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Abstract Nonlinear aeroelastic behavior of a trape-
zoidal wing in hypersonic flow is investigated. The
aeroelastic governing equations are built by von Kar-
man large deformation theory and the third-order pis-
ton theory. TheRayleigh–Ritz approach combinedwith
the affine transformation is formulated and employed
to transform the equations of a trapezoidal wing struc-
ture, modeled as a cantilevered wing-like plate, into
modal coordinates. And then the modal equations are
solved by numerical integrations. Several typical cases
are studied to validate the capability of the proposed
method for linear and nonlinear aeroelastic analysis
of trapezoidal cantilever plate in hypersonic flow. The
effects of Rayleigh–Ritz mode truncation for vari-
ous wing-plate geometrical characteristics, i.e., sweep
angle of leading edge, taper ratio and span, are exam-
ined to determine the appropriate mode number for
accuratemodeling and fast calculation.Meanwhile, the
effects of various geometries of trapezoidal cantilever
plates on the flutter stability are investigated. The non-
linear dynamic behaviors of the model with three typi-
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cal geometries, namely, the rectangular, parallelogram
and trapezoidal wing-like plate, are simulated numer-
ically. Furthermore, complex dynamic behaviors are
observed and identified via the phase plot, the Poincare
map and the largest Lyapunov exponent. The results
demonstrate that geometrical parameters of trapezoidal
wing have significant effects on the nonlinear aeroelas-
tic behaviors of wing structure. In particular, the evolu-
tion processes of chaos exhibit remarkable difference
for these three wing configurations.
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List of symbols

AR Aspect ratio
ai j , brs Mode coordinate for in-plane displace-

ment u and v, respectively
cr, ct Root chord length and tip chord length,

respectively
D Plate stiffness, D = Eh3/12(1 − ν2)

E Young’s modulus
h Plate thickness
I, J Total mode number retained in the ξ and

η directions for in-plane displacement u,
respectively

i, j Mode number retained in the ξ and η

directions for in-plane displacement u,
respectively
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l Semi span
L = T −U Lagrangian
Ma Mach number
M, N Total mode number retained in the ξ and

η directions for transverse deflection w,
respectively

m, n Mode number retained in the ξ and η

directions for transverse deflection w,
respectively

�p Aerodynamic pressure
q∞ Dynamic pressure, q∞ = ρ∞V 2∞/2
qmn Mode coordinate for transverse deflec-

tion w

R, S Total mode number retained in the ξ and
η directions for in-plane displacement v,
respectively

r, s Mode number retained in the ξ and η

directions for in-plane displacement v,
respectively

T Kinetic energy
TR Taper ratio, TR = ct/cr
t Time
U Elastic energy
u, v In-plane displacement in the ξ and η

directions, respectively
ū, v̄ Non-dimensional in-plane displacement

in the ξ and η directions, respectively
ui(r), v j (s) Mode in the ξ and η directions for in-

plane displacement u(v), respectively
V∞ Flow velocity
w Transverse deflection
w̄ Non-dimensional transverse deflection
x, y, z Chordwise, spanwise, and normal coor-

dinate, respectively
α Sweep angle of leading edge, positive

backswept
γ Glauert’s aeroelastic correction factor
κ Isentropic gas coefficient
λ Non-dimensional pressure,

λ = 2q∞c3r /D
μ Non-dimensional mass ratio,

μ = ρ∞cr/ρmh
ν Poisson ratio
ρ∞ Air density
ρm Plate density
ξ, η Non-dimensional coordinates
τ Non-dimensional time, τ = t(

D/ρmhc4r
)1/2

ϕm, ψn Mode in the ξ and η directions for trans-
verse deflection w, respectively

( )′ d( )/dξ or d( )/dη
( )′′ d2( )/dξ2 or d2( )/dη2

(˙) d( )/dτ
(a, b] {α|a < α ≤ b}

1 Introduction

Panel flutter is a self-excitation oscillationwith aerody-
namic pressure, inertia force and elastic loading func-
tioning together. Flutter characteristics and nonlinear
dynamic behaviors of panels in supersonic or hyper-
sonic flow have been investigated bymany researchers.
Dowell et al. [1,2] firstly used Rayleigh–Ritz approach
to investigate the nonlinear aeroelastic behaviors of
two-dimensional and three-dimensional panels. Dow-
ell [3] also discussed qualitative and quantitative fea-
tures of panel flutter and classified panel flutter analysis
problems into four basic types based on the structural
and aerodynamic theories adopted. Based on nonlin-
ear piston theory applied in the hypersonic panel flut-
ter analysis, Gray and Mei [4] proposed the fifth type
of panel flutter analysis, in which both structural and
aerodynamic nonlinearities were included, butmaterial
nonlinearity was not considered. Because the aerody-
namic heating needs to be considered in hypersonic
regime, more complex aeroelastic phenomena of pan-
els may be observed. The sixth type of nonlinear panel
analysis was also proposed with precise computational
aerodynamic approaches based on CFD technique [5].
These panel flutter analysis categories are listed in
Table 1.

To solve the nonlinear aeroelastic governing equa-
tions of panels efficiently, Rayleigh–Ritz approxima-
tion is used for the modal representation of panel
transverse deflections, and the obtained ordinary dif-
ferential equations (ODEs) in modal coordinates can
be integrated numerically. Ye and Dowell [6] applied
Rayleigh–Ritz method to study the limit cycle oscil-
lation (LCO) of a cantilever plate and analyzed the
effect of length-to-width ratio on the nonlinear oscil-
lations, as well as the effect of the number of modes
on the amplitude of LCOs in numerical calculation.
Using this model, Xie et al. [7] extended the work of
Ye and Dowell, and adopted this method to observe
the chaotic motions and the routes to chaos with the
increase of dynamic pressure. Bakhtiari-Nejad and
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Table 1 Panel flutter analysis types [5]

Type Structure theory Aerodynamic theory Range of Mach number

1 Linear Linear piston
√
2 < Ma < 5

2 Linear Linearized potential flow 1 < Ma < 5

3 Nonlinear Linear piston
√
2 < Ma < 5

4 Nonlinear Linearized potential flow 1 < Ma < 5

5 Nonlinear Nonlinear piston Ma > 5

6 Nonlinear Euler or Navier–Stokes equation Transonic, supersonic, hypersonic

Nazari [8] investigated the nonlinear vibration of an
isotropic cantilever plate with viscoelastic laminate.
The semi-analytical nonlinear mode shapes of trans-
verse vibration of this platewere obtained by usingRitz
method. Dai et al. [9–11] developed a highly efficient
global nonlinear Galerkin method for the analysis of
the large-deflection problem of plates under combined
loads and for the solution of von Karman nonlinear
plate equations. In addition, Dai et al. [12,13] proposed
a time domain collocation method to solve nonlinear
oscillatory problems, which is promising in the anal-
ysis of the von Karman fluttering plate. Li et al. [14]
studied nonlinear dynamics and bifurcations of a two-
dimensional thin panel with an external forcing in the
presence of incompressible subsonic flow by using the
Galerkin method, and obtained the regions of different
motion types of the panel system in different param-
eter spaces. Zhou and Yang [15] applied the Galerkin
method to study the flutter stability of heated panel
with aeroelastic loading on both surfaces. Later, Yang
and Zhou [16] proposed a modified local piston theory
to analyze the static/dynamic aeroelasticity of curved
panels.

Except for the semi-analytical Galerkin/Rayleigh–
Ritzmethod, the finite elementmethod (FEM) has been
proposed and applied extensively to the studies of non-
linear panel flutter [4,5,17–19]. In particular, the FEM
is convenient to solve the composite panel problems.
Mei [17] applied FEM to study the LCO behavior of
a fluttering plate at supersonic flow. Mei et al. [4,18]
predicted the nonlinear flutter characteristics of simply
supported and clamped composite panels by FEM in
frequency domain and time domain, respectively. The
thermal effects have been considered in the hypersonic
panel flutter analysis by Cheng and Mei [5]. However,
the large number of degrees of freedom (DOFs) in the
FEM analysis leads to the difficulty of solving flutter

equations. To save computational costs, the reduced-
order approach has been proposed and applied by
researchers. Guo andMei [20,21] developed the aeroe-
lasticmodes for nonlinear panel flutter and achieved the
DOFs reduction and computational cost saving greatly.
Wang and Yang [22] applied Mei’s method [20] to
analyze the aerothermoacoustic response of metallic
panels in supersonic flow and the aeroelastic effect on
dynamic behavior was considered for fatigue life pre-
diction of panel structures. Recently, Xie et al. [23–25]
constructed a proper orthogonal decomposition (POD)
reduced-order model with a Galerkin projection to ana-
lyze the supersonic nonlinear oscillations of a simply
supported plate and cantilever plate with remarkable
computational savings. Furthermore, the POD method
was available for the analysis of chaotic responses
of nonlinear panel, and the results of existing studies
demonstrated that the POD method with few modes
could obtain the chaos solutions.

Due to the simple geometries of skin panels on a
wing or fuselage, a rectangular plate model has been
adopted in most of the studies. Few works focus on
the cantilever plates with complex geometries with
back-swept angles and taper ratios especially in hyper-
sonic flow. Meanwhile, rekindled focus on hyper-
sonic aircraft has resulted in the need to better under-
stand the aeroelastic characteristics of wing model in
hypersonic flow. Tang and Dowell [26–28] investi-
gated a low-aspect-ratio delta wing-plate aeroelastic
model at low subsonic flow, in which the flutter and
LCOs of the model were observed and agreed well
with experiment results. Their structure was modeled
by von Karman plate theory and the reduced-order
aerodynamic technique with vortex lattice aerodynam-
ics. Shokrollahi and Bakhtiari-Nejad [29] investigated
the stability and LCOs of the back-swept trapezoidal
wing model at low subsonic flow. Their analysis was
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Fig. 1 a Schematic of trapezoidal wing-like plate geometry; b the transformed non-dimensional square-plate model

available for an estimation of wing structure at the
conceptual design stages. Furthermore, such a model
with wing-plate structural deformations has geometric
strain-displacement nonlinearities and it exhibits non-
linear dynamic behaviors including LCO, bifurcation
and chaos. Consequently, the exploration of nonlinear
behaviors of cantilever plates has significant value for
wing structures.However, to the best of authors’ knowl-
edge, Rayleigh–Ritz approach has seldom been used
for a wing-like plate with irregular geometries. And the
nonlinear aeroelastic characteristics, e.g., LCO, bifur-
cation or chaos, for a trapezoidal cantilever plate in
hypersonic flow, especially the effects of geometrical
parameters on the evolution processes of chaos, have
not been studied by researchers.

In the present study, we explore the nonlinear aeroe-
lastic characteristics of a trapezoidal wing in hyper-
sonic flow. The nonlinear third-order piston theory
is used in conjunction with von Karman large defor-
mation theory to obtain the governing equations. In
order to utilize the ordinary mode functions to ana-
lyze a trapezoidalwing-like platewith different geome-
tries, the affine transformation is proposed to combine
with theRayleigh–Ritz approach, which transforms the
equations of a trapezoidal wing-like plate into modal
coordinates. For wing-plate models with various geo-
metrical characteristics, i.e., sweep angle of leading
edge, taper ratio and span, the effects of mode trunca-

tion are examined by calculating LCO responses using
an increasing number of retained modes, and its pur-
pose is to determine the appropriate mode number for
accurate modeling and fast calculation. Therefore, this
paper firstly investigates the flutter stability and com-
plex nonlinear dynamic responses of trapezoidal can-
tilever plate, and the exploration of this issue will con-
tribute to a better understanding of the wing aeroelastic
design in hypersonic flow. It is noted that a rectangular
or parallelogram cantilever plate as a specific case of
trapezoidal wing-like plate model are also under con-
sideration in this study.

2 Theoretical analyses

A schematic of the geometry of cantilevered trape-
zoidal wing-plate is shown in Fig. 1a. Here, the wing
is fixed along the y = 0 edge and free on other edges.
The sweep angle of leading edge is denoted as α. The
wing taper ratio TR is defined as a ratio of the tip chord
ct to the root chord cr. The aspect ratio AR is defined
in terms of the semi span l, root chord cr and taper ratio
TR as AR = 4(l/cr)/(1 + TR).

The nonlinear governing equations are derived from
Lagrange’s equations based on the von Karman plate
theory using kinetic and potential energies and thework
done by applied aerodynamic loads on the plate.
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2.1 Energy expressions

The von Karman nonlinear strain–displacement rela-
tion can be expressed as

εx = ∂u

∂x
+ 1

2

(
∂w

∂x

)2

− z
∂2w

∂x2
= ε0x − z

∂2w

∂x2

εy = ∂v

∂y
+ 1

2

(
∂w

∂y

)2

− z
∂2w

∂y2
= ε0y − z

∂2w

∂y2

γxy = ∂v

∂x
+ ∂u

∂y
+ ∂w

∂x

∂w

∂y
− 2z

∂2w

∂x∂y
= γ 0

xy

−2z
∂2w

∂x∂y
(1)

where ε0x and ε0y are the strain of the mid-plane surface
in the x and y directions, respectively, and γ 0

xy is the
shear strain of the mid-plane surface in the xy plane.

The stress components can be obtained as:

σx = E

1 − υ2 (εx + νεy)

σy = E

1 − υ2 (εy + νεx )

τxy = E

2(1 + υ)
γxy (2)

The potential energy of a plate is given by

U =
∫∫∫

(σxεx + σyεy + τxyγxy)dxdydz (3)

Substituting the strain and stress components into
Eq. (3), and integrating along the z direction, the elastic
energy can be written as:

U = h

2

∫∫ (
σ 0
x ε0x + σ 0

y ε0y + τ 0xyγ
0
xy

)
dxdy

+ D

2

∫∫ [(
∂2w

∂x2

)2
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(
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+ 2ν
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∂2w

∂y2

+ 2(1 − ν)

(
∂2w

∂x∂y

)2
]

dxdy (4)

where the first and second integrations denote the
stretching energy US and the bending energy UB ,
respectively. The expressions of US and UB can be
written as:

US = Eh

2(1 − ν2)
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⎨

⎩
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(
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∂v
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+ ∂w

∂x

∂w
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dxdy (5)

UB = D

2

∫∫
⎡

⎣
(

∂2w

∂x2

)2

+
(

∂2w

∂y2

)2

+2ν
∂2w

∂x2
∂2w

∂y2
+ 2(1 − ν)

(
∂2w
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⎤

⎦ dxdy (6)

The kinetic energy of the plate is expressed as:

T = 1

2

∫∫
ρmh

(
∂w

∂t

)2

dxdy (7)

2.2 Mode functions and expansions

Based on the Rayleigh–Ritz method, the chordwise,
spanwise, and transverse deflections in non-dimensional
form can be expressed through modal expansions as
follows:

ū =
I∑

i=1

J∑

j=1

ai j ui (ξ)v j (η)

v̄ =
R∑

r=1

S∑

s=1

brsur (ξ)vs(η)

w̄ =
M∑

m=1

N∑

n=1

qmnϕm(ξ)ψn(η) (8)

For a rectangular cantilever plate, the mode func-
tion of a free-free beam and cantilever beam can be
used as the mode functions of a cantilever plate in x
and y directions, respectively [6]. The combination of
them can satisfy the geometric boundary conditions of
cantilever plate. The expressions of the mode functions
are
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ui (ξ) = cos iπξ, v j (η) = sin
2 j − 1

2
πξ

ur (ξ) = cos rπξ, vs(η) = sin
2s − 1

2
πξ

ϕm(ξ) =
⎧
⎨

⎩

2 m = 1
2 (1 − ξ) m = 2√
2 sin (βmξ + 3π/4) + exp (−βmξ) + (−1)m+1 exp [−βm (1 − ξ)] m > 2

ψn(η) = √
2 sin (βnη − π/4) + exp (−βnη)

+(−1)n+1 exp [−βn (1 − η)] + (−1)n exp (−βn) (9)

with βm = (m − 3/2)π , βn = (n − 1/2)π .
where ϕm(ξ) and ψn(η) are free-free and cantilever
beam mode functions, respectively.

To facilitate the utilization of mode functions for a
cantilever beam and free-free beam, the affine transfor-
mation is used to map a trapezoidal plate into a non-
dimensional square-plate model as shown in Fig. 1b.
Here, the affine transformation can be written as:

ξ = x/cr − (AR/4)(1 + TR) tan α(y/ l)

1 − (1 − TR)(y/ l)
, η = y

l
(10)

According to Eq. (10), the transformation matrix can
be obtained as:

J =
[

∂x/∂ξ ∂x/∂η

∂y/∂ξ ∂y/∂η

]

=
[
cr [1 − (1 − TR) η] AR

4 (1 + TR) tan α

0 l

]

(11)

2.3 Governing equations in state-space form

Thegoverning equation of a trapezoidal cantilever plate
can be reduced to that of a square plate with unit side
length non-dimensionally based on the Rayleigh–Ritz
method combined with affine transformation. Substi-
tuting the kinetic and potential energy equations into
Lagrange’s equation,

⎧
⎪⎪⎨

⎪⎪⎩

∂L
∂ai j

= 0,

∂L
∂brs

= 0,
d
dt

(
∂L

∂q̇mn

)
− ∂L

∂qmn
+ Qmn,

(12)

where L = T − U is the Lagrangian and Qmn =∫∫
�p(x, y, t) ∂w

∂qmn
dxdy is the generalized force. We

get,

∂US

∂ai j
= 0 (13a)

∂US

∂brs
= 0 (13b)

d

dt

(
∂T

∂ q̇mn

)
+ ∂UB

∂qmn
+ ∂US

∂qmn
+ Qmn = 0. (13c)

It is assumed that all the non-conservative forces
only work in the z direction and the in-plane inertia can
be ignored [6]. Thus, the in-plane motion equations of
motion are obtained from Eqs. (13a) and (13b). The
non-dimensional in-plane motion equations are

[
Ca Cb

Da Db

] {
a
b

}
=

[
C
D

]
(14)

where the elements of matrices Ca, Cb, Da, Db are
given in Eqs. (15) and (16). Matrices C, D are nonlin-
ear (quadratic) functions of the transverse deflection as
given in “Appendix.” Equation (14) can be solved to
determine ai j and brs in terms of qmn .

Ci j
kp = 2

(
h

cr

)2 ∫ 1

0
u′
ku

′
idξ

∫ 1

0
vpv j H

2 J ′dη

+(1 − ν)

(
h

l

)2 [∫ 1

0
u′
ku

′
i G

2dξ
∫ 1

0
vpv j H

2 J ′dη

+
∫ 1

0
u′
kuiGdξ

∫ 1

0
vpv

′
j H J ′dη

+
∫ 1

0
uku

′
i Gdξ

∫ 1

0
v′
pv j H J ′dη

+
∫ 1

0
ukuidξ

∫ 1

0
v′
pv

′
j J

′dη
]

(15a)
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Ci j
g f = 2ν

h

crl

[∫ 1

0
u′
gu

′
i Gdξ

∫ 1

0
v f v j H

2 J ′dη

+
∫ 1

0
ugu

′
idξ

∫ 1

0
v′
f v j H J ′dη

]

+(1 − ν)
h

crl

[∫ 1

0
u′
gu

′
i Gdξ

∫ 1

0
v f v j H

2 J ′dη

+
∫ 1

0
u′
guidξ

∫ 1

0
v f v

′
j H J ′dη

]
(15b)

Drs
kp = 2ν

h

crl

[∫ 1

0
u′
ku

′
rGdξ

∫ 1

0
vpvs H

2 J ′dη

+
∫ 1

0
u′
kurdξ

∫ 1

0
vpv

′
s H J ′dη

]

+(1 − ν)
h

crl

[∫ 1

0
u′
ku

′
rGdξ

∫ 1

0
vpvs H

2 J ′dη

+
∫ 1

0
uku

′
rdξ

∫ 1

0
v′
pvs H J ′dη

]
(16a)

Drs
g f = 2

(
h

l

)2 [∫ 1

0
u′
gu

′
rG

2dξ
∫ 1

0
v f vs H

2 J ′dη

+
∫ 1

0
u′
gurGdξ

∫ 1

0
v f v

′
s H J ′dη

+
∫ 1

0
ugu

′
rGdξ

∫ 1

0
v′
f vs H J ′dη

+
∫ 1

0
ugurdξ

∫ 1

0
v′
f v

′
s J

′dη
]

+(1 − ν)

(
h

cr

)2 ∫ 1

0
u′
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′
rdξ

∫ 1

0
v f vs H

2 J ′dη

(16b)

In Eqs. (15) and (16),

H(η) = 1

1 − c2η
, G(ξ) = c2ξ − c1, J ′(η) = 1 − c2η

(17)

where c1 = AR
4 (1 + TR) tan α and c2 = 1 − TR.

The non-dimensional transverse motion equation
can be obtained from Eq. (13c) as follows:

Aq̈ + Bq + F + Q = 0 (18)

where A and B are coefficient matrices and F is a non-
linear term that depends on the transverse deflection.Q
is the generalized aerodynamic force. In this paper, the

nonlinear third-order piston aerodynamics are adopted
and the aerodynamic pressure �p is

�p = 2q

Ma

[
γ

(
∂w

∂x
+ 1

V∞
∂w

∂t

)

+κ + 1

4
Maγ 2

(
∂w

∂x
+ 1

V∞
∂w

∂t

)2

+κ + 1

12
Ma2γ 3

(
∂w

∂x
+ 1

V∞
∂w

∂t

)3
]

(19)

where the first term, which includes the stiffness and
damping components, is linear. And the second and
third terms are both nonlinear.

Thus, Q can be rewritten as

Q = QL1q + QL2q̇ + QN (20)

where QL1 and QL2 are the stiffness and damping
matrices of the linear term of generalized aerodynam-
ics, respectively. QN is the nonlinear term of general-
ized aerodynamics.

Pre-multiplying Eq. (18) by the inverse of matrixA,
a set of nonlinear ODEs in state-space matrix form can
be written as follows:

ẏ(τ ) =
[
0 I
−A−1(B + QL1) −A−1QL2

]
y(τ )

+
[
0 0
0 −A−1

]
R (21)

Herein the state vector and systemmatrices can be rep-
resented as

ẏ(τ ) =
[
q(τ )

q̇(τ )

]
, R =

[
0
F + QN

]
(22)

The expressions of the matrices and vectorsA, B,QL1,
QL2, QN and F are given in “Appendix.” This set of
ODEs can be solved by numerical integration, and
then the transverse deflection w̄ can be calculated by
Eq. (8).

2.4 Thermal stress and its effects

The aerodynamic heating cannot be ignored at high
Mach number in hypersonic flow. The thermal effects
arising from the aerodynamic heating can signifi-
cantly affect the dynamic behaviors of wing. Gen-
erally, two main thermal effects should be consid-
ered: (a) the thermal expansion of structures gener-
ates in-plane thermal stresses, and may change the
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stiffness distribution and (b) the temperature evolu-
tion of structure may change the material proper-
ties. For such a wing-like plate model with even dis-
tributed heating, its one side is restricted and other
sides are free. Thus, thermal stresses can be released
from free boundaries and only little exists at the root
of the plate. Therefore, the impact of thermal stresses
on the cantilever plate model is usually neglected in
dynamic analysis. Thus, the temperature dependence
of structural material is much more significant rela-
tively.

The aerodynamic heating can degenerate the elastic
modulus of material. However, due to non-dimension
expression of dynamic pressure, λ= 2q∞c3r /D, the
terms of the elastic modulus are not explicitly involved
in the non-dimensional transverse equation [see
Eq. (18)]. Hence, the thermal effects do not change
the non-dimensional results of the flutter stability and
nonlinear dynamic responses. Thus, the discussion of
the following results will not refer to the thermal
effects.

3 Validation of the Formulation

In the present work, the Rayleigh–Ritz approach is
extended to analyze the nonlinear aeroelastic behav-
ior of trapezoidal plates in hypersonic flow. The
trapezoidal cantilever plates with different geomet-
rical parameters, i.e., taper ratio TR, sweep angle
of leading edge α and root chord-to-semi span ratio
cr/ l are studied, respectively. In all the cases, we
assume that cr = 1.0, h = 0.01, μ = 0.1 and
ν = 0.33.

To validate the feasibility of the present method,
the trapezoidal plate will be degenerated as a rect-
angular plate at first, in which α = 0◦,TR = 1
and cr/ l = 1. The first-order piston aerodynam-

ics �p = 2q√
Ma2−1

(
∂w
∂x + Ma2−2

Ma2−1
1
V∞

∂w
∂t

)
is also

adopted for comparisons. The structure and aerody-
namic parameters of the plate are taken from Xie et
al. [7]. The transverse deflections of LCOs at various
dynamic pressures for this rectangular plate are com-
pared with those obtained by Xie et al. [7]. The com-
parison of LCO behavior of this plate shown in Fig. 2
indicates a good agreement.

Then, to further validate the accuracy of the present
computational model, the modal characteristics of the
trapezoidal cantilever plate are compared with those

Fig. 2 Comparison of LCO behavior of the rectangular can-
tilever plate at Ma = 2

Table 2 Modal frequencies of the trapezoidal cantilever plate
model obtained by FEM and the present method (TR = 0.5, α =
30◦ and cr/ l = 1)

Mode Modal frequency/Hz

FEM The present method Relative error/%

1 3.07 3.08 0.32

2 10.66 10.97 2.91

3 17.37 17.32 0.29

4 29.58 30.66 3.65

5 46.21 45.56 1.41

6 48.61 48.11 1.02

7 57.94 58.06 0.21

8 76.13 77.07 1.23

9 85.47 85.11 0.42

10 101.76 97.7 3.99

obtained by using FEM [20]. When the nonlinear term
F in Eq. (11) is set to be zero, Eq. (11) is reduced to
describe a linear aeroelastic model. Table 2 lists the
modal frequencies of the linear trapezoidal cantilever
plate by using FEM and the present method, in which
TR = 0.5, α = 30◦ and cr/ l = 1. The maximum
error in the modal frequencies is 3.99% at the tenth
mode. The flutter characteristics are calculated with
the first-order piston theory at Ma = 2, and the cor-
responding eigenvalue solutions with non-dimensional
dynamic pressure λ are shown in Fig. 3. It can be seen
that the critical flutter dynamic pressureλcr obtained by
using FEM and the present method is 68.93 and 67.65,
respectively. These results show that the flutter bound-
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Fig. 3 Eigenvalue solutions for linear trapezoidal cantilever plate model (TR = 0.5, α = 30◦ and cr/ l = 1) with non-dimensional
dynamic pressure λ by using FEM and the present method

Fig. 4 Comparison of LCO amplitudes obtained by FEM and
the present method for the trapezoidal cantilever plate model
(TR = 0.5, α = 30◦ and cr/ l = 1)

ary of the model obtained by the present method agrees
well with that by FEM. The LCOamplitudes calculated
by using FEM and the present method are plotted in
Fig. 4. It exhibits good agreement of LCO responses
obtained by using the two methods. The aforemen-
tioned results demonstrate that the derivation of for-
mulas is precise enough in predicting the aeroelastic
stability and LCO responses. It is also confirmed that
the ordinary beam modes can be used for the aeroelas-
tic analysis of a cantilever plate-like wing with various
geometries.

4 Effects of mode truncation

The effects of Rayleigh–Ritz mode truncation on the
response of the system are examined to determine
the appropriate number of modes to be used for a
given configuration. Obviously, the predicted dynamic
characteristics are closer to the real values by using
more modes, but it will spend more computational
time on solving the nonlinear dynamic responses.
Therefore, it is expected to make a good compromise
between accuracy of results and computational costs.
In the present study, calculation experience shows
that J = S = 2 retained in the η direction for in-
plane displacement u and v are sufficient for cantilever
plates, which also have been employed in Xie et al.
[7].

Table 3 shows the number of Rayleigh–Ritz modes
retained in the calculation on LCO amplitude for the
trapezoidal cantilever plate of TR = 1 and cr/ l = 1
with different sweep angles of leading edge. It can
be seen that the number of retained modes along the
airflow direction has little effect for the configuration
with different sweep angles, but more modes along
the span direction are needed with the increasing of
sweep angles. The effect of the number of retained
modes on the LCO amplitude for the sweep angle of
leading edge α = 5◦ is shown in Fig. 5. In Fig. 5a,
when two modes are used along the span direction,
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Table 3 The number of retained Rayleigh–Ritz modes for the trapezoidal cantilever plate of TR = 1 and cr/ l = 1 with different sweep
angles of leading edge

α/◦ (0, 5] (5, 45] (45, 60]

cr/ l = 1,TR = 1 Mode number I = R = 14 I = R = 14 I = R = 14

M = 6, N = 2 M = 6, N = 3 M = 6, N = 4

Fig. 5 LCO amplitude versus dynamic pressure for several numbers of retained modes along the airflow and the span directions for
TR = 1, cr/ l = 1 and α = 5◦

Fig. 6 LCO amplitude versus dynamic pressure for several numbers of retained modes along the airflow and span directions for
TR = 1, cr/ l = 1 and α = 45◦
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Fig. 7 LCO amplitude versus dynamic pressure for several numbers of retained modes along the airflow and span directions for
TR = 1, cr/ l = 1 and α = 60◦

Table 4 The number of retained Rayleigh–Ritz modes for the trapezoidal cantilever plate of TR = 0.75 with different sweep angles
of leading edge

α/◦ (0, 10] (10, 25] (25, 45] (45, 60]

cr/ l = 1,TR = 0.75 Mode number I = R = 14 I = R = 14 I = R = 14 I = R = 14

M = 7, N = 3 M = 7, N = 4 M = 7, N = 5 M = 7, N = 6

Table 5 The number of retained Rayleigh–Ritz modes for the trapezoidal cantilever plate of TR = 0.5 with different sweep angles of
leading edge

α/◦ (0, 5] (5, 20] (20, 45] (45, 60]

cr/ l = 1,TR = 0.5 Mode number I = R = 14 I = R = 14 I = R = 14 I = R = 14

M = 7, N = 3 M = 7, N = 4 M = 7, N = 5 M = 7, N = 6

the amplitude obtained by six modes along the air-
flow direction is close to that by eight modes. Fig-
ure 5b shows that two modes along the span direc-
tion are sufficient to achieve a converged LCO ampli-
tude. Similarly, the effects of the number of retained
modes on the LCO amplitude for α = 45◦ and
α = 60◦ are illustrated in Figs. 6 and 7, respec-
tively.

To explore the effects of the number of retained
modes on the response of LCO for different taper
ratio TR, the number of retained Rayleigh–Ritz modes
for the trapezoidal cantilever plate of TR = 0.75
and TR = 0.5 are listed in Tables 4 and 5, respec-
tively. Tables 4 and 5 show that seven modes along
the airflow direction are enough to obtain the dynamic

characteristic of the trapezoidal cantilever plate with
TR = 0.75 or TR = 0.5. For example, the effect of
the number of retained modes on the LCO amplitude
for TR = 0.5 and α = 5◦ is shown in Fig. 8. It can
be seen from Fig. 8a that the LCO amplitudes obtained
by using M = 7, N = 2 agree well with those by
using M = 8, N = 2. Thus, it can be concluded
that more modes along the span direction should be
used for solving nonlinear responses with the increas-
ing of sweep angle of leading edge. In Fig. 8b, there
is a slight difference between the results obtained by
using M = 4, N = 4 and M = 4, N = 5. It suggests
that 4 modes along the airflow direction are sufficient
to achieve a converged LCO amplitude for this config-
uration.
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Fig. 8 LCO amplitude versus dynamic pressure for several numbers of the retained modes along the airflow and span directions for
TR = 0.5 and α = 5◦

Table 6 The number of retained Rayleigh–Ritz modes for the trapezoidal cantilever plate of cr/ l = 0.5

cr/ l = 0.5

α/◦ (0, 5] (5, 20] (20, 45] (45, 60]

TR = 1.0 Mode number I = R = 14 I = R = 14 I = R = 14 I = R = 14

M = 6, N = 2 M = 6, N = 2 M = 6, N = 3 M = 6, N = 4

α/◦ (0, 10] (10, 40] (40, 50] (50, 60]

TR = 0.75 Mode number I = R = 14 I = R = 14 I = R = 14 I = R = 14

M = 6, N = 2 M = 7, N = 3 M = 7, N = 4 M = 7, N = 5

α/◦ (0, 20] (20, 40] (40, 50] (50, 60]

TR = 0.5 Mode number I = R = 14 I = R = 14 I = R = 14 I = R = 14

M = 6, N = 3 M = 7, N = 4 M = 7, N = 5 M = 7, N = 6

Similarly, the effects of the number of retained
Rayleigh–Ritz modes are examined using the config-
uration with cr/ l = 0.5 and cr/ l = 2 to explore
whether the numbers of mode truncation will have a
significant change for different cr/ l. The number of
retained Rayleigh–Ritz modes for the configuration
with cr/ l = 0.5 and cr/ l = 2 are listed in Table 6 and
7, respectively. Tables 3, 4, 5, 6 and 7 demonstrate that,
(1) with the increasing of sweep angle of leading edge,
the number of retained modes along the span direction
increases gradually for fixed cr/ l and TR, (2) as TR
varies from 1.0 to 0.5, the numbers of retained modes

along the airflow and span direction both increase grad-
ually for fixed cr/ l and α, and 3) more modes along the
airflow and span directions are needed as cr/ l varies
from 1.0 to 0.5.

From the above discussion, it is noted that the effects
of the number of retained mode on the LCO response
for different configurations should be considered. In
the present study, for a given geometric configuration,
the appropriate retained mode number is selected from
Tables 3, 4, 5, 6, and 7 to achieve a good compromise
between computational accuracy and efficiency.

123



Analysis of nonlinear aeroelastic characteristics 1217

Table 7 The number of retained Rayleigh–Ritz modes for the trapezoidal cantilever plate of cr/ l = 2

cr/ l = 2

α/◦ (0, 5] (5, 20] (20, 30] (30, 60]

TR = 1.0 Mode number I = R = 16 I = R = 16 I = R = 16 I = R = 16

M = 8, N = 4 M = 8, N = 5 M = 9, N = 6 M = 9, N = 7

α/◦ (0, 10] (10, 30] (30, 50] (50, 60]

TR = 0.75 Mode number I = R = 16 I = R = 16 I = R = 16 I = R = 16

M = 8, N = 5 M = 9, N = 6 M = 9, N = 7 M = 10, N = 8

α/◦ (0, 5] (5, 20] (20, 45] (45, 60]

TR = 0.5 Mode number I = R = 16 I = R = 16 I = R = 16 I = R = 16

M = 9, N = 5 M = 9, N = 6 M = 10, N = 7 M = 11, N = 8

Fig. 9 Flutter stability of linear trapezoidal cantilever plate model for cr/ l = 1

5 Linear flutter analysis

When the nonlinear force F in Eq. (18) and the nonlin-
ear term of generalized aerodynamics in Eq. (12) are
neglected, it leads to a linear aeroelastic model of the
trapezoidal cantilever plate and the problem of linear
flutter stability in hypersonic flow can be analyzed. For
all the cases studied, the parameters are h = 0.01m,
μ = 0.1, Ma = 6, unless otherwise noted. To ana-
lyze the effect of geometrical parameters, including α,
TR and cr/ l, on the flutter characteristics, Figs. 9, 10
and 11 show the critical flutter dynamic pressure λcr
and flutter frequency ωcr of the model with a variety of
combinations of TR, α and cr/ l. For such an isotropic

trapezoidal plate, the linear flutter motion is dominated
by the coupling of the first two natural modes, i.e., the
spanwise bending mode and the chordwise torsional
mode. For cr/ l = 1, λcr is initially decreased and then
increased by increasing the sweep angle of leading edge
with three different TR values, while the variation trend
of flutter frequency is contrary. As TR varies from 0.5
to 1.0, λcr and ωcr are both decreased under the same
sweep angle of leading edge and this variation trend
is also suitable for the cases of cr/ l = 0.5 and 2. For
cr/ l = 0.5, λcr is decreased gradually by increasing the
sweep angle of leading edge for these three TR values.
As cr/ l is equal to 2, λcr is increased dramatically, but
its evolution with the variation of sweep angles of lead-
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Fig. 10 Flutter stability of linear trapezoidal cantilever plate model for cr/ l = 0.5

Fig. 11 Flutter stability of linear trapezoidal cantilever plate model for cr/ l = 2

ing edge is irregular. The reason of this phenomenon is
that the variations of geometrical parameters change the
structural and aerodynamic characteristics of the sys-
tem simultaneously, that both have remarkable effects
on the flutter stability. Therefore, these results can serve
as a reference of parameter selection in the subsequent
nonlinear aeroelastic analysis.

6 Nonlinear aeroelastic analysis

In this section, with the structural and aerodynamic
nonlinearities are both considered, nonlinear aeroe-

lastic analysis of the trapezoidal wing-like plate are
simulated by using numerical integration method. All
the figures are drawn with respect to a typical point
ξ = 0.75, η = 1.0 of the plate. Here, a parame-
ter marching procedure using the solution of the pre-
vious dynamic pressure as the initial conditions for
the next dynamic pressure is employed in the bifur-
cation analysis. The bifurcation diagrams are plotted
with dynamic pressure increment �λ = 2 in the range
of periodic motions and �λ = 0.5 in the range of
quasi-periodic or chaoticmotions. The dynamic behav-
iors of the plate in hypersonic flow are revealed and
identified via the phase plot, the power spectra, the
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Fig. 12 Geometries of a rectangular plate, b parallelogram plate and c trapezoidal plate

Table 8 Geometrical parameters of analytical models

Model α/◦ TR cr/ l

Rectangular plate 0 1 1

Parallelogram plate 30 1 1

Trapezoidal plate 30 0.5 1

Poincare map and the largest Lyapunov exponent. It
should be mentioned that the Poincare map is plotted
by recording the deflection and velocity of the typical
point ξ = 0.75, η = 1.0 when the deflection time his-
tories of the point ξ = 0.15, η = 1.0 reaches zero with
a positive velocity. The Lyapunov exponent, which is
computed by using the algorithm of Wolf et al. [30], is
used to quantify the dynamic responses. To explore the
effect of the geometry of model on nonlinear dynamic
behaviors, we employ the analytical models with three
typical geometries, i.e., rectangular, parallelogram and
trapezoidal wing-like plates, as discussed below. These
analytical models are shown in Fig. 12, and their geo-
metrical parameters are listed in Table 8.

6.1 Rectangular wing-like plate

When the sweep angle of leading edge is reduced to
zero, the trapezoidal plate will degenerate into a rect-
angular plate, which is illustrated in Fig. 12a. The bifur-
cation diagram of a rectangular cantilever plate, which
is plotted as the local amplitude extreme with respect
to the dynamic pressure λ, is shown in Fig. 13. The
motion of the system converges to a stable equilibrium

Fig. 13 Bifurcation diagram in terms of local amplitude extreme
for a rectangular cantilever plate

point for λ < 160, and the dynamic pressure of the
bifurcation point is in agreement with the critical flutter
dynamic pressure λcr = 159.43. For dynamic pressure
160 < λ < 820, the system exhibits a period-1motion,
and a typical phase plot is shown in Fig. 14a for λ =
700. It can be seen from Fig. 13 that a sudden change
takes place at λ = 890 and then period-3 motions are
observed between 891 < λ < 904.5. A second bifur-
cation appears at λ = 904.5, after which the motion
becomes period-6 between 160 < λ < 820. With
the further increasing of dynamic pressure, chaotic
motions are observed, a typical Poincare map of which
is shown in Fig. 15d for λ = 940. The Poincare map
has a set of organized points, which indicates chaotic
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Fig. 14 Phase plots for a rectangular cantilever plate under several dynamic pressures in the bifurcation diagrams: a λ = 700; b
λ = 900; c λ = 906 and d λ = 940

motion. The phase plots and Poincare maps for period-
1, period-3, period-6 and chaotic motions are presented
in Figs. 14 and 15, respectively, which reveal the evo-
lution process of chaos of the plate dynamic responses.
To sum up, these results show that the period-doubling
of periodic motion is a possible approach to chaos.
Using the first piston theory aerodynamics, Xie et al.
[7] showed that panel oscillates in period-1, period-2,
and period-4 motions and finally it goes to chaos for
this model at Ma = 2, and they concluded that the
route to chaos is via period-doubling. Similar to the
conclusion of Xie et al, the present study shows that

the route to chaos is also via period-doubling with the
nonlinear third-order piston aerodynamics.

Figure 16 presents a partially enlarged bifurcation
diagram of the upper branch shown in Fig. 11. The
regions of chaos are separated by several periodic win-
dows in the regions of 969.5 < λ < 985.5, 1004 <

λ < 1006, 1018 < λ < 1020, 1026 < λ < 1031
and 1065.5 < λ < 1077. Typical phase plots for
λ = 1070 and λ = 1075 at the periodic windows
are presented in Fig. 17a, b, respectively. Obviously,
the phase plots show periodic responses. Furthermore,
period-doubling bifurcations are also found at these
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Fig. 15 Poincare maps for a rectangular cantilever plate under several dynamic pressures in the bifurcation diagrams: a λ = 700; b
λ = 900; c λ = 906 and d λ = 940

periodic windows as shown in Fig. 16, and then the
responses of the system go to chaos with the increas-
ing of dynamic pressure.

6.2 Parallelogram wing-like plate

When TR = 1 and α > 0, the trapezoidal plate is sim-
plified into a parallelogram plate. In this case, we will
discuss the nonlinear dynamic behaviors of a parallelo-
gram wing-like plate, of which the geometrical param-
eters are given in Table 8. The numbers of retained
modes are taken as I = R = 14, M = 6, N = 3 for
this model with cr/ l = 1,TR = 1.0 and α = 30◦

based on the result of mode truncation in Sect. 4.
Its bifurcation diagram in terms of local amplitude
extreme with respect to dynamic pressure λ is shown in
Fig. 18.

For dynamic pressure 120 < λ < 398, the responses
present single periodic motions. Then, the first bifurca-
tion takes place at λ = 398 and causes a transition from
period-1 motion to period-3 motion. Unlike the rect-
angular cantilever plate, the parallelogram cantilever
plate model does not go to chaos via period-doubling
directly, but the route to chaos exhibits more complex
process. Between dynamic pressure 398 < λ < 795,
the system presents period-1 and complex LCOs alter-
nately.The four typical phase plots are shown inFig. 19.
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Fig. 16 Partially enlarged bifurcation diagram of the upper
branch for a rectangular cantilever plate

With the increasing of λ, the responses exhibit quasi-
periodic motions and complex LCOs, and finally trend
to chaotic motions. Figure 20 presents the partially
enlarged bifurcation diagram shown in Fig. 18. Here,
a quasi-periodic motion for λ = 796 and a complex
LCO for λ = 806 are demonstrated in Fig. 21 as rep-
resentations before chaos. In Fig. 21b, the Poincare
map for λ = 796 shows two closed loops, which indi-
cate a quasi-periodic motion. In particular, Fig. 21c,

Fig. 18 Bifurcation diagram in terms of local amplitude extreme
for a parallelogram cantilever plate

d shows a complex LCO for λ = 806, although
the response is in complex dynamic response region.
Between 797.5 < λ < 811, the motion of the system
mainly exhibits quasi-period and complex LCOs. For
larger dynamic pressure λ > 811, the motion of the
system goes to chaos. The time history, phase plot, and
Poincare map of chaotic responses for λ = 830 are
shown in Fig. 22a–c, respectively. All of them indicate
a typical chaotic motion.

Fig. 17 Phase portraits at the periodic windows between 1065.5 < λ < 1077 of the bifurcation diagram: a λ = 1070 and b λ = 1076
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Fig. 19 Phase plots for a parallelogram cantilever plate under several dynamic pressure: a λ = 450; b λ = 650; c λ = 700 and d
λ = 750

Fig. 20 Partially enlarged bifurcation diagram of the upper
branch for the parallelogram cantilever plate

6.3 Trapezoidal wing-like plate

For a trapezoidal wing-like plate shown in Fig. 12c, its
bifurcation diagram is shown in Fig. 23. To examine the
approach to chaos, the partially enlarged bifurcation
diagram of the lower branch of Fig. 23 in the region
of 1150 < λ < 1550 is presented in Fig. 24. In this
case, the Lyapunov exponent is employed to identify
the chaotic motions. The corresponding LLE values
for 1150 < λ < 1550 are shown in Fig. 25, in which a
positive LLE value indicates a chaotic motion while a
zero or negative LLE value indicates a periodic/quasi-
periodic motion. Based on Fig. 25, chaotic response is
predicted in regions of 1232.5 < λ < 1257 and λ >

1264, but a periodic window exists between these two
chaotic regions. These results keep a good consistency
with the bifurcation diagram shown in Fig. 24.
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Fig. 21 Dynamic responses for the parallelogram cantilever plate under given dynamic pressures: a phase plot at λ = 796; b Poincare
maps at λ = 796; c phase plot at λ = 806 and d Poincare maps at λ = 806

Furthermore, it is observed from Fig. 24 that the
motion of the system also exhibits complex response
in several regions of 1150 < λ < 1232.5. However, a
converged zero or negative LLE value is calculated in
these regions. For several typical dynamic pressures,
the phase plot and Poincare map are presented to esti-
mate the motion type shown in Fig. 26. For λ = 1178,
the phase plot in Fig. 26a presents a narrowband and the
Poincare map in Fig. 26b shows a closed loop. Both of
them indicate a quasi-periodic response. For λ = 1190
and λ = 1228, the closed loops in the Poincare maps
mean that they are also quasi-periodic motions rather

than chaotic motions. Therefore, the route to chaos for
this trapezoidal cantilever plate model in the current
study is via the quasi-periodicmotion.Meanwhile, sev-
eral periodic windows exist before the occurrence of
chaotic motions.

Moreover, to find out the approach to chaos, sev-
eral dynamic pressures in chaotic regions of 1232.5 <

λ < 1257 and λ > 1264 are taken as examples
shown in Fig. 27. It can be observed from the results
of λ = 1235, λ = 1300 and λ = 1500 that the phase
plots exhibit more complex responses with the increas-
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Fig. 22 Chaotic response at λ = 830 for the parallelogram cantilever plate: a time history; b phase portrait; c Poincare map

Fig. 23 Bifurcation diagram in terms of local amplitude extreme
for a trapezoidal cantilever plate

Fig. 24 Partially enlarged bifurcation diagram of the lower
branch for the trapezoidal cantilever plate
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Fig. 25 The largest Lyapunov exponent versus the dynamic
pressure λ for the trapezoidal cantilever plate

ing of dynamic pressure λ. From the comparison of
the Poincare maps shown in Figs. 26f and 27d–f, it is
observed that a quasi-periodic torus in Fig. 26f breaks,
and then turns into a cloud of points gradually with the
increasing of dynamic pressure λ. Therefore, the evo-
lution process from period-1, quasi-periodic to chaotic
motions reflects the broken of quasi-periodic torus.

7 Conclusions

To utilize the ordinary mode functions to analyze a
trapezoidal cantilever plate with various geometries in
hypersonic flow, the Rayleigh–Ritz approach is com-
bined with the affine transformation. The von Karman
plate theory and nonlinear third-order piston theory
aerodynamics are used to establish the governing equa-
tions, which are solved by numerical integration. The
validity of this approach for linear and nonlinear model
has been provided by comparing current results with
results from the literature. The effects of Rayleigh–

Ritz mode truncation on the response of the system
are examined to determine the appropriate number of
modes to be used for a given geometry and achieve a
good compromise between accuracy of results and the
efficiency of the present method.

For plates with different geometries, the flutter sta-
bility and nonlinear dynamic behaviors are analyzed.
The combination of time history, phase plot, Poincare
map and the largest Lyapunov exponent are employed
to identify the type of dynamic behaviors. The follow-
ing conclusions canbedrawn from the numerical exam-
ples:

(a) The geometrical parameters have significant effects
on flutter boundary of the system. For fixed root
chord-to-semi span ratio cr/ l and sweep angle α

of leading edge, the flutter speed and frequency
decrease with the increasing of taper ratio TR. For
different cr/ l, the variations of the flutter boundary
have detectable difference with the increasing of α.

(b) For the rectangular wing-like plate of cr/ l =
1,TR = 1 and α = 0◦, the route to chaos is
through period-doubling, i.e., period-1, period-3,
and period-6 responses. The chaotic regions are
separated by several periodic windows.

(c) For the parallelogram wing-like plate of cr/ l =
1,TR = 1 and α = 30◦, unlike period-doubling
bifurcation of the rectangular cantilever plate, the
parallelogram cantilever plate shows more com-
plex process of the route to chaos. In particular, the
responses of the system mainly exhibit the quasi-
periodic motions and complex LCOs before the
occurrence of chaos.

(d) For the trapezoidal wing-like plate of cr/ l =
1,TR = 0.5 and α = 30◦, the route from periodic
motions to chaos is via the broken of quasi-periodic
torus. The quasi-periodic and chaotic regions are
also separated by periodic windows.
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Fig. 26 Phase portraits and Poincare maps for the trapezoidal
cantilever plate under given dynamic pressures: a phase plot
at λ = 1178; b Poincare maps at λ = 1178; c phase plot

at λ = 1190; d Poincare maps at λ = 1190; e phase plot at
λ = 1228 and f Poincare maps at λ = 1228

123



1228 W. Tian et al.

Fig. 27 Phase plots and Poincaremaps for the trapezoidal cantilever plate under given dynamic pressures: a–c phase plots for λ = 1235,
λ = 1300 and λ = 1500; d–f Poincare maps for λ = 1235, λ = 1300 and λ = 1500
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Elements of matrix A:
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2dξ

∫ 1

0
ψ ′′

nψ j H
2 J ′dη

]

+v
(cr
l

)2 [∫ 1

0
φmφ′′

idξ
∫ 1

0
ψ ′′

nψ j H
2 J ′dη

+
∫ 1

0
φmφ′′

idξ
∫ 1

0
ψ ′′

nψ j H
2 J ′dη

]

+2c2
(cr
l

)4 [∫ 1

0
φ′′

mφ′
i G

3dξ
∫ 1

0
ψnψ j H

4 J ′dη

+
∫ 1

0
φ′

mφ′′
i G

3dξ
∫ 1

0
ψnψ j H

4 J ′dη
]
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+2c2
(cr
l

)2 [∫ 1

0
φ′′

mφ′
i Gdξ

∫ 1

0
ψnψ j H

4 J ′dη

+
∫ 1

0
φ′

mφ′′
i Gdξ

∫ 1

0
ψnψ j H

4 J ′dη
]

+4c2
(cr
l

)4 [∫ 1

0
φ′

mφ′
i G

2dξ
∫ 1

0
ψnψ

′
j H

3 J ′dη

+
∫ 1

0
φ′

mφ′
i G

2dξ
∫ 1

0
ψ ′

nψ j H
3 J ′dη

]

+2c2(1 − ν)
(cr
l

)2 [∫ 1

0
φ′

mφ′
idξ

∫ 1

0
ψnψ

′
j H

4 J ′dη

+
∫ 1

0
φ′

mφ′
idξ

∫ 1

0
ψ ′

nψ j H
4 J ′dη

]

+2c2
(cr
l

)4 [∫ 1

0
φmφ′

i Gdξ
∫ 1

0
ψ ′′

nψ j H
2 J ′dη

+
∫ 1

0
φ′

mφi Gdξ
∫ 1

0
ψnψ

′′
j H

2 J ′dη
]

+2
(cr
l

)4 [∫ 1

0
φ′′

mφ′
i G

3dξ
∫ 1

0
ψnψ

′
j H

3 J ′dη

+
∫ 1

0
φ′

mφ′′
i G

3dξ
∫ 1

0
ψ ′

nψ j H
3 J ′dη

]

+2
(cr
l

)2 [∫ 1

0
φ′′

mφ′
i Gdξ

∫ 1

0
ψnψ

′
j H

3 J ′dη

+
∫ 1

0
φ′

mφ′′
i Gdξ

∫ 1

0
ψ ′

nψ j H
3 J ′dη

]

+2
(cr
l

)4 [∫ 1

0
φmφ′

i Gdξ
∫ 1

0
ψ ′′

nψ
′
j H J ′dη

+
∫ 1

0
φ′

mφi Gdξ
∫ 1

0
ψ ′

nψ
′′
j H J ′dη

]}

Elements of matrices C, D

Ci j = −
(
h

cr

)3 M∑

m

N∑

n

M∑

p

N∑

l

qmnqpl

∫ 1

0
φ′
mφ′

pu
′
idξ

×
∫ 1

0
ψnψlv j H

3 J ′dη

− ν

(
h

l

)2 (
h

cr

) M∑

m

N∑

n

M∑

p

N∑

l

qmnqpl

[∫ 1

0
φ′
mφ′

pu
′
i G

2dξ

×
∫ 1

0
ψnψlv j H

3 J ′dη + 2
∫ 1

0
φ′
mφpu

′
i Gdξ

×
∫ 1

0
ψnψ

′
l v j H

2 J ′dη

+
∫ 1

0
φmφpu

′
idξ

∫ 1

0
ψ ′
nψ

′
l v j H J ′dη

]

−(1 − ν)

(
h

l

)2 (
h

cr

) M∑

m

N∑

n

M∑

p

N∑

l

qmnqpl

[∫ 1

0
φ′
mφ′

pu
′
i G

2dξ
∫ 1

0
ψnψlv j H

3 J ′dη

+
∫ 1

0
φ′
mφ′

puiGdξ
∫ 1

0
ψnψlv

′
j H

2 J ′dη

+
∫ 1

0
φ′
mφpu

′
i Gdξ

∫ 1

0
ψnψ

′
l v j H

2 J ′dη

+
∫ 1

0
φ′
mφpuidξ

∫ 1

0
ψnψ

′
l v

′
j H J ′dη

]

Drs = −
(
h

l

)3 M∑

m

N∑

n

M∑

p

N∑

l

qmnqpl

[∫ 1

0
φ′
mφ′

pu
′
rG

3dξ
∫ 1

0
ψnψlvs H

3 J ′dη

+
∫ 1

0
φ′
mφ′

purG
2dξ

∫ 1

0
ψnψlv

′
s H

2 J ′dη

+ 2
∫ 1

0
φ′
mφpu

′
rG

2dξ
∫ 1

0
ψnψ

′
l vs H

2 J ′dη

+ 2
∫ 1

0
φ′
mφpurGdξ

∫ 1

0
ψnψ

′
l v

′
s H J ′dη

+
∫ 1

0
φmφpu

′
rGdξ

∫ 1

0
ψ ′
nψ

′
l vs H J ′dη

+
∫ 1

0
φmφpurdξ

∫ 1

0
ψ ′
nψ

′
l v

′
s J

′dη
]

− ν

(
h

l

)(
h

cr

)2 M∑

m

N∑

n

M∑

p

N∑

l

qmnqpl

[∫ 1

0
φ′
mφ′

pu
′
rGdξ

∫ 1

0
ψnψlvs H

3 J ′dη +
∫ 1

0
φ′
mφ′

purdξ

∫ 1

0
ψnψlv

′
s H

2 J ′dη
]

−(1 − ν)

(
h

l

)(
h

cr

)2 M∑

m

N∑

n

M∑

p

N∑

l

qmnqpl

[∫ 1

0
φ′
mφ′

pu
′
rGdξ

∫ 1

0
ψnψlvs H

3 J ′dη +
∫ 1

0
φ′
mφpu

′
rdξ
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∫ 1

0
ψnψ

′
l vs H

2 J ′dη
]

Elements of matrices QL1, QL2, QN:

Qi j
kl = λ

6

γ

M∞

∫ 1

0
φ′
kφidξ

∫ 1

0
ψlψ j H J ′dη

Qi j
mn = λ

6

γ

M∞

√
μ

λ

∫ 1

0
φmφidξ

∫ 1

0
ψnψ j J

′dη

Qi j
N = λ

6

{
κ + 1

4
γ 2 h

cr

[
M∑

m

N∑

n

M∑

k

N∑

l

qmnqkl

∫ 1

0
φ′
mφ′

kφidξ
∫ 1

0
ψnψlψ j H

2 J ′dη

+ 2

√
μ

λ

M∑

m

N∑

n

M∑

k

N∑

l

qmnq̇kl

∫ 1

0
φ′
mφkφidξ

∫ 1

0
ψnψlψ j H J ′dη

+ μ

λ

M∑

m

N∑

n

M∑

k

N∑

l

q̇mnq̇kl

∫ 1

0
φmφkφidξ

×
∫ 1

0
ψnψlψ j J

′dη
]

+ κ + 1

12
M∞γ 3

(
h

cr

)2

×
[

M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

qklqmnqrs

∫ 1

0
φ′
kφ

′
mφ′

rφidξ
∫ 1

0
ψlψnψsψ j H

3 J ′dη

+ 3

√
μ

λ

M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

qklqmnq̇rs

×
∫ 1

0
φ′
kφ

′
mφrφidξ

∫ 1

0
ψlψnψsψ j H

2 J ′dη

+ 3
μ

λ

M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

qkl q̇mnq̇rs

∫ 1

0
φ′
kφmφrφidξ

∫ 1

0
ψlψnψsψ j H J ′dη

+
(√

μ

λ

)3 M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

q̇kl q̇mnq̇rs

∫ 1

0
φkφmφrφidξ

∫ 1

0
ψlψnψsψ j J

′dη
]}

Elements of matrix F:

Fi j = 2
(cr
h

) I∑

m

J∑

n

M∑

k

N∑

l

amnqkl

∫ 1

0
u′

mφ′
kφ

′
idξ

×
∫ 1

0
vnψlψ j H

3 J ′dη

+
M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

qklqmnqrs

×
∫ 1

0
φ′

kφ
′
mφ′

rφ
′
idξ

∫ 1

0
ψlψnψsψ j H

4 J ′dη

+2
(cr
l

)3 (cr
h

) R∑

r

S∑

s

M∑

k

N∑

l

brsqkl

[∫ 1

0
u′

rφ
′
kφ

′
i G

3dξ
∫ 1

0
vsψlψ j H

3 J ′dη

+
∫ 1

0
u′

rφ
′
kφi G

2dξ
∫ 1

0
vsψlψ

′
j H

2 J ′dη

+
∫ 1

0
u′

rφkφ
′
i G

2dξ
∫ 1

0
vsψ

′
lψ j H

2 J ′dη

+
∫ 1

0
u′

rφkφi Gdξ
∫ 1

0
vsψ

′
lψ

′
j H J ′dη

+
∫ 1

0
urφ

′
kφ

′
i G

2dξ
∫ 1

0
v′

sψlψ j H
2 J ′dη

+
∫ 1

0
urφ

′
kφi Gdξ

∫ 1

0
v′

sψlψ
′
j H J ′dη

+
∫ 1

0
urφkφ

′
i Gdξ

∫ 1

0
v′

sψ
′
lψ j H J ′dη

+
∫ 1

0
urφkφidξ

∫ 1

0
v′

sψ
′
lψ

′
j J

′dη
]

+
(cr
l

)4 M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

qklqmnqrs

[∫ 1

0
φ′

kφ
′
mφ′

rφ
′
i G

4dξ
∫ 1

0
ψlψnψsψ j H

4 J ′dη

+3
∫ 1

0
φ′

kφ
′
mφrφ

′
i G

3dξ
∫ 1

0
ψlψnψ

′
sψ j H

3 J ′dη

+3
∫ 1

0
φ′

kφmφrφ
′
i G

2dξ
∫ 1

0
ψlψ

′
nψ

′
sψ j H

2 J ′dη

+
∫ 1

0
φkφmφrφ

′
i Gdξ

∫ 1

0
ψ ′

lψ
′
nψ

′
sψ j H J ′dη

+
∫ 1

0
φ′

kφ
′
mφ′

rφi G
3dξ

∫ 1

0
ψlψnψsψ

′
j H

3 J ′dη
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+3
∫ 1

0
φ′

kφ
′
mφrφi G

2dξ
∫ 1

0
ψlψnψ

′
sψ

′
j H

2 J ′dη

+3
∫ 1

0
φ′

kφmφrφi Gdξ
∫ 1

0
ψlψ

′
nψ

′
sψ

′
j H J ′dη

+
∫ 1

0
φkφmφrφidξ

∫ 1

0
ψ ′

lψ
′
nψ

′
sψ

′
j J

′dη
]

+2ν
(cr
l

)2 (cr
h

) I∑

m

J∑

n

M∑

k

N∑

l

amnqkl

[∫ 1

0
u′

mφ′
kφ

′
i G

2dξ
∫ 1

0
vnψlψ j H

3 J ′dη

+
∫ 1

0
u′

mφkφ
′
i Gdξ

∫ 1

0
vnψ

′
lψ j H

2 J ′dη

+
∫ 1

0
u′

mφ′
kφi Gdξ

∫ 1

0
vnψlψ

′
j H

2 J ′dη

+
∫ 1

0
u′

mφkφidξ
∫ 1

0
vnψ

′
lψ

′
j H J ′dη

]
+ ν

(cr
l

)2

M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

qklqmnqrs

[

2
∫ 1

0
φ′

kφ
′
mφ′

rφ
′
i G

2dξ

∫ 1

0
ψlψnψsψ j H

4 J ′dη +
∫ 1

0
φ′

kφ
′
mφrφ

′
i Gdξ

∫ 1

0
ψlψnψ

′
sψ j H

3 J ′dη

+2
∫ 1

0
φ′

kφmφ′
rφ

′
i Gdξ

∫ 1

0
ψlψ

′
nψsψ j H

3 J ′dη

+
∫ 1

0
φkφmφ′

rφ
′
idξ

∫ 1

0
ψ ′

lψ
′
nψsψ j H

2 J ′dη

+
∫ 1

0
φ′
kφ

′
mφ′

rφi Gdξ
∫ 1

0
ψlψnψsψ

′
j H

3 J ′dη

+
∫ 1

0
φ′
kφ

′
mφrφidξ

∫ 1

0
ψlψnψ

′
sψ

′
j H

2 J ′dη
]

+ 2v
(cr
l

) (cr
h

) R∑

r

S∑

s

M∑

k

N∑

l

brsqkl

[∫ 1

0
u′

rφ
′
kφ

′
i Gdξ

∫ 1

0
vsψlψ j H

3 J ′dη

+
∫ 1

0
urφ

′
kφ

′
idξ

∫ 1

0
v′

sψlψ j H
2 J ′dη

]

+(1 − v)
(cr
l

) (cr
h

) R∑

r

S∑

s

M∑

k

N∑

l

brsqkl

[
2

∫ 1

0
u′

rφ
′
kφ

′
i Gdξ

∫ 1

0
vsψlψ j H

3 J ′dη

+
∫ 1

0
u′

rφ
′
kφidξ

∫ 1

0
vsψlψ

′
j H

2 J ′dη

+
∫ 1

0
u′

rφkφ
′
idξ

∫ 1

0
vsψ

′
lψ j H

2 J ′dη
]

+(1 − v)
(cr
l

)2 (cr
h

) I∑

m

J∑

n

M∑

k

N∑

l

amnqkl

[
2

∫ 1

0
u′

mφ′
kφ

′
i G

2dξ
∫ 1

0
vnψlψ j H

3 J ′dη

+
∫ 1

0
u′

mφ′
kφi Gdξ

∫ 1

0
vnψlψ

′
j H

2 J ′dη

+2
∫ 1

0
umφ′

kφ
′
i Gdξ

∫ 1

0
v′

nψlψ j H
2 J ′dη

+
∫ 1

0
umφ′

kφidξ
∫ 1

0
v′

nψlψ
′
j H J ′dη

+
∫ 1

0
u′

mφkφ
′
i Gdξ

∫ 1

0
vnψ

′
lψ j H

2 J ′dη

+
∫ 1

0
umφkφ

′
idξ

∫ 1

0
v′

nψ
′
lψ j H J ′dη

]

+(1 − v)
(cr
l

)2 M∑

k

N∑

l

M∑

m

N∑

n

M∑

r

N∑

s

qklqmnqrs

[
2

∫ 1

0
φ′

kφ
′
mφ′

rφ
′
i G

2dξ
∫ 1

0
ψlψnψsψ j H

4 J ′dη

+
∫ 1

0
φ′

kφ
′
mφ′

rφi Gdξ
∫ 1

0
ψlψnψsψ

′
j H

3 J ′dη

+2
∫ 1

0
φ′

kφmφ′
rφ

′
i Gdξ

∫ 1

0
ψlψ

′
nψsψ j H

3 J ′dη

+
∫ 1

0
φ′

kφmφ′
rφidξ

∫ 1

0
ψlψ

′
nψsψ

′
j H

2 J ′dη

+
∫ 1

0
φ′

kφ
′
mφrφ

′
i Gdξ

∫ 1

0
ψlψnψ

′
sψ j H

3 J ′dη

+
∫ 1

0
φ′

kφmφrφ
′
idξ

∫ 1

0
ψlψ

′
nψ

′
sψ j H

2 J ′dη
]
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