rω − Rβ A

−1
m Aω

)
ω2

−Rβ A
−1
m Bδcyc + dM̄ − α̇R, (48)

where dM̄ = WT
2 H2 (ω2) + σ2 (ω2) is the total torture

disturbance, which will be estimated by the RBF neu-
ral network learning algorithm of the least parameters
indirectly; σ2 (ω2) is the bounded approximation error.
Thus, the actual longitudinal–lateral control is designed
as follows

δcyc = −
(
Rβ A

−1
m B
)−1
(

− Kωωe − RT
M Re

−Rωω2 + Rβ A
−1
m Aωω2 + ˆ̇αR

− 1

2ε22
ωeΓ̂2H

T
2 (ω2)H2(ω2)

)
, (49)

where Kω is a positive definite diagonal matrix; ε2 is
a positive number; Γ̂2 is the estimation of Γ2, which is
specified by Γ2 = ‖W2‖22; ˆ̇αR is the estimation of α̇R

through the command filter.
Then the Lyapunov function candidate containing

ωe is selected as

Lω = 1

2
ωT
e ωe, (50)

which gives the time derivative of Lω

L̇ω = −ωT
e Kωωe − ωT

e R
T
M Re + ωT

e W
T
2 H2 (ω2)

− 1

2ε22
ωT
e ωeΓ̂2H

T
2 (ω2)H2(ω2) + ωT

e dω

≤ − (λmin (Kω) − ςω) ‖ωe‖2
−ωT

e R
T
M Re + ωT

e W
T
2 H2 (ω2)

− 1

2ε22
ωT
e ωeΓ̂2H

T
2 (ω2)H2(ω2) + ‖dω‖2

4ςω

, (51)

where 0 < ςω < λmin (Kω); dω = σ2 (ω2) + ˜̇αR , and˜̇αR is the approximation error of the command filter.
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4.2 Heave subsystem

As mentioned in Sect. (4.1), the thrust T in (30) can be
rewritten as follows

T = k1w + k1k2Kaδcol − k1νi0︸ ︷︷ ︸
Tint

+d̄T , (52)

where k1 = ρΩR2Clαbmcm
4

; k2 = 2

3
ΩR; d̄T = dT −

k1(νim − νi0); dT is the disturbance including system
uncertainty and external disturbance. Moreover, d̄T is
given by d̄T = −WT

3 H3(w) (w)−σ3 (w), whereW3 ∈
RK3 andσ3(w) ∈ R are the ideal neural networkweight
matrix and the bounded approximation error.

According to Eqs. (2) and (3), the heave subsystem
can be specified by the following form{
ż = vz,

mv̇z = −T c(θ)c(φ) + mg.
(53)

Substituting Eq. (52) into (53), the heave dynamics
can be rewritten as follows

mz̈ = −c(θ)c(φ)
(
Tint + d̄T

)+ mg. (54)

Then the intermediate control Tint is designed as

Tint = − 1

c(θ)c(φ)
m̂ (ν − g) + 1

2ε23
δzΓ̂3H3(w)T H3(w),

(55)

where m̂ is the estimation of the actual mass; Γ̂3 is the
estimation of Γ3, which is specified by Γ3 = ‖W3‖2; ν
is specified by ν = z̈r − 2kz że − k2z ze and δz is defined
as δz = że + kzze, with ze = z − zr .

Presently the actual heave control can be derived as
follows by combining Eqs. (52) and (55)

δcol = − m̂(ν − g)

k1k2Kac(θ)c(φ)
+ νi0 − w

k2Ka

− 1

2k1k2Kaε
2
3

δzΓ̂3H3(w)T H3(w). (56)

With Eq. (55) substituted into (54), it yields

m (z̈ − ν) = m̃ (ν − g) + σ3(w)c(θ)c(φ)

+WT
3 H3(w)c(θ)c(φ)

− 1

2ε23
δzΓ̂3H3(w)T H3(w)c(θ)c(φ). (57)

Through the attentive analysis of ν and δz , the following
expression can be found

(z̈ − ν) = z̈ − z̈r + 2kz że + k2z ze

= δ̇z + kzδz . (58)

Then, define the Lyapunov function candidate for δz
as follows

Lz = 1

2
mδ2z . (59)

With Eqs. (57) and (58) substituted into the time deriva-
tive equation of (59), the time derivative of Lz can be
calculated as follows

L̇ z = −mkzδ
2
z + m̃δz (ν − g)

+WT
3 H3(w)c(θ)c(φ)δz + σ3(w)c(θ)c(φ)

− 1

2ε23
δ2z Γ̂3H3(w)T H3(w)c(θ)c(φ)

≤ − (mkz − ςz) δ2z + m̃δz (ν − g)

+WT
3 H3(w)δzc(θ)c(φ)

− 1

2ε23
δ2z Γ̂3H3(w)T H3(w)c(θ)c(φ)

+ (σ3(w)c(θ)c(φ))2

4ςz
, (60)

where ςz is a positive number which satisfies the fol-
lowing constraints: 0 < ςz < kz .

4.3 Heading subsystem

In this section, the design of the heading control sub-
system is carried out. First, the yaw kinematics can be
extracted from the attitude kinematics representation
(4) as follows

ψ̇ = s(φ)

c(θ)
q + c(φ)

c(θ)
r. (61)

By definingψe = ψ −ψr and re = r −αψ , the time
derivative of ψe can be expressed by

ψ̇e = s(φ)

c(θ)
q + c(φ)

c(θ)

(
re + αψ

)− ψ̇r . (62)
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Choose the virtual control αψ as

αψ = c(θ)

c(φ)

(
−kψψe + ψ̇r − s(φ)

c(θ)
q

)
, (63)

where kψ is a positive number.
Take the time derivative of re and combine Eq. (21)

to get

ṙe = (Nr − N1)r + N1Kcδped − α̇ψ + dr , (64)

where dr = N2δped,int, which is to be estimated by the
RBFNN through dr = WT

4 H4(r) + σ4(r); σ4(r) ∈ R
indicates the bounded approximation error; W4 ∈ RK4

denotes the ideal weight matrix, and K4 is the number
of the nodes in the hidden layer.

Finally, the actual control is chosen as

δped = 1

N1Kc

(
− krre − (Nr − N1)r − c(φ)

c(θ)
ψe

− 1

2ε24
reΓ̂4H

T
4 (r)H4(r) + ˆ̇αψ

)
, (65)

where kr and ε4 are both positive numbers; Γ̂4 is the
estimation of Γ4, while Γ4 is given by Γ4 = ‖W4‖2.

The Lyapunov function candidate including ψe and
re is selected as

Lψ = 1

2
ψ2
e + 1

2
r2e . (66)

Substituting Eq. (63) into (62), (65) into (64), and
differentiating (66) yield

L̇ψ = −kψψ2
e − krr

2
e + re

( ˜̇αψ + σ4(r)
)

+ reW
T
4 H4(r) − 1

2ε24
r2e Γ̂4H

T
4 (r)H4(r)

≤ −kψψ2
e − (kr − ςr ) r

2
e

+ reW
T
4 H4(r) − 1

2ε24
r2e Γ̂4H

T
4 (r)H4(r)

+
( ˜̇αψ + σ4(r)

)2
4ςr

, (67)

where ςr is a constant and 0 < ςr < kr ; ˜̇αψ is the
estimation error of the command filter.

4.4 Stability analysis

Assumption 1 During the whole process of the auto-
nomous flight, the roll angle and the pitch angle of
the unmanned helicopter’s fuselage always satisfy the
following constraints

−π/2 < φ < π/2, −π/2 < θ < π/2. (68)

Assumption 2 The desired trajectories P2r (t), zr (t),
ψr (t), and their second-order time derivatives P̈2r (t)
and z̈r (t) are bounded and continuous.

The relative adaptive laws are designed as the fol-
lowing forms

˙̂
Γ1 = ζ1

2ε21
V T
e VeH

T
1 (V2)H1(V2) − ξ1Γ̂1, (69a)

˙̂
Γ2 = ζ2

2ε22
ωT
e ωeH

T
2 (ω2)H2(ω2) − ξ2Γ̂2, (69b)

˙̂
Γ3 = ζ3

2ε23
δ2z H

T
3 (w)H3(w)c(θ)c(φ) − ξ3Γ̂3, (69c)

˙̂
Γ4 = ζ4

2ε24
r2e H

T
4 (r)H4(r) − ξ4Γ̂4, (69d)

˙̂m = γ
(
gδz − νδz − ηm̂

)
, (69e)

where ζi , εi and γ are designed positive parameters; ξi
and η are small correction parameters which are greater
than zero. With the appropriate parameters selected for
Eq. (69), the estimation errors m̃ = m̂ − m and Γ̃i =
Γi − Γ̂i are bounded (i = 1, 2, 3, 4).

Theorem 1 Under Assumption 1 and Assumption 2,
considering a small-scale unmanned helicopter spec-
ified by Eqs. (2), (3), (4), (5), (15), (16) and (21), the
control inputs (49), (56) and (65) can drive the position
and yaw tracking errors to converge to an arbitrarily
small compact of the origin asymptotically with the
supporting of the updating laws (69a), (69b), (69c),
(69d) and (69e). And all the error variables Pe, Ve,
Re, ψe, ωe, ze, δz , re, m̃, and Γ̃i are guaranteed to be
semi-globally uniformly ultimately bounded.

Proof To prove the stability of the overall closed-loop
system, the composite Lyapunov function candidate is
defined as follows

L = L1 + L2, (70)
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where L1 = LP + LV + LR + Lω + Lz + Lψ and

L2 = ∑4
i=1

1

2ζi
Γ̃ 2
i + 1

2γ
m̃2. Combining Eqs. (36),

(41), (45), (51), (60), and (67), the time derivative of L
becomes

L̇ ≤ −λmin (KP ) ‖Pe‖2 − (λmin (KV ) − ςV ) ‖Ve‖2
− (λmin (KR) − ςR) ‖Re‖2
− (λmin (Kω) − ςω) ‖ωe‖2
− (mkz − ςz) δ2z − kψψ2

e

− (kr − ςr ) r
2
e + V T

e WT
1 H1(V2)

− 1

2ε21
V T
e VeΓ̂1H

T
1 (V2)H1(V2)

+ωT
e W

T
2 H2(ω2) + m̃δz (ν − g)

− 1

2ε22
ωT
e ωeΓ̂2H

T
2 (ω2)H2(ω2)

+WT
3 H3(w)δzc(θ)c(φ)

− 1

2ε23
δ2z Γ̂3H

T
3 (w)H3(w)c(θ)c(φ)

+ reW
T
4 H4(r) − 1

2ε24
r2e Γ̂4H

T
4 (r)H4(r)

+ ‖σ1(V2)‖2
4ςV

+
∥∥∥ ˜̇αV

∥∥∥2
4ςR

+ ‖dω‖2
4ςω

+ (σ3(w)c(θ)c(φ))2

4ςz
+
( ˜̇αψ + σ4(r)

)2
4ςr

−
4∑

i=1

1

ζi
Γ̃i

˙̂
Γi + 1

γ
m̃ ˙̂m. (71)

According to the Cauchy–Schwarz inequality and
Assumption 1, Eq. (71) can be rewritten as follows

L̇ ≤ −λmin (KP ) ‖Pe‖2 − (λmin (KV ) − ςV ) ‖Ve‖2
− (λmin (KR) − ςR) ‖Re‖2
− (λmin (Kω) − ςω) ‖ωe‖2
− (mkz − ςz) δ2z − kψψ2

e − (kr − ςr ) r
2
e

+‖Ve‖ ‖W1‖2 ‖H1(V2)‖
− 1

2ε21
V T
e VeΓ̂1H

T
1 (V2)H1(V2)

+‖ωe‖ ‖W2‖2 ‖H2(ω2)‖
− 1

2ε22
ωT
e ωeΓ̂2H

T
2 (ω2)H2(ω2)

+ |δz | ‖W3‖ ‖H3(w)‖ c(θ)c(φ)

− 1

2ε23
δ2z Γ̂3H

T
3 (w)H3(w)c(θ)c(φ)

+m̃δz (ν − g) + |re| ‖W4‖ ‖H4(r)‖
− 1

2ε24
r2e Γ̂4H

T
4 (r)H4(r) + ‖σ1(V2)‖2

4ςV

+
∥∥∥ ˜̇αV

∥∥∥2
4ςR

+ ‖dω‖2
4ςω

+ (σ3(w)c(θ)c(φ))2

4ςz

+
( ˜̇αψ + σ4(r)

)2
4ςr

−
4∑

i=1

1

ζi
Γ̃i

˙̂
Γi + 1

γ
m̃ ˙̂m. (72)

Then, using the Young’s inequality, Eq. (72) can be
further expressed by

L̇ ≤ −λmin (KP ) ‖Pe‖2 − (λmin (KV ) − ςV ) ‖Ve‖2
− (λmin (KR) − ςR) ‖Re‖2
− (λmin (Kω) − ςω) ‖ωe‖2
− (mkz − ςz) δ2z − kψψ2

e − (kr − ςr ) r
2
e

+‖W1‖22 ‖Ve‖2 ‖H1(V2)‖2
2ε21

− 1

2ε21
V T
e VeΓ̂1H

T
1 (V2)H1(V2)

+‖W2‖22 ‖ωe‖2 ‖H2(ω2)‖2
2ε22

− 1

2ε22
ωT
e ωeΓ̂2H

T
2 (ω2)H2(ω2)

+‖W3‖2 |δz |2 ‖H3(w)‖2
2ε23

c(θ)c(φ)

− 1

2ε23
δ2z Γ̂3H

T
3 (w)H3(w)c(θ)c(φ)

+‖W4‖2 |re|2 ‖H4(r)‖2
2ε24

− 1

2ε24
r2e Γ̂4H

T
4 (r)H4(r) + m̃δz (ν − g)

+‖σ1(V2)‖2
4ςV

+
∥∥∥ ˜̇αV

∥∥∥2
4ςR

+ ‖dω‖2
4ςω

+ (σ3(w)c(θ)c(φ))2

4ςz
+
( ˜̇αψ + σ4(r)

)2
4ςr

+1

2

4∑
i=1

ε2i si −
4∑

i=1

1

ζi
Γ̃i

˙̂
Γi + 1

γ
m̃ ˙̂m

≤ −λmin (KP ) ‖Pe‖2 − (λmin (KV ) − ςV ) ‖Ve‖2
− (λmin (KR) − ςR) ‖Re‖2
− (λmin (Kω) − ςω) ‖ωe‖2
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− (mkz − ςz) δ2z − kψψ2
e − (kr − ςr ) r

2
e

+Γ̃1

(
1

2ε21
V T
e VeH

T
1 (V2)H1(V2) − 1

ζ1

˙̂
Γ1

)

+Γ̃2

(
1

2ε22
ωT
e ωeH

T
2 (ω2)H2(ω2) − 1

ζ2

˙̂
Γ2

)

+Γ̃3

(
1

2ε23
δ2z H

T
3 (w)H3(w)c(θ)c(φ) − 1

ζ3

˙̂
Γ3

)

+Γ̃4

(
1

2ε24
r2e H

T
4 (r)H4(r) − 1

ζ4

˙̂
Γ4

)

−m̃

(
gδz − νδz − 1

γ
˙̂m
)

+ 1

2

4∑
i=1

ε2i si

+‖σ1(V2)‖2
4ςV

+
∥∥∥ ˜̇αV

∥∥∥2
4ςR

+ ‖dω‖2
4ςω

+ (σ3(w)c(θ)c(φ))2

4ςz
+
( ˜̇αψ + σ4(r)

)2
4ςr

, (73)

where i = 1, 2, 3, 4; si =
{
1, if i = 1, 2, 4;
c(θ)c(φ), if i = 3.

Input the adaptive laws (69a), (69b), (69c), (69d) and
(69e) into (73) and combine the following inequalities

⎧⎪⎨
⎪⎩

4∑
i=1

ξi

ζi
Γ̃i Γ̂i ≤ −

4∑
i=1

ξi

2ζi
Γ̃ 2
i +

4∑
i=1

ξi

2ζi
Γ 2
i ,

ηm̃m̂ ≤ −η

2
m̃2 + η

2
m2,

(74)

to get

L̇ ≤ −λmin (KP ) ‖Pe‖2
− (λmin (KV ) − ςV ) ‖Ve‖2
− (λmin (KR) − ςR) ‖Re‖2
− (λmin (Kω) − ςω) ‖ωe‖2
− (mkz − ςz) δ2z − kψψ2

e − (kr − ςr ) r
2
e

−
4∑

i=1

ξi

2ζi
Γ̃ 2
i +

4∑
i=1

ξi

2ζi
Γ 2
i − η

2
m̃2 + η

2
m2

+‖σ1(V2)‖2
4ςV

+
∥∥∥ ˜̇αV

∥∥∥2
4ςR

+‖dω‖2
4ςω

+ (σ3(w)c(θ)c(φ))2

4ςz

+
( ˜̇αψ + σ4(r)

)2
4ςr

+ 1

2

4∑
i=1

ε2i si

≤ −2ΣL + �, (75)

where

Σ = min

(
λmin (KP ) , (λmin (KV ) − ςV ) ,

(λmin (KR) − ςR) , (λmin (Kω) − ςω) ,

(mkz − ςz)

m
, kψ, (kr − ςr ) ,

ξi

2
,
ηγ

2

)
,

(76)

and

� =
4∑

i=1

ξi

2ζi
Γ 2
i + η

2
m2 + ‖σ1(V2)‖2

4ςV

+
∥∥∥ ˜̇αV

∥∥∥2
4ςR

+ ‖dω‖2
4ςω

+ (σ3(w)c(θ)c(φ))2

4ςz

+
( ˜̇αψ + σ4(r)

)2
4ςr

+ 1

2

4∑
i=1

ε2i si . (77)

Thus, solving the differential inequality (75) yields

L(t) ≤ L(t0)e
−2Σ(t−t0) + �

2Σ

(
1 − e−2Σ(t−t0)

)
,

(78)

where t0 is the initial time. And inequality (78) means
that

L(t) → �

2Σ
, as t → ∞. (79)

DefiningΠ(t)=L(t0)e−2Σ(t−t0)+ �
2Σ

(
1−e−2Σ(t−t0)

)
,

then one can get

‖Pe‖ ≤ √2Π(t), (80)

δz ≤
√

2

m
Π(t), (81)

ψe ≤ √2Π(t). (82)

Since δz = że + kzze, the following inequality can be
obtained
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ze ≤ ze (t0) e
−kz(t−t0) +

√
2
mΠ(t)

kz

(
1 − e−kz(t−t0)

)
,

(83)

which implies that ze →
√

2
mΠ(t)

kz
, as t → ∞.

Therefore, the position and the yaw angle track-
ing errors of the overall closed-loop system are semi-
globally uniformly ultimately bounded and can con-
verge to an arbitrarily small neighborhood of the orig-
inal point by selecting the proper parameters. 	

Remark 4 As shown in inequality (80), (82), and (83),
the size of the neighborhood is adjustable by choosing
the parameters Σ and kz . Since c(φ) and c(θ) are used
in the denominator of the formula (56), Assumption 1
is necessary to guarantee the validity of the formula and
the analysis on the stability of the closed-loop system.

Remark 5 Since the autonomous flight of the small-
scale helicopter is under the Assumption 1 and the tran-
sient response of the dynamics of sensing and actua-
tion systems is much faster than that of the helicopter
dynamics [25], the sensing and actuation systems are
assumed to be ideal and the dynamics of which can be
disregarded during developing a controller.

5 Simulation results and discussion

In this section, the effectiveness and the robustness of
the proposed nonlinear adaptive controller augmented
by the RBFNNs are evaluated through two simula-
tion experiments. For convenience, the numerical val-
ues of the main physical parameters of the small-scale
unmanned helicopter are provided in Table2. Read-
ers interested can refer to the literature [35] for more
detailed information. The main controller parameters
are the same in the two simulations, which are sum-
marized in Tabel 3. Since the PID controller needs no
knowledge of the helicopter model, it is widely used in
practical applications in spite of the fact that the con-
troller gains can only be tuned by experience. Thus, in
order to be more persuasive, the proposed controller is
compared with the PID controller proposed in [25] in
both two simulations, which is consist of four single-
input single-output PID control loops.

Some model parameter variations and external dis-
turbances are considered in the simulations to verify

Table 2 Physical parameters of the unmanned helicopter

Parameter Value (unit) Parameter Value

R 0.785 m Kbel 0.4825

Ω 172.788 rad/s Ksb 1.1959

cm 0.060 m Kmix 0.8709

Dvt 0.90 m Ka 9.4248

Hvt 0.065 m Klat 0.4434

Hmr 0.275 m Klon 0.4667

g 9.81 N/kg Kcol 0.3813

m 7.495 kg Nr −14.1674

Ix 0.1895 kgm2 N1 2.1629

Iy 0.4515 kgm2 N2 137.4115

Iz 0.3408 kgm2 Kc −184.6632

Iβ 0.0913 kgm2 kβ 167.6592

I sβ 0.0058 kgm2 γm 1.3112

ρ 1.290 kg/m3 γ s 0.3282

Table 3 Control parameters of the proposed controller

Parameter Value Parameter Value

KP diag(1, 1) kz 5

KV diag(1, 1) kψ 10

KR diag(3, 3) kr 10

Kω diag(150,160) γ 1

the robustness of the proposed controller. More specif-
ically, a heavy object is dropped during the flight to test
the robustness to the internal disturbances in the first
simulation, and the wind gusts of 9m/s along the body
frame x-, y-, and z-axes are added to test the robustness
to the external disturbances in the second simulation.
Besides, other simulation conditions (e.g., a fixed step
size of 0.01 s) are the same for both two simulations.

5.1 Simulation 1: trajectory tracking with airdrop

The reference trajectory in the first simulation is
denoted by the following square curve

Pr =

⎧⎪⎪⎨
⎪⎪⎩

(0.5t, 0, 10)T , if t ≤ 15;
(7.5, 0.5 (t − 15), 10)T , if 15 < t ≤ 30;
(0.5 (45 − t), 7.5, 10)T , if 30 < t ≤ 45;
(0, 0.5 (60 − t), 10)T , if 45 < t ≤ 60.

(84)
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Fig. 5 First simulation: the reference trajectory (blue dashed line) and the actual trajectory of the proposed nonlinear adaptive controller
(red solid line), and the PID controller (green dashed-dotted line). (Color figure online)

The purpose of the first simulation is mainly to evaluate
the tracking accuracy and the robustness to the inter-
nal parameter variation considering the intrinsic cou-
pling among different control channels. To enhance the
coupling effect, the nose of the small-scale unmanned
helicopter is kept forward during the whole flight, pro-
ducing the following reference trajectory for ψ

ψr =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if t ≤ 15;
1

2
π, if 15 < t ≤ 30;

π, if 30 < t ≤ 45;
3

2
π, if 45 < t ≤ 60.

(85)

Since the mass is used as a denominator in the con-
trol design process, the initial mass cannot be zero or
too small. For the sake of fairness, the initial mass is set
as 0.5kg. The actual total mass of the unmanned heli-
copter is assumed to be 7.495kg, including an object
of 1.495kg, which is to be dropped off during the
flight to trigger an abrupt mass variation. The adaptive
parameters are selected as: ε1 = 0.75, ε2 = ε3 = 1,
ε4 = 5, ζ1 = ζ2 = 200, ζ3 = ζ4 = 100, ξ1 = 0.005,
ξ2 = ξ4 = 0.5, ξ3 = 0.0001, and η = 0.005. The
simulation results are shown in Fig. 5.

As shown in Fig. 5a–d, the red solid lines of the pro-
posed controller obviously have higher tracking accu-
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racy than those green dashed-dotted lines of the PID
controller despite the airdrop at the 25th second. It is
observed from Fig. 5e, f, the roll angle and the pitch
angle both deviate from their equilibrium values when
the yaw angle changes, resulting from the coupling
effectwith the yawchannel.However, the roll angle and
the pitch angle of the proposed strategy are both stabler
than those of thePIDmethod. In addition, Fig. 5g shows
the adaptive parameters and Fig. 5h demonstrates that
the estimated mass can keep up with the actual value
well. The mass estimation is quite valid although there
exists a bounded estimation error. Figure5i depicts the
tracking result including the airdrop at the 25th second
and the wind gusts of 9m/s along the body frame x-,
y-, and z-axes rising up at the 30th second to further
reveal the gap between the two methods more clearly.

Remark 6 As shown in Fig. 5c, when the airdrop hap-
pens, the altitude variation of the PID controller is rela-
tively smaller than that of the proposed controller. The
result emerges mainly due to the common structure
characteristics of the PID controllers which do not need
precise model information, while the mass is quite an
important model parameter in the proposed controller.
However, the proposed strategy makes a rapid recov-
ery from the abrupt height variation and gets a better
tracking accuracy than the PID method. This just vali-
dates the effectiveness of the mass adaption (69e) and
the robustness of the proposed controller.

Remark 7 Fig. 5d depicts that the yaw angle of the
nonlinear adaptive controller has a quicker response
and a higher tracking precision. It is worth mention-
ing that the yaw angle changes from π to −π at the
45th second in the simulation although the desired yaw
angle is 3π/2. This is because that the actual yaw
angle range of the small-scale unmanned helicopter is
between −π and π , and the heading control loop takes
it into account, making the simulation closer to a real
flight.

Remark 8 As observed in Fig. 5g, h, the adaptive
parameter Γ̂3 changes most fiercely when the abrupt
mass variation happens. This is owing to the fact that
the heave subsystem is most seriously affected by the
mass variation among all the control channels. Then the
adaptive law (69c) reacts fleetly to hold the height of
the unmanned helicopter, leading to an abrupt increase
in Γ̂3 and maintaining the altitude stable again very
quickly,which is consistentwith the situation in Fig. 5c.

5.2 Simulation 2: trajectory tracking with wind gusts

In this simulation, the desired position trajectory is
selected as a spiral path descending along the inertial
frame z-axis, which is more aggressive than what is
used in the first simulation, defined as follows:

Pr =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(0, 0, −3)T , if t ≤ 5;⎡
⎢⎢⎣
5(1 − cos(

π

5
(t − 5)))

−5sin(
π

5
(t − 5))

−23 + 20e(−0.06(t−5))

⎤
⎥⎥⎦, if t ≥ 5.

(86)

And the reference trajectory of the yaw angle is set as
ψr = 0. Moreover, the wind gusts of 9m/s are exerted
along the body framex-, y-, and z-axes of the unmanned
helicopter at the 30th second for both two methods.
With the adaptive parameters chosen as: ε1 = 0.5, ε2 =
1.5, ε3 = 1, ε4 = 5, ζ1 = 300, ζ2 = 200, ζ3 = ζ4 =
100, ξ1 = 0.1, ξ2 = ξ4 = 0.5, ξ3 = 0.001, η =
0.001, and other parameters selected as the same with
Simulation 1, the performance results of Simulation 2
are depicted in Fig. 6.

Figure6a–f illustrates that the tracking errors of the
PIDmethod are bigger than those of the proposed strat-
egy in the absence of wind gusts before the 30th second
in the simulation. Once the wind gusts are exerted at
the 30th second, the PID controller suffers much larger
tracking errors and trajectory deviations, while the pro-
posed controller withstands the test of the wind gusts
andkeeps highly accurate tracking trajectories through-
out the total flight process. In addition, as depicted in
Fig. 6g, h, the PID controller needsmore aggressive roll
and pitch angles than the proposed method to track the
same reference trajectory, which means that the pro-
posed controller can obtain more efficient and robust
tracking results with less aggressive controls. Further-
more, the adaptive parameters are illustrated in Fig. 6i.

Remark 9 It should be stressed that in Fig. 6d 1 radian
is about equal to 57.3◦. The yaw angle tracking error of
the PID method is more than 5.73◦ when there are no
wind gusts. Once the wind gusts are exerted, the error
increases to about 10◦, which is quite a large tracking
error for a small-scale unmanned helicopter.

Remark 10 From Eq. (86), it can be derived that the
time required for a cycle is 10 seconds, which is much
faster than the reference trajectory used in [16]. Con-
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Fig. 6 Second simulation: the reference trajectory (blue dashed line) and the actual trajectory of the proposed nonlinear adaptive
controller (red solid line), and the PID controller (green dashed-dotted line). (Color figure online)

sequently, the proposed control system certainly needs
bigger roll and pitch angles than those in [16] to main-
tain a circular motion of such a high frequency.

Remark 11 Fig. 6i shows that the updating law in the
heave subsystem experiences the intensest transition,
followed by the adaptive laws in the longitudinal–
lateral subsystem, and the adaption in the heading sub-
system undergoes the slightest change. That is because
the area of the rotatingmain rotor at high speed is much
larger than that of the fuselage, while the area of the
rotating tail rotor is the smallest, almost negligible.Cor-
respondingly, the larger the area is, the bigger effect the

wind gusts produce, then the intenser change the adap-
tion has.

Remark 12 It is worthmentioning that, in an ideal sim-
ulation environment, the PID controller can only with-
stand up to 9m/s wind gusts along the body frame
x-, y-, and z-axes with terrible tracking errors, while
the proposed nonlinear adaptive controller can with-
stand up to 13m/s wind gusts with perfectly accept-
able tracking errors. Moreover, it has to be pointed out
that the approximation ability of the RBFNN learning
algorithm with the least parameters is limited, and it is
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the price that must be paid to reduce the number of the
updating laws and the amount of computation.

6 Conclusion

This paper addresses the position and yaw tracking
problem of a small-scale unmanned helicopter with
unknownmass. To estimate the unknownmass, internal
uncertainties, and external uncertainties, a novel non-
linear adaptive controller augmented by the RBFNNs
is proposed, including a novel mass adaption and four
improved adaptive neural network learning algorithms
of the least parameters. All the adaptive laws are
derived in the process of the Lyapunov stability anal-
ysis, by which the position and yaw tracking errors of
the overall closed-loop system are proved to converge
to an arbitrarily small compact of the origin asymp-
totically. Moreover, two simulations confirm that the
proposed method is not only effective but also robust
to the internal and external uncertainties and is suit-
able for practical implementation. And the future work
is to implement the proposed controller on a specific
unmanned helicopter experimental system.
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