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Abstract The influence of blade vibration on the
nonlinear characteristics of rotor–bearing system is
non-ignorable in estimating system performance. The
extensive studies simplify the rotor system as lumped
mass points. The influence of shaft’s bending and shear
and the flexibility are usually ignored. The present
paper is aim to analyze the nonlinear dynamic behav-
ior of a continuum model. The continuum model of
flexible blade–rotor–bearing coupling system is estab-
lished, simplifying the shaft as Timoshenko beam. The
Lagrange method is utilized to derive the differen-
tial equation of motion of system. Then, the nonlinear
equations of coupling system are numerically solved
using the Newmark-β method. The results obtained
through the proposed model are compared with the
rotor–bearing system without the blades. The effect of
several parameters such as rotational speed, the damp-
ing coefficient and the length of blade on the nonlinear
dynamics of rotor systemhave been investigated. Inclu-
sive of the analysis methods of bifurcation diagram,
three-dimensional spectral plots, time-base analysis,
Poincaremaps and spectral plots are used to analyze the
behavior of the coupling system under different oper-
ating conditions, which exhibits rich dynamic behavior
of the system.
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List of symbols

ρs Shaft mass density
Ls Shaft length
As Cross-sectional area of the shaft
Es Young’s modulus of shaft
Is Cross-sectional areamoment of inertia of

shaft
Gs Shear elastic modulus of shaft
Jp Shaft’s polar moment of inertia
Jd Shaft’s cross-sectional moment of inertia
Jdz Disk’s cross-sectional moment of inertia
Jz Disk’s polar moment of inertia
ρb Blade mass density
Lb Blade length
Ab Cross-sectional area of the blade
Eb Young’s modulus of blade
Ib Cross-sectional areamoment of inertia of

blade
x Shaft’s transverse displacements with

respect to the X -axis
y Shaft’s transverse displacements with

respect to the Y -axis
θx , θy Bending angle of shaft at arbitrary posi-

tion
u Blade displacements with respect to the

xb-axis
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v Blade displacements with respect to the
yb-axis

w Blade displacements with respect to the
zb-axis

X The mode shape vector of the bending
shaft respect to the X -axis

Y The mode shape vector of the bending
shaft respect to the Y -axis

Φ The mode shape vector of the shaft tor-
sion

Ψ The mode shape vector of the blade axial
V Themode shape vector of the blade bend-

ing direction
η, ξ , qu, qv Generalized vector
φ̇ Rotational speed

Subscripts

()b Blade
()d Disk
()s Shaft
()T Shaft torsion

1 Introduction

In recent years, as the large-capacity high-parameter
unit is put into use, the study of the dynamic response
of rotor system has become an important subject in
modern rotor dynamics. In the study of rotor dynamics,
one of the most important content is the stability prob-
lem. The instability of blade–rotor–bearing systemwill
result in strong vibration and even disastrous accident
of rotating machinery. In the rotor system supported on
oil film bearings, the instability of rotor system caused
by oil film forces is particularly prominent. When a
rotor reaches a certain speed, the oil whip is easy to
occur, the harmfulness is equal to the rotor speed at crit-
ical speed when produce intense resonance. That equal
or more violent oscillation, which not only can lead
high-speed rotating machinery to have serious fault,
sometimes may bring a serious hazard to machines.
Therefore, irrespective of the safety or destructiveness,
the research on the nonlinear dynamic behavior of oil
film force is significant.

In the early study of oil film failure, the rotor–
bearing model takes the nonlinear oil film force into
consideration and theflexible blades are neglected.And
many papers researched the rotor–bearing system by

the experimental method. And the dynamic behavior
of a direct coupled rotor–bearing system is researched,
implemented the experimental vibration analyses in the
vertical direction [1]. Santos et al. [2] made a theo-
retical and experimental contribution to the problem
of rotor–blades dynamic interaction and carried out a
validation procedure of mathematical models with the
help of a simple test rig, built by a mass–spring system
attached to four flexible rotating blades. Shen et al.
[3] investigated the nonlinear dynamics and stability
of the rotor–bearing–seal system both the theoretically
and experimentally.

Due to the complexity of nonlinear systems, many
numerical methods are used to analyze the rotor–
bearing system. Yan et al. [4] studied the motions of
a flexible rotor in short journal bearings with nonlinear
damping suspension. Qin et al. [5,6] developed an ana-
lytical model for bending stiffness of the bolted disk–
drum joints and then investigated the time-varying stiff-
ness at the joint interface with bolt loosening by means
of three-dimensional (3D)nonlinear finite element (FE)
models. Castro et al. [7] made an analysis about the
whirl and whip instabilities taking into account the
dynamic behavior of a rotating system. Chang-Jian
et al. [8] presented numerical work investigating the
dynamic responses of a flexible rotor supported by
porous journal bearings with the fourth-order Runge–
Kutta method. Laha et al. [9] carried out the nonlinear
dynamic analysis of a flexible rotor with a rigid disk
under unbalance excitationmounted on porous oil jour-
nal bearings at the two ends with themethod ofWilson-
θ . Yang et al. [10] predicted the nonlinear dynamic
stiffness and damping coefficients of finite-long jour-
nal bearings with the partial derivative method.

The dynamic response of rotor system can be influ-
enced greatly by nonlinearities. Some works have
revealed the nonlinear dynamic behaviors of the rotor-
bearing system. Jing et al. [11,12] analyzed the nonlin-
ear dynamic behavior of a rotor–bearing system based
on a continuum model. Meybodi et al. [13] presented
the effect of rotor mass nonlinear dynamic behavior
of rigid rotor–bearing system excited by mass unbal-
ance. The dynamic characteristics of a novel nonlinear
model of rotor/bearing/seal system were studied based
on the Hamilton principle [14]. Cheng et al. [15] inves-
tigated the nonlinear dynamic behaviors of a rotor–
bearing–seal coupled system, analyzing the influence
of parameters by state trajectory. They all investigated
various nonlinear phenomena compressing periodic,
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quasi-periodicmotion and chaoticmotion. Phadatare et
al. [16] described a step forward in calculating the non-
linear frequencies and resultant dynamic behavior of
high-speed rotor–bearing systemwith mass unbalance.

These researches concluded that it is important to
investigate the nonlinear dynamics of rotor–bearing
system.Although theoil film forces are the leadingnon-
linear exciting source which results in fatal accidents,
rub-impact is also one of the common nonlinear faults
in rotor system. In modern industry, the rub-impact
force may be neglected. But with the improvement of
science and technology, the faults of rotating machines
are also becoming complicated. As a result, multiple
or coupled faults often occur at the same time [17,18].
So, many scholars studied the dynamic behaviors of
the rotor–bearing system considering rub-impact and
oil film force. The nonlinear dynamic analysis of the
rotor–bearing system is studied in this paper and is sup-
ported by oil film short bearings with nonlinear sus-
pension [19]. Chu et al. [20] investigated the vibration
characteristics of a rub-impact rotor system supported
on oil film bearings. Chang-Jian et al. [21] presented
a dynamic analysis of a rub-impact rotor supported by
two turbulent model journal bearings with two suspen-
sions to study the dynamics of the rotor center and
bearing center. Wan et al. [22] performed a dynamic
analysis of the rub-impact rotor supported by two cou-
ple stress fluid film journal bearings. And the study pre-
sented and coupled together the strongnonlinear couple
stress fluid film force, nonlinear rub-impact force and
nonlinear suspension. LI et al. [23] investigated an elas-
tic rub-impact rotor system based on modern nonlinear
dynamics and rotor dynamics theory. In order to make
the analysis of rotor–bearing system more precise, the
rub-impact between rotor and stator was also proposed
in this paper.

As the improvement of engineering and materials
sciences, the rotating machinery is becoming faster
and more lightweight. A rotor–bearing model may not
meet the need of research in engineering. In this case,
many scholars began to consider the influence of flex-
ible blade on the rotor–bearing system, and the blade–
rotor–bearing coupling system was established. Han et
al. [24] presented a coupled bending and torsion model
of blade–rotor–bearing with nonlinear oil film force
and analyzed dynamic characteristics of the coupled
system. Some researches [25–27] addressed the non-
linear dynamic behavior of a rotor–bearing systemwith
interaction between blades and rotor. In these papers,

a time-dependent nonlinear model of a flexible blade–
rotor–bearing system is established, and the dynamic
behavior of system was analyzed.

As can be seen from the previous references, the
most present studies simplify rotor and blade as lumped
mass points. The influence of shaft’s bending and shear
and the flexibility are usually ignored. In order to
reflect the continuous distribution of model’s mass and
damping, in this paper, the continuum model of the
rotor–blades coupling system is adopted. Since this
paper considers the shaft as the continuousTimoshenko
beam, considering the influence of shaft’s bending and
shear, and the nonlinear dynamic model of blade–
rotor–bearing coupling system is presented. Then, the
dynamic model is employed to study the nonlinear
characteristic of rotor system and blade under the non-
linear oil film force. A detailed study is performed on
the influence of the blade upon the nonlinear dynamic
behavior of rotor system, which offers theoretical basis
for the design of rotating machinery.

2 The establishment of dynamic model

A rotor system composed of shaft, rigid disk and blades
is shown in Fig. 1. The flexible disk is simplified as can-
tilever Timoshenko beam clamped on the rigid disk.
And in Fig. 1,OXY denotes the global coordinate, or—
xr yrzr is the rotating coordinate with rotational speed
of Ω , and ob—xbybzb represents the local blade coor-
dinate system.

Figure 2 shows a blade–disk configuration. oxsys is
the coordinate axes attached to the disk at the geometric
center. The angle indicates the position of the blade
with respect to the oxr yr. r is the whirl radius of the
disk center S, md is the disk mass located at the mass
center G, and R is the disk radius.

2.1 The establishment of energy equation of rotor
system

2.1.1 The establishment of the energy equation of
flexible rotor model

According to the relevant knowledge of elasticmechan-
ics, the kinetic energy of the shaft can be expressed as
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Fig. 1 Schematic diagram
of rotor–blades system
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Fig. 2 Coordinate sets and deformation of a rotating blade

Tshaft = 1

2

∫ Ls

0
ρsAs

(
ẋ2+ẏ2
)

+1

2
Jp�
(
θ̇xθy − θ̇yθx

)

+1

2
Jd
(
θ̇2x + θ̇2y

)
dz + 1

2
Jp�

2 (1)

where Jd and Jp are cross-sectional moment of inertia
(transverse moment of inertia) and polar moment of
inertia, respectively.

Regarding the disk as a mass point and ignoring the
influence of the disk on the vibration mode of beam,
the kinetic energy of disk can be represented in the
following form:

Tdisk = 1

2
md ẋ

2
d + 1

2
md ẏ

2
d + 1

2
Jdzθ̇

2
x + 1

2
Jdzθ̇

2
y

+1

2
Jz�(θ̇xθy − θ̇yθx ) + 1

2
Jz�

2 (2)

where Jz is the polar moment of inertia of the disk; Jdz
is the cross-sectional moment of inertia of disk; md is
themass of disk; zd is the distance between the position
of disk and left end point of shaft.

The displacements of the disk’smass center and cen-
troid can be described as follows:

{
xd = xs + e cos (θ)

yd = ys + e sin (θ)
(2a)

where e is the eccentricity; xd and yd are the displace-
ments of the disk’s mass center in the horizontal and
vertical directions, respectively; xs and ys are the dis-
placements of disk’s centroid in the horizontal and ver-
tical directions, respectively(see Fig. 2); θ is the rota-
tional angle of disk’s mass center.

The total kinetic energy of rotor system can be
obtained as following

Trotor = Tshaft + Tdisk (3)

According to elasticity theory, considering the torsion,
bending and shearing of shaft, the total potential energy
of shaft can be given as follows:

Ushaft = 1

2

∫ Ls

0
Es Is

[(
∂x

∂z

)2
+
(

∂y

∂z

)2]

+κsGsAs

[(
∂x

∂z
− θx

)2
+
(

∂y

∂z
− θy

)2]
dz

(4)

where Gs, Es, Is, κs and As denote the shaft’s shear
elasticmodulus,Young’smodulus, cross-sectional area
moment of inertia, shear coefficient and cross-sectional
area, respectively.

So, the total potential energy of rotor system can be
described as

Urotor = Ushaft (5)
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2.1.2 Discretization of the energy equation rotor
system

Vibration model functions of the direction of x , y and
shaft torsion are Xi (z), Yi (z) and Φi , respectively.
Introducing regular coordinatesηi (t) , ξi (t) andqθ (t).
The assumed mode method is adopted to discretize the
continuous system, i.e.,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(z, t) =
∞∑
i=1

Xi (z)ηi (t) = X(z)η(t)

y(z, t) =
∞∑
i=1

Yi (z)ξi (t) = Y(z)ξ(t)

θT(z, t) =
∞∑
i=1

�i (z)qθ i (t) = Φ(z)qθ (t)

(6)

Assuming that the shear force Q is constant, the
bending angle can be expressed as following

{
θx (z, t) = x ′ + Es Is

κAsGs
x ′′′ = X′(z)η(t) + Es Is

κAsGs
X′′′(z)η(t)

θy(z, t) = y′ + E I
κAsGs

y′′′ = Y ′(z)ξ(t) + Es Is
κAsGs

Y ′′′(z)ξ(t)

(7)

Substitution of Eqs. (6–7) into Eq. (3), the discrete
kinetic energy of shaft is written as follows

Trotor = Tshaft + Tdisk

= 1

2

⎡
⎣ η̇(t)

ξ̇(t)
q̇θ

⎤
⎦
T ⎡
⎣Ms1 + Md1 0 0

0 Ms2 + Md2 0
0 0 Mθ

⎤
⎦
⎡
⎣ η̇(t)

ξ̇(t)
q̇θ

⎤
⎦

+ 1

2

⎡
⎣ η̇(t)

ξ̇(t)
q̇θ

⎤
⎦
T

φ̇

⎡
⎣ 0 Gs1 + Gd1 0
Gs2 + Gd2 0 0
0 0 0

⎤
⎦
⎡
⎣ η(t)

ξ(t)
qθ

⎤
⎦ (8)

And the specific expressions of matrices are given in
“Appendix 1”.

In the same way, the discrete potential energy of
shaft can be obtained as follows

Urotor = 1

2

∫ l

0

{
qTθ Gs Js�

′T
�

′
qθ + ηT(t)E IX

′′T
(z)X

′′
(z)η(t) + ξT(t)E IY

′′T
(z)Y

′′
(z)ξ(t)

+ηT(t) (E I )2

κAG X
′′′T

(z)X
′′′
(z)η(t) + ξT(t) (E I )2

κAG Y
′′′T

(z)Y
′′′
(z)ξ(t)

}
dz

= 1

2

⎡
⎣η(t)

ξ(t)
qθ

⎤
⎦
T ⎡
⎣Ks1 0 0

0 Ks2 0
0 0 Kθ

⎤
⎦
⎡
⎣η(t)

ξ(t)
qθ

⎤
⎦ (9)

And the specific expressions of matrices are given in
“Appendix 1”.

Substituting the kinetic energy Eq. (8) and poten-
tial energy Eq. (9) into the Lagrange equation, the gen-
eralized Lagrange equation, as follows:

d

dt

(
∂L rotor

∂ q̇

)
− ∂Trotor

∂q
= −∂Drotor

∂ q̇
+ Frotor (10)

where Lrotor = Trotor − Urotor is the Lagrange func-
tion, Frotor is the generalized force consisting of the
gravity, the unbalance force at the disk and the oil film
forces at the bearing; q, q̇ denote the generalized coor-
dinate and its derivative including the displacement
η(t), ξ(t), qθ.

The discretized equations of motion in matrix nota-
tion can be given as

Mrq̈r + (Cs + Gr) q̇r + Krqr = Frotor (11)

where matrix Mr, Cr, Gr and Kr are mass, damping,
gyroscopic and stiffness matrices of the rotor system,
and the meaning of specific expressions is shown in
“Appendix 1”.

2.2 The establishment of energy equation of rotating
blade

Assume that there are Nb blades evenly distributed on
the rigid disk, so the disk–blade system is a circular
symmetric structure. As shown in Fig. 2, when the
deformation of i th blade is considered, the displace-
ment of arbitrary point Q on the blade in the fixed
coordinate system can be written as

rQ = [ xs ys zs ]T + A0A1
[
(R + x + u) v w

]T
(12)

where xs, ys and zsare the displacements of X , Y , and
Z direction of the disk in the global coordinate system.
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A0 and A1 are the transformation matrices from local
coordinate system to the rotational coordinate system
of the blade. The specific expression is given in the
“Appendix 2”.

When Nb > 3, the circular symmetric structure has
good geometrical and mechanical properties. Without
taking into account the axial motion of rotor, the kinetic
energy of the i th blade is:

Tblade = 1

2
ρbAb

∫ Lb

0
ṙ2Qdx (13)

Specific expression can be written as:

Tblade = 1

2
ρbAb

∫ Lb

0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ2s + ẏ2s + u̇2 + v̇2 + ẇ2 + ψ̇2 (R + x + u)2 + ψ̇2 (v cosβ + w sin β)

−2ψ̇ u̇ (v cosβ + w sin β) + 2ψ̇ (R + x + u) (v̇ cosβ + ẇ sin β)

+2ϑ̇i [(R + x + u) (v̇ cosβ + ẇ sin β) − u̇ (v cosβ + w sin β)]
+2ϑ̇i ψ̇

[
(R + x + u)2 + (v cosβ + w sin β)2

]
+ϑ̇2

i

[
(R + x + u)2 + (v cosβ + w sin β)2

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
dx

cosϑi

∫ Lb

0
ρbAb

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋsu̇ − ψ̇ψ ẋs (R + x + u) − ψ ẋs (v̇ cosβ + ẇ sin β)

−ψ̇ ẋs (v cosβ + w sin β) + ψ ẏsu̇ + ψ̇ ẏs (R + x + u)

+ẏs (v̇ cosβ + ẇ sin β) − ψ̇ψ ẏs (v cosβ + w sin β)

−ϑ̇i

[
ψ ẋs (R + x + u) + ẋs (v cosβ + w sin β)

−ẏs (R + x + u) + ψ ẏs (v cosβ + w sin β)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
dx

sin ϑi

∫ Lb

0
ρbAb

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ψ ẋsu̇ − ψ̇ ẋs (R + x + u) − ẋs (v̇ cosβ + ẇ sin β)

+ψψ̇ ẋs (v cosβ + w sin β) + ẏsu̇ − ψψ̇ ẏs (R + x + u)

−ψ ẏs (v̇ cosβ + ẇ sin β) − ψ̇ ẏs (v cosβ + w sin β)

−ϑ̇i

[
ẋs (R + x + u) − ψ ẋs (v cosβ + w sin β)

+ψ ẏs (R + x + u) + ẏs (v cosβ + w sin β)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
dx (14)

where ρb, Ab and Lb are density, cross-sectional area
and length of the blade, respectively; R is radius of
disk; ϑi = �t + (i − 1) 2π

/
Nb; and ψ is the twist

angle at disk hub.
Considering the effects of bending, circumferential

compression, centrifugal and normal-force-generating
potential energy of blade, total potential energy of i th

blade can be expressed as

Ublade = 1

2
EbAb

∫ Lb

0

(
∂u

∂x

)2
dx

+1

2
Eb Ib

∫ Lb

0

(
∂2v

∂x2

)2
dx

+1

4
ρbAb
(
ϑ̇i + ψ̇

)2 ∫ Lb

0

[
L2
b − x2

+2R (Lb − x)]

(
∂v

∂x

)2
dx (15)

where Eb and Ib are Young’s modulus and cross-
sectional area moment of inertia of blade.

As the movement of end of the rigid disk and the
blade is consistent, the modal function of cantilever
beam is chosen for the blade:

φi (x) = Vi (x) = cosh
λi

l
x − cos

λi

l
x

−cosh λi + cos λi

sinh λi + sin λi

(
sinh

λi

l
x − sin

λi

l
x

)

(16)

Vibration model functions of the displacement of
blade u and v are φi (x) and Vi (x). The assumed mode

method is adopted to discretize the continuous system,
i.e.,

u =
n∑

i=1

φi (x)qui = Φqu; v =
n∑

i=1

Vi (x)qvi = Vqv

(17)

In the same way, the discretized kinetic energy and
potential energy of blade are shown in “Appendix 2”.

Substituting Eq. (17) into (14) and (15), the discrete
kinetic energy of i th blade is shown in the “Appendix
2”.

Substituting the discrete kinetic energy of blades
into simplified Lagrange equation, the differential
equation of vibration of i th blade is obtained as fol-
lowing

d

dt

(
∂Lblade

∂ q̇

)
− ∂Tblade

∂q
= −∂Dblade

∂ q̇
+ Fblade (18)
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Fig. 3 Schematic diagram
of assembly of matrices of
the rotor–blade coupling
system. a Mass matrix, b
gyroscopic matrix, c
stiffness matrix, d damping
matrix
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where Lblade = Tblade − Ublade is the Lagrange func-
tion; Fblade is the generalized force of external excita-
tion; and q, q̇ denote the generalized coordinate and its
derivative including the displacement u(t), v(t).

Substituting kinetic energy and potential energy into
simplified Lagrange equation, the differential equation
of vibration of i th blade is obtained as following

Mbi q̈ + (Cbi + Gbi )q̇ + Kbiq = Fbi_total (19)

whereMbi , Cbi ,Gbi and Kbi are mass, damping, gyro-
scopic and stiffnessmatrices of the blade.Fbi_total is the
generalized force the blade suffered. q q̇ q̈ denote the
generalized coordinate. (Mbi , Cbi , Gbi , Kbi are shown
in “Appendix 2”)

2.3 Matrices assembly of the rotor–blade coupling
system

Because each blade has a corresponding mass matrix
M , damping matrix C , gyroscopic matrix G and stiff-

ness matrices K and blade–disk system is cyclic sym-
metric structure, the matrices of each blade and rotor
system can be assembled to form the global matrix of
rotor–blade coupling system. As shown in Fig. 3, the
schematic of the matrix for the rotor–blade system can
be expressed as following

Assembled differential equation of motion of a
rotor–blade coupling system is written as

Mrbq̈rb + Crbq̇rb + Krbqrb = Ftotal (20)

The details of these matrices in the formula can be
found in “Appendix 3”.

The total force of the rotor–blade system can be
given as

Ftotal = Foil + Q + f (t) (21)

where Foil is the oil film force; Q is the gravitational
force; f (t) is the unbalance force on the disk.
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2.4 Model of oil film forces

It is assumed that laminar and isothermal lubrication
occurs in short journal bearings. According to bearing
theory, the dimensionless nonlinear oil film force can
be expressed as [5,6].

{
fx
fy

}
= −[(x − 2y′)2 + (y + 2x ′)2]1/2

1 − x2 − y2{
3xV (x, y, α) − sin αG(x, y, α) − 2 cosαS(x, y, α)

3yV (x, y, α) + cosαG(x, y, α) − 2 sin αS(x, y, α)

}

(22)

where x , y are dimensionless displacement in the
respective direction.

V (x, y, α) = 2 + (y cosα − x sin α)G(x, y, α)

1 − x2 − y2
,

S(x, y, α) = x cosα + y sin α

1 − (x cosα + y sin α)2
,

G(x, y, α) = 2

(1 − x2 − y2)1/2[
π

2
+ arctg

y cosα − x sin α

(1 − x2 − y2)1/2

]
,

α = arctg
y + 2x ′

x − 2y′ − π

2
sgn

(
y + 2x ′

x − 2y′

)

−π

2
sgn(y + 2x ′)

The dimensional oil film force can be obtained from
Fx = σP fx and Fy = σP fy where σ is the modified
Sommerfeld number,

σ = μωRL

P

(
R

c

)2 ( L

2R

)2

P is half weight of the rotor,μ is the absolute viscosity
of lubricant, c is the dimensional thickness of the lubri-
cation film, R is the effective radius of oil-lubricated
short journal bearing and L is the effective length of
oil-lubricated short journal bearing.

2.5 The model of external excitation

The corresponding vibration mode functions in the x
and y directions are Xi (z) and Yi (z), introducing regu-
lar coordinates ηi (t), ξi (t); the assumed mode method
is adopted to discretize the continuous, i.e.,

x(z, t) =
∞∑
i=1

Xi (z)ηi (t) = X(z)η(t) (23)

y(z, t) =
∞∑
i=1

Yi (z)ξi (t) = Y(z)ξ(t) (24)

The oil film force of the system can be expressed as:

WY =
∫ l

0
[x(z, t)Fxδ(z) + x(z, t)Fxδ(z − l)]dz

+
∫ l

0
[y(z, t)Fyδ(z) + y(z, t)Fyδ(z − l)]dz

(25)

where Fx is the oil film force in vertical direction, Fy

is the oil film force in horizontal direction and δ(z) is
the Dirac function.

Substitution of Eqs. (23) and (24) to Eq. (25) yields
the oil film force in a vector form

WY =
[

η(t)
ξ(t)

]T
[∫ l

0 [XT(z)Fxδ(z) + XT(z)Fxδ(z − l)]dz∫ l
0 [YT(z)Fyδ(z) + YT(z)Fyδ(z − l)]dz

]
(26)

Dirac function has the following property

∫ b

a
f (x)δ(x − c)dx = f (c), a < c < b (27)

The oil film force vector can be converted to the
following form

F =
[
XT(0)Fx1 + XT(l)Fx2
YT(0)Fy1 + YT(l)Fy2

]
(28)

The gravity vector can be represented as

WQ =
∫ l

0
x(z, t)ρAdz + x(l ′, t)(mD + Nbmb)g

=
∫ l

0
ηT(t)XT(z)ρAdz + ηT(t)

XT(l ′)(mD + Nbmb)g (29)

Transformed to a matrix form:

WQ = [η(t)ξ(t)
]

[∫ l

0
XT(z)ρAdz + XT(l ′)(mD + Nbmb)g 0

]T
(30)

The gravity vector can be written as

Q =
[∫ l

0
XT(z)ρAdz + XT(l ′)(mD + Nbmb)g 0

]T
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As the oil film force vector derived, the unbalance
force vector at the disk position can be directly repre-
sented as:

f (t) =
[
XT(ξ) fx
YT(ξ) fy

]
(31)

where fx is the unbalance force in the horizontal direc-
tion under the natural coordinate system; fy is the
unbalance force in the vertical direction under the nat-
ural coordinate system.

The dynamic equation of coupling system can be
written as following form

Mq̈ + (C f + G)q̇ + Kq = F + f (t) − Q (32)

where M is the mass matrix; C f is the proportional
matrix; G is the gyroscopic matrix; K is the stiffness
matrix; F (x, y, ẋ, ẏ) is the oil film force array; Q is
the gravity array; and q̈, q̇, q is the acceleration vector,
velocity vector and displacement vector, respectively.

3 The nonlinear dynamic characteristic of rotor
with/without blades

Because of the influence of the nonlinear oil film force
and gravity, the motion equation is nonlinear differen-
tial equation. This paper mainly uses the direct inte-
gral method; the equation is integrated directly by the
numerical integral method in the time domain under
the circumstance of keeping the equation of overall
form invariable. The Newmark-β method used in this
paper is implicit integration, the results of the method
irrespective of the step size. Besides, when selecting
suitable parameters, the algorithm is unconditionally

stable. Newmark-βmethod is considered to be the opti-
mal algorithm in the commonly used method of linear
acceleration. And the system parameters are used in
Table 1. The bifurcation diagrams, system time series,
shaft orbit, Poincare maps and frequency spectrum are
obtained by numerical integration.

3.1 The nonlinear dynamic characteristics of rotor
without blades

In order to consider the gyroscopic effect, the disk is
located at a distance 2/5Ls from the left bearing. The
blades are simplified to the centroid of disk to analyze
the effect of blade vibration on the nonlinear dynam-
ics of rotor–bearing system, and the dynamic model
of rotor–bearing system is established. The bifurca-
tion diagrams and three-dimensional spectrum plots of
the disk center in the horizontal direction and bearing
centers are shown in Figs. 4, 5 and 6. In the bifur-
cation diagrams and three-dimensional spectrums, the
rotational speed varies in the range from 300 to 1200
rad/s. As the bifurcation diagrams show, the dynamic
responses at the bearing centers are very similar to that
of disk. Therefore, the dynamic behavior of disk will
be regarded as an example in the following.

The results show that when the rotational speed is
lower than 347 rad/s, there is only the fundamental fre-
quency in three-dimensional spectrum, which means
that it is the synchronous response.When the rotational
speed reaches 347 rad/s, the rotor system undergoes a
period-doubling bifurcation. In the three-dimensional
spectrum, in additional to the fundamental frequency,
the 1/2 subharmonic frequency starts to emerge in the
three-dimensional spectrum, indicating that rotor sys-
temoccur 2T-periodicmotion, and the response of rotor
begins to emerge oil whirl. With the increase in rota-

Table 1 Geometric and material properties of blade–rotor system

Shaft Disk Blade

Density: ρs 7850 kg/m3 Density: ρd 7850 kg/m3 Density: ρb 7850 kg/m3

Shear modulus: Gs 75 Gpa Young’s modulus: Ed 200 Gpa Young’s
modulus: Eb

200 Gpa

Shaft length: ls 0.72 m Outer radius: Rd 0.1 m Blade length: lb 0.15 m

Radius: Rs 0.022 m Thickness: Bd 0.015 m Cross section: Ab 1.2 × 10−4 m2

Poisson ratio: μd 0.3 Area moment of
inertia: Ib

1.92 × 10−9 m2
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Fig. 4 Bifurcation diagram
and three-dimensional
spectrum of rotor at the left
bearing in the rotor–bearing
system. a Bifurcation
diagram, b
three-dimensional spectrum
plot
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Fig. 5 Bifurcation diagram
and three-dimensional
spectrum of rotor at the
right bearing in the
rotor–bearing system. a
Bifurcation diagram, b
three-dimensional spectrum
plot
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Fig. 6 Bifurcation diagram
and three-dimensional
spectrum of rotor at the disk
center in the rotor–bearing
system. a Bifurcation
diagram, b
three-dimensional spectrum
plot
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tional speed, rotor system enters the periodic motion.
After the periodic motion, rotor response evolves to
quasi-periodic motion.

In order to discuss thenonlinear dynamicbehavior of
rotor system, the time waveform, whirl orbit, Poincare
map and spectrum plot with certain rotational speeds
are obtained to study the nonlinear dynamic behav-
ior of rotor response. The time waveform, whirl orbit,
Poincare map and spectrum plot with certain rotational
speeds are shown in Figs. 7, 8 and 9.

The dynamic behavior evolution process of rotor
system is complicated in the rotational speed range
470 rad/s ≤ Ω ≤ 560 rad/s. In order to understand
more about the evolution process of dynamic behavior,
local bifurcation diagrams are shown in Fig. 10 to show
the dynamic behavior evolution process of rotor system
clearly. From the results, we can see that the evolution
process of nonlinear dynamic behavior of rotor is as fol-

lowing: 5T-periodic motion—55T-periodic motion—
quasi-periodic motion—23T-periodic motion—quasi-
periodic motion—41T-periodic motion—17T-periodic
motion—quasi-periodic motion—2T-periodic motion.

When the rotational speed increases to 507 rad/s, as
shown in Fig. 11, response of rotor system is a bifurca-
tion phenomenon, evolving to 5T-periodicmotion. And
Fig. 9 shows the time waveform, whirl orbit, Poincare
map and spectrum plot at 535 rad/s. The Poincare map
consists of five isolated points, which means that the
response is 5T-periodic motion.

It can be observed from Fig. 6 that the 2T-periodic
motion appears at 551 rad/s. When rotational speed
increases to Ω ≥ 560 rad/s, the dynamic behavior of
rotor evolves to quasi-periodic motion, which indicates
that the oil whip occurs. And Fig. 12 shows the time
waveform,whirl orbit, Poincaremap andSpectrumplot
at 770 rad/s. Figure 13 exhibits the time waveform,
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Fig. 7 Kinetic characteristic curve under the condition of ω = 300 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

Fig. 8 Kinetic characteristic curve under the condition of ω = 355 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

Fig. 9 Kinetic characteristic curve under the condition of ω = 495 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d Spectrum
plot

Fig. 10 Bifurcation
diagram of rotor response at
the disk center. a
470 rad/s ≤ Ω ≤
550 rad/s, b
545 rad/s ≤ Ω ≤ 551 rad/s
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Fig. 11 Kinetic characteristic curve under the condition of ω = 535 rad/s. a Time waveform, b whirl orbit c Poincaré map, d spectrum
plot

Fig. 12 Kinetic characteristic curve under the condition of ω = 770 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

Fig. 13 Kinetic characteristic curve under the condition ofω = 1000 rad/s. a Timewaveform, bwhirl orbit, c Poincarémap, d spectrum
plot

whirl orbit, Poincare map and spectrum plot at 1000
rad/s. There are a large number of points lying on a
closed circle, and the oil whip frequency is the main
frequency components, and the amplitude of 1× is very
small, indicating that rotor response is quasi-periodic
motion.

3.2 The nonlinear dynamic characteristic of rotor
with blades

In order to investigate the influence of blade on rotor–
bearing system, the dynamic model of blades–rotor–

bearing system is established. Figure 14 shows the
bifurcation diagram and three-dimensional spectrum
plot of the disk center in the horizontal direction. In the
bifurcation diagram and three-dimensional spectrum,
the rotational speed varies in the range 300–1200 rad/s.
The nonlinear dynamic behavior of the disk in the verti-
cal direction is discussed as an example in the following
study.

As shown in Figs. 4 and 14, after simplifying the
blades to the disk’s mass center, the overall trend of
dynamic behavior evolution process of rotor system is
fundamentally identical to that of blade–rotor–bearings
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Fig. 14 Bifurcation
diagram and
three-dimensional spectrum
of rotor at the disk in the
blade–rotor–bearing
coupling system. a
Bifurcation diagram, b
three-dimensional spectrum
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Fig. 15 Kinetic characteristic curve under the condition of ω = 300 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

coupling system. The evolution process has much dif-
ference, especially, in the sensitive interval of the rota-
tional speed, and it becomes more complex.

The results in Fig. 14 show that when the rota-
tional speed is lower than 349 rad/s, there is only the
fundamental frequency in three-dimensional spectrum,
which means that it is a synchronous response. When
the rotational speed reaches 349 rad/s, the rotor system
undergoes a period-doubling bifurcation. In the three-
dimensional spectrum, in additional to the fundamen-
tal frequency, the 1/2 subharmonic frequency starts to
emerge in the three-dimensional spectrum; this phe-
nomenon indicates that oil whirl occurs in rotor sys-
tem, namely “half frequency whirl.” The influence of
nonlinear characteristic caused by oil film force begins
to increase gradually.

Figure 15 shows the time waveform, whirl orbit,
Poincare map and spectrum plot of rotor at the disk
at 300 rad/s. The response curve of rotor system in Fig.
15a is regular. The spectrum plot shows that the fre-
quency components are the fundamental frequency and
second harmonic frequency, whichmeans fundamental
frequency vibration occurs in rotor system. The whirl
orbit in Fig. 15b is a regular closed curve; no oil whirl
and oil whip have occurred in the rotor system. From

the Poincare map, we can see that system undergoes
periodic motion.

As shown in Fig. 16a, the high and low harmonic
components are obvious. In the plectrum plot, in addi-
tion to themultiple frequency components, the 1/2 sub-
harmonic frequency emerges in the spectrum plot, indi-
cating that rotor system has entered the phase of “half
frequency whirl,” and oil film whirl occurs in the rotor
system. The 2 isolated points in the Poincare map con-
firm that the response of system is indeed 2T-periodic
motion, the 1/2 subharmonic frequency plays a leading
role in the response at 355 rad/s.

When the rotational speed reaches 466 rad/s, there
is only one point in the bifurcation diagram, which
indicates that it is a synchronous response. After
synchronous vibration, the response of rotor sys-
tem changes from periodic motion to quasi-periodic
motion, which means the system enters the oil whip
motion. And in the three-dimensional spectrum plot,
complex frequency components start to emerge, as a
consequence of the onset of oil whip. Figure 17 shows
the nonlinear dynamic behavior of quasi-periodmotion
at rotational speed 535 rad/s. The low-frequency com-
ponents exist obviously in the time waveform, and
whirl orbit is not irregular; the Poincare map consists
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Fig. 16 Kinetic characteristic curve under the condition of ω = 355 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

Fig. 17 Kinetic characteristic curve under the condition of ω = 535 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

of a large number of points lying on a closed curve, and
continuous spectrum emerges in the spectrum plot; all
of these show that the response of rotor is typical quasi-
period motion.

When rotational speed reaches 550.5 rad/s, 8T-
periodic motion occurs in the rotor system. In order
to discuss the dynamic behavior of the system more
clearly, Fig. 18 shows the local bifurcation diagram of
rotor system in the range 549.5 ≤ Ω ≤ 553 rad/s,
and Fig. 19 shows the dynamic characteristics of 8T-
periodic motion at speed 551 rad/s by time waveform,
whirl orbit, Poincare map and spectrum plot. The main
characteristic is the isolated eight points in Poincare
map.

After a brief 8T-periodic motion, rotor system starts
to enter quasi-periodic motion again at 552.5 rad/s.
The 2T-periodic motion is maintained at the rota-
tional speed of 558 rad/s; it lasts a wide speed range.
The 2 isolated points mean that rotor response is 2T-
periodic motion. With the increase in rotational speed,
the 2T-periodicmotion of rotor systemevolves to quasi-
periodic motion at 897.5 rad/s. Figure 21 exhibits the
time waveform, whirl orbits, Poincare map and spec-
trum of rotor response at rotational speed 910 rad/s.

Fig. 18 Local bifurcation diagramof rotor system at the position
of disk

The numerical results show that there is low-frequency
component in whirl orbit, and large number of points
lies on a smooth closed curve in the Poincare map;
this indicates that the response of rotor has evolved to
quasi-period motion (Fig. 20).

Comparing thenonlinear dynamicbehavior of blade–
rotor–bearing system with the behavior of rotor–
bearing system, we can find that:
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Fig. 19 Kinetic characteristic curve under the condition of ω = 551 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

Fig. 20 Kinetic characteristic curve under the condition of ω = 770 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

Fig. 21 Kinetic characteristic curve under the condition of ω = 910 rad/s. a Time waveform, b whirl orbit, c Poincaré map, d spectrum
plot

(1) The overall trend of dynamic behavior evolution
process of rotor system is not influenced by the
blades.

(2) In the sensitive range of rotational speed, blade
vibration has severe effect on the dynamic behav-
ior evolution process of rotor,which canbe proved
by Wang [22]. After considering blade vibration,
the evolution process of rotor response changes
from 5T-periodic motion to 8T-periodic motion.
The rotational speed range of periodic motion
decreases considerably, and the corresponding
speed range of quasi-periodic motion increases

significantly. Besides, due to the influence of
the blade vibration, the quick and complex pro-
cess of dynamic behavior evolution disappears
completely, and rotor response evolves to quasi-
periodic motion from 8T-periodic motion. So the
effect of blade vibration on the nonlinear charac-
teristics of rotor system should be considered.

(3) Before entering the sensitive rotational speed
range, the influence of blade vibration on the
dynamic behavior evolution process of rotor sys-
tem is not obvious. This is mainly because
the vibration of blade is weak when the rota-
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tional speed is low, so the nonlinear dynamic
behavior evolution of rotor system can be influ-
enced slightly by the blade vibration. After going
through the sensitive interval of rotational speed,
although thebladevibration is strong, the dynamic
characteristics of rotor system aremainly affected
by the centrifugal force and nonlinear oil film
force. Compared with the centrifugal force and
nonlinear oil film force, the influence of the blade
vibration on the nonlinear behavior evolution of
rotor system is relatively weak. So it is difficult
to reflect the influence of the blade vibration on
the nonlinear behavior evolution process of rotor
system.

(4) Although the blade has no effect on the process
of the dynamic behavior evolution process under
high rotational speed, the influence of blade on
the threshold speed of behavior evolution is sig-
nificant. When the blade vibration is considered,
the threshold speed that rotor response evolves
from2T-periodicmotion to quasi-periodicmotion
is 897.5 rad/s. However, when the blades are sim-
plified to the center of mass of disk, the thresh-
old speed is 971 rad/s. As the results show, blade
vibration accelerates the emergence of quasi-
periodic motion.

4 The nonlinear dynamic characteristic of blades
in the blade–rotor–bearing coupling system

4.1 The nonlinear response of blades in the coupling
system

The bifurcation diagram of blade in the blade–rotor–
bearing coupling system under the oil film force is
shown in Fig. 22. As shown in bifurcation diagram,
the nonlinear dynamic phenomenon is demonstrated in
blade response, such as the 2T-periodic motion, multi-
periodic motion and quasi-periodic motion. When the
speed is lower than 349 rad/s, blade response is a stable
periodic motion, and there is only one point in bifurca-
tion diagram. In the dimensional spectrum, the blade
is mainly characterized with fundamental frequency.
At this time, the stable periodic motion is presented
under the action of the unbalance force of the blade.
When the speed increases to 349 rad/s, the response is
a period-doubling bifurcation, and the 1/2 subharmonic
frequency starts to emerge in the three-dimensional

spectrum plot, which indicates the oil whirl occurs.
And the system starts to lose stability, indicating that
the effect of nonlinear oil film force on blade begins
to increase gradually. When the speed increases to
466 rad/s, the response re-enters the periodic motion.
When the rotational speed reaches 494 rad/s, blades
response enters the phase of oil whip after a brief peri-
odic motion, the dynamic behavior of the blade evolves
to quasi-periodic motion and the oil whip frequency
emerges in the three-dimensional spectrum. When
the speed reaches 550.5 rad/s, the blades response is
a brief 8T-periodic motion. And the blades re-enter
the quasi-periodic motion. The blades evolve to 2T-
periodic motion at the speed 558 rad/s. And the quasi-
periodic motion that appears in the blade response at
the speed 897.5 rad/s is shown in Fig. 22a. From the
global bifurcation diagram, we can find that the non-
linear behavior process of blade is as following: Peri-
odicmotion—2T-periodicmotion—Periodicmotion—
Quasi-periodic motion—8T-periodic motion—Quasi-
periodicmotion—2T-periodicmotion—Quasi-periodic
motion.

In order to discuss the nonlinear dynamic character-
istic of blade, the time waveform, phase diagram and
spectrum plot of blade with certain rotational speed are
shown in Figs. 23, 24, 25, 26, 27 and 28. And the time
waveform, phase diagram and spectrum plot at speed
300 rad/s are shown in Fig. 23. The steady response
curve of blade is cosine curve; phase is a closed ellipse;
and 1× frequency is the main frequency component in
the spectrum plot. Therefore, the steady response of the
blade exhibits stable periodic motion at this speed.

Figure 24 shows the time waveform, phase diagram
and spectrum plot of blade response at 400 rad/s. The
numerical results show that the steady response of the
blade consists of six discrete frequency components;
the amplitude of these frequency components is invari-
able. It can be found that the spectrum plot mainly con-
tains four frequency components, such as the first-order
frequency of oilwhip, 1/2× frequency, 3/2× frequency,
and2× frequency, and the amplitude of 1× frequency is
relatively large. Besides, the phase diagramof the blade
is two overlapping circles; this is due to the emergence
of the oil film whirl, but severe oil film whip has not
yet occurred. All these mean that the response of blade
is 2T-periodic motion.

It can be observed from Figs. 25 and 26 that the peri-
odic motion of the blade response has evolved to the
quasi-periodicmotion at 494 rad/s and then 8T-periodic
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Fig. 22 Blade’s bifurcation
diagram and
three-dimensional spectrum
in the blades–rotor–bearing
coupling system. a
Bifurcation diagram, b
three-dimensional spectrum

349

466

494 558 898 fn
1x(fr)

3/2x 2x

2fn

(a) (b)

Fig. 23 Blade’s kinetic
characteristic curve under
the condition of
ω = 300 rad/s. a Time
waveform, b phase diagram,
c spectrum plot

Fig. 24 Blade’s kinetic
characteristic curve under
the condition of
ω = 355 rad/s. a Time
waveform, b phase diagram,
c spectrum plot

1x

1/2x

3/2x
2x 5/2x 3x

(a) (b) (c)

motion at 550.4 rad/s. In Fig. 25, there is complex
elliptic in the phase diagram, and continuous spectrum
appears in the spectrum plot; these indicate that the
oil whip occurs and the response of blade is the quasi-
periodic motion. In Fig. 26b, there are eight circles,
which means that the response of blade has evolved to
quasi-periodic motion.

After a brief 8T-periodic motion, the dynamic
behavior of blade is a quasi-periodic motion, and then,
the 2T-periodic motion appears at 558 rad/s. Figure
27 shows the steady motion characteristics of blade at
770 rad/s. In the time waveform, there is obvious low-
frequency component. The oil whip frequency and 1x
frequency with large amplitude appear in the spectrum
plot. All these mean that blade response has evolved
from quasi-periodic motion to 2T-periodic motion.
With the increase in rotational speed, the quasi-periodic
motion appears at 897.5 rad/s. Figure 28 exhibits the

time waveform, phase diagram and spectrum plot of
blade response at 910 rad/s, indicating that blade is
undergoing quasi-periodic motion.

4.2 The influence of the different blade damping

It can be found that the effect of blade on rotor sys-
tem is significant. Therefore, it is very necessary to
study the influence of blade parameters on the non-
linear characteristics of rotor system. The damping is
a very important parameter of blade, so this section
will mainly study the influence of blade damping on
the dynamic behavior of rotor system, and the other
parameters are taken from Table 1.

Bifurcation diagrams of rotor systemunder the influ-
ence of blade vibration with different damping coeffi-
cients are shown in Fig. 29. According to the theory of
vibration, when the damping coefficient is very small,
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Fig. 25 Blade’s kinetic
characteristic curve under
the condition of
ω = 510 rad/s. a Time
waveform, b phase diagram,
c spectrum plot

Fig. 26 Blade’s kinetic
characteristic curve under
the condition of
ω = 551 rad/s. a Time
waveform, b phase diagram,
c spectrum plot

Fig. 27 Blade’s kinetic
characteristic curve under
the condition of
ω = 770 rad/s. a Time
waveform, b phase diagram,
c spectrum plot

blade vibration will be very close to the state of non-
damping vibration. Thus, from Fig. 29a, we can find
that the evolution process of rotor system has changed
greatly at this time. And with the increase in blade
damping, the behavior of rotor system is basically sta-
ble, and the effect of blade damping is mainly reflected
in the speed threshold of behavior evolution.

The speed thresholds of the dynamic behavior of
rotor system under different damping coefficients are

given in Table 2. The results show that blade damping
coefficient has no influence on the threshold of the rotor
response from the fundamental frequency vibration to
oil whirl. It can be seen that when rotor system is under
periodic motion, the damping coefficient of blade has
little influence on nonlinear behavior of rotor system.
With the increase of rotational speed, the effect of blade
damping coefficient on rotor system behavior begins
to increase. Besides, the increase in damping coeffi-

Fig. 28 Blade’s kinetic
characteristic curve under
the condition of
ω = 910 rad/s. a Time
waveform, b phase diagram,
c spectrum plot
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Fig. 29 Bifurcation diagramof rotor system for various damping
of blades. a C = 0.75, b C = 2.5, c C = 75, d C = 300

cient causes a brief 8T-periodic motion, thereby reduc-
ing the speed range of quasi-periodic motion. How-
ever, when damping coefficient increases to a certain
extent, 8T-periodic motion is disappear. It can be seen
that appropriate damping coefficient can shorten the
speed range of quasi-periodic motion. What’s more,
the increase in damping coefficient decreases the speed
threshold of rotor system from 2T-periodic motion to
quasi-periodic motion, which makes rotor response
enter quasi-periodic motion earlier.

Thus it can be seen that, when blade damping coef-
ficient is very small, blade damping has a significant
impact on the evolution process of dynamic behavior of
rotor system. But when damping coefficient increases
to a certain extent, the influence of blade damping

begins to weaken, evolution process of dynamic behav-
ior is maintained in a stable state and the influence of
blade damping coefficients is mainly manifested in the
speed threshold of behavior evolution; the appropriate
damping coefficient of blade can make period-double
motion appear in the rotor system, which can restrain
the range interval of oil film instability; however, when
rotational speed is high, the larger damping coefficient
makes the rotor systementer quasi-periodicmotion ear-
lier. Therefore, it is necessary to make an optimal anal-
ysis of damping coefficient in order to ensure the stable
operation of the system.

4.3 The influence of the different length of blade

Blade length has a great influence on the inherent char-
acteristics of the blade, so the research on the influence
of blade length on the dynamic behavior of rotor is
very significant for engineering, and this section will
mainly study the influence of the blade length on rotor
system. Figure 30 shows the bifurcation diagrams of
rotor system under different blade length.

The results of bifurcation diagrams show that the
length of blade has little influence on the overall trend
of evolution process of nonlinear dynamic behavior.
When rotational speed is low, blade length has little
effect on the speed threshold and evolution process.
With the increase in rotational speed, the influence of
blade length on the nonlinear dynamic behavior of rotor
system began to enhance. The influence is mainly man-
ifested in speed threshold of nonlinear behavior evolu-
tion.Andwith the increase in blade length, the response
of rotor evolves from5T-periodicmotion to 8T-periodic
motion, and the speed range increases with the blade
length. This is due to the increase in blade length,
the blade vibration is constantly enhanced. In the high
speed range, the increase in the blade length makes
the rotating speed range of 2T-periodic motion sig-
nificantly shorter, and the corresponding threshold of
quasi-periodic motion is continuously reduced, which
means that longer blademakes rotor system evolve into
quasi-periodic motion earlier.

5 Conclusion

A blade–rotor coupling system is addressed to investi-
gate the nonlinear dynamic behavior supported by oil
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Table 2 Speed threshold of behavior evolution of rotor system under different damping coefficient

Periodic–2T-
periodic (rad/s)

2T-periodic–
periodic

Periodic–quasi-
periodic (rad/s)

Quasi-periodic–
2T-periodic
(rad/s)

2T-periodic–
quasi-periodic
(rad/s)

C = 2.5 349 No 464 563 921

C = 25 349 462 rad/s 497 564 914

C = 75 349 464 rad/s 496 560 906

C = 300 349 467 rad/s 491 556.5 883

A
m

pl
itu

de
 A

/m
m

(a)

(b)

(c)

(d)

Rotational Speed Ω/rad ·s-1 

Fig. 30 Bifurcation diagramof rotor system for various length of
blades. a L = 0.1 m, b L = 0.2 m, c L = 0.25 m, d L = 0.3 m

film journal bearings.Considering thenonlinear oil film
force, the mathematical model of coupling system is
studied by dynamic method.

The numerical results show that the coupling sys-
tem exhibited rich nonlinear phenomenon, such as
the period-doubling bifurcation, the multi-period and
quasi-periodmotions. Thedynamics of the blade exhib-
ited nonlinearity which is uniform with the rotor.

Besides, the comparison of the dynamic behavior of
the blade–rotor–bearing model with that of the rotor–
bearing model reveals that overall trend of the dynamic
evolution process of rotor system is not under the
influence of blade. However, in the sensitive range
of the rotational speed, the effect of blades vibration
on nonlinear dynamic behavior evolution of rotor is
extremely obvious.What’s more, the influence of blade
on the threshold of behavior evolution is significant,
and blade vibration reduces the rotational speed thresh-
old of quasi-periodic motion.

At last, the influence of blade damping coefficient
and the length of blade is mainly manifested in the
speed threshold of behavior evolution; and the damping
coefficient and length of blade can make rotor system
enter quasi-periodic motion earlier.
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Appendix 1: Vectors and matrices related to the
rotor system

(1) Expression of discrete kinetic energy of shaft can
be shown as follows

Ts =
∫ Ls

0

[
1

2
ρA(η̇T(t)XT(z)X(z)η̇(t)

+ξ̇
T
(t)YT(z)Y(z)ξ̇(t)) + 1

2
Jpφ̇

2

+1

2
Jd

([
X

′
(z)η̇(t) + E I

κAG
X

′′′
(z)η̇(t)

]T [
X

′
(z)η̇(t)

+ E I

κAG
X

′′′
(z)η̇(t)

])

+1

2
Jd

[
Y

′
(z)ξ̇(t) + E I

κAG
Y

′′′
(z)ξ̇(t)

]T [
Y

′
(z)ξ̇(t)

+ E I

κAG
Y

′′′
(z)ξ̇(t)

])

+1

2
Jpφ̇

([
X

′
(z)η̇(t) + E I

κAG
X

′′′
(z)η̇(t)

]T [
Y

′
(z)ξ(t)

+ E I

κAG
Y

′′′
(z)ξ(t)

])

−1

2
Jpφ̇

([
X

′
(z)η(t) + E I

κAG
X

′′′
(z)η(t)

]T [
Y

′
(z)ξ̇(t)

+ E I

κAG
Y

′′′
(z)ξ̇(t)

])

+1

2
Is

∫ Ls

0
q̇Tθ ΦTΦq̇θdz (33)

(2) Expression of discrete kinetic energy of disk can
be expressed as

Td = 1

2
η̇T(t)mdXT (zd)X (zd) η̇(t)

+1

2
ξ̇
T
(t)mdYT (zd)Y (zd) ξ̇(t)

+1

2
η̇T(t)Jdz

E I

κAG
X

′′′T
(zd)X

′
(zd) η̇(t)

+1

2
η̇T(t)Jdz

(
E I

κAG

)2
X

′′′T
(zd)X

′′′
(zd) η̇(t)

+1

2
ξ̇
T
(t)JdzY

′T
(zd)Y

′
(zd) ξ̇(t)

+1

2
ξ̇
T
(t)Jdz

E I

κAG
Y

′T
(zd)Y

′′′
(zd) ξ̇(t)

+1

2
ξ̇
T
(t)Jdz

E I

κAG
Y

′′′T
(zd)Y

′
(zd) ξ̇(t)

+1

2
ξ̇
T
(t)Jdz

(
E I

κAG

)2
Y

′′′T
(zd)Y

′′′
(zd) ξ̇(t)

+1

2
η̇T(t)Jpφ̇X

′T
(zd)Y

′
(zd) ξ(t)

+1

2
η̇T(t)Jzφ̇

E I

κAG
X

′T
(zd)Y

′′′
(zd) ξ(t)

+1

2
η̇T(t)Jzφ̇

E I

κAG
X

′′′T
(zd)Y

′
(zd) ξ(t)

+1

2
η̇T(t)Jzφ̇

(
E I

κAG

)2
X

′′′T
(zd)Y

′′′
(zd) ξ(t)

−1

2
ηT(t)Jzφ̇X

′T
(zd)Y

′
(zd) ξ̇(t)

−1

2
ηT(t)Jzφ̇

E I

κAG
X

′T
(zd)Y

′′′
(zd) ξ̇(t)

−1

2
ηT(t)Jzφ̇

E I

κAG
X

′′′T
(zd)Y

′
(zd) ξ̇(t)

−1

2
ηT(t)Jzφ̇

(
E I

κAG

)2
X

′′′T
(zd)Y

′′′
(zd) ξ̇(t)

(34)

(3) Expression of discrete potential energy of shaft
can be written as

Us = 1

2

∫ Ls

0

{
E I ([X ′′

(z)η(t)]T[X ′′
(z)η(t)]

+[Y ′′
(z)ξ(t)]T[Y ′′

(z)ξ(t)])

+κGA

([
E I

κAG
X

′′′
(z)η(t)

]T [ E I

κAG
X

′′′
(z)η(t)

]

+
[

E I

κAG
Y

′′′
(z)ξ(t)

]T [ E I

κAG
Y

′′′
(z)ξ(t)

])}
dz

= 1

2

∫ Ls

0

{
qTθ Gs Js�

′T�′qθ + ηT(t)E IX
′′T

(z)X
′′
(z)η(t)

+ξT(t)E IY
′′T

(z)Y
′′
(z)ξ(t)

+ηT(t)
(E I )2

κAG
X

′′′T
(z)X

′′′
(z)η(t)

+ξT(t)
(E I )2

κAG
Y

′′′T
(z)Y

′′′
(z)ξ(t)

}
dz (35)

(4) The specific meaning of each parameter in the
vibration differential equation of rotor

Mr =
⎡
⎣Ms1 + Md1 0 0

0 Ms2 + Md2 0
0 0 Mθ

⎤
⎦

Cr =
⎡
⎣Cs1 + Cd1 0 0

0 Cs2 + Cd2 0
0 0 Cθ

⎤
⎦

Gr =
⎡
⎣ 0 Gs1 + Gd1 0

Gs2 + Gd2 0 0
0 0 0

⎤
⎦

Kr =
⎡
⎣Ks1 0 0

0 Ks2 0
0 0 Kθ

⎤
⎦
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Ms1 =
∫ Ls

0
[ρAXT(z)X(z) + JdX

′T
(z)X

′
(z)

+Jd
E I

κAG
X

′T
(z)X

′′′
(z)

+Jd
E I

κAG
X

′′′T
(z)X

′
(z)

+Jd

(
E I

κAG

)2
X

′′′T
(z)X

′′′
(z)]dz (36)

Ms2 =
∫ Ls

0

[
ρAYT(z)Y(z) + JdY

′T
(z)Y

′
(z)

+Jd
E I

κAG
Y

′T
(z)Y

′′′
(z)

]

+Jd
E I

κAG
Y

′′′T
(z)Y

′
(z)

+Jd

(
E I

κAG

)2
Y

′′′T
(z)Y

′′′
(z)dz (37)

Mθ = Is

∫ Ls

0
ΦTΦdz (38)

Gs1 =
∫ Ls

0

[
JpX

′T
(z)Y

′
(z)

+Jp
E I

κAG
X

′T
(z)Y

′′′
(z)

+Jp
E I

κAG
X

′′′T
(z)Y

′
(z)

+Jp

(
E I

κAG

)2
X

′′′T
(z)Y

′′′
(z)

]
dz (39)

Gs2 =
∫ Ls

0

[
−Jp

(
E I

κAG

)2
Y

′′′T
(z)X

′′′
(z)

−Jp
E I

κAG
Y

′′′T
(z)X

′
(z)

−Jp
E I

κAG
Y

′T
(z)X

′′′
(z)

−JpY
′T

(z)X
′
(z)
]
dz (40)

Md1 = mdXT (zd)X (zd) + JdX
′T

(zd)X
′
(zd)

+Jd
E I

κAG
X

′T
(zd)X

′′′
(zd)

+Jd
E I

κAG
X

′′′T
(zd)X

′
(zd)

+Jd

(
E I

κAG

)2
X

′′′T
(zd)X

′′′
(zd) (41)

Md2 = mdYT (zd)Y (zd) + JdY
′T

(zd)Y
′
(zd)

+Jd
E I

κAG
Y

′T
(zd)Y

′′′
(zd)

+Jd
E I

κAG
Y

′′′T
(zd)Y

′
(zd)

+Jd

(
E I

κAG

)2
Y

′′′T
(zd)Y

′′′
(zd) (42)

Gd1 = Jz
E I

κAG
X

′′′T
(zd)Y

′
(zd)

+Jz

(
E I

κAG

)2
X

′′′T
(zd)Y

′′′
(zd)

+JzX
′T

(zd)Y
′
(zd)

+Jz
E I

κAG
X

′T
(zd)Y

′′′
(zd) (43)

Gd2 = −Jz

(
E I

κAG

)2
Y

′′′T
(zd)X

′′′
(zd)

−Jz
E I

κAG
Y

′′′T
(zd)X

′
(zd)

−Jz
E I

κAG
Y

′T
(zd)X

′′′
(zd)

−JzY
′T

(zd)X
′
(zd) (44)

Ks1 =
∫ Ls

0

[
E IX

′′T
(z)X

′′
(z)

+
(

E I

κAG

)2
X

′′′T
(z)X

′′′
(z)

]
dz (45)

Ks2 =
∫ Ls

0

[
E IY

′′T
(z)Y

′′
(z)

+
(

E I

κAG

)2
Y

′′′T
(z)Y

′′′
(z)

]
dz (46)

Kθ = Gs Js

∫ Ls

0
Φ ′TΦ

′
dz (47)

Appendix 2: Vectors and matrices related to the
blade

(1) Expression of discrete kinetic energy of i th blade
can be shown as follows

Tb = 1

2
ρbAb

∫ Lb

0
η̇TXT (zd)X (zd) η̇

+ξ̇
T
YT (zd)YT (zd) ξ̇ + q̇T

u Ψ TΨ q̇u

+q̇T
u Ψ TΨ q̇u + q̇T

v V
TVq̇v

+q̇T
θ (R + x)2 ΦTΦq̇θ + qT

u ψ̇2Ψ TΨ qu

+qT
v ψ̇2VTVqv + qT

θ (R + x)2 ψ̇2ΦTΦqθ

−2η̇TXTV sinψ q̇v
+2q̇T

v (R + x)VTΦ q̇θ + 2η̇TXT (zd) Ψ cosψ q̇u

+2ξ̇
T
YT (zd)Ψ sinψ q̇u
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−2η̇T (R + x)XT (zd) Φ sinψ q̇θ

+2ξ̇
T

(R + x)YT (zd)Φ cosψ q̇θ

+η̇T (R + x)2
{[

X
′
(zd) + E I

κGA
X

′′′
(zd)

]T

[
X

′
(zd) + E I

κGA
X

′′′
(zd)

]}
η̇

−2q̇T
u ψ̇Ψ TVqv + 2q̇T

v ψ̇VTΨ qu
−2η̇Tψ̇XT (zd) Ψ sinψqu
−2η̇Tψ̇XT (zd)V cosψqv

+2ξ̇
T
ψ̇YT (zd) Ψ cosψqu − 2ξ̇

T
ψ̇YT (zd)V sinψqv

−2η̇Tψ̇ (R + x)XTΦ cosψqθ

−2ξ̇
T
ψ̇ (R + x)YT (zd)Φ sinψqθ

+4q̇T
θ ψ̇ (R + x) ΦTΨ qu + 2ξ̇

T
YT (zd)V cosψ q̇v

(48)

(2) Expression of discrete kinetic energy of i th blade
can be expressed as

Ub = 1

2
EbAb

∫ Lb

0
qT
uΨ

′T
Ψ

′
qudx

+1

2
Eb Ib

∫ Lb

0
qT
v V

′′T
V

′′
qvdx

+1

4
qT
v ρbAbψ̇

2
∫ Lb

0

[
L2
b − x2

+2R (Lb − x)]V
′T
V

′
dxqv (49)

(3) The specificmeaning of each transformationmatrix
of blade can be obtained as following

A0 =
⎡
⎣ cos θT − sin θT 0
sin θT cos θT 0
0 0 1

⎤
⎦

A1 =
⎡
⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦

A2 =
⎡
⎣ 1 0 0
0 cos θy − sin θy
0 sin θy cos θy

⎤
⎦

A3 =
⎡
⎣ cos θx 0 sin θx

0 1 0
− sin θx 0 cos θx

⎤
⎦

where ψ = �t + (i − 1) 2π/Nb, and (i − 1) 2π/Nb

indicates the position of the i th blade in the blade; Nb

is the number of blades, θT is the twist angle at disk
hub, θx and θy are swinging angles of disk.

Appendix 3: Vectors and matrices related to the
rotor–blade coupling system

(1) qrb is generalized coordinate vector of rotor–blade
coupling system.

qrb = [qr qθ qb]
T (50)

where qr and qθ are vectors of translational and tor-
sional degrees of freedom of rotor; qb is the vector
of degrees of freedom of blade.

(2) Mrb is mass matrix of rotor–blade coupling system.

Mrb =
⎡
⎣ Mr 0 Msb

0 Mθ Mθb

MT
sb MT

θb Mb

⎤
⎦ (51)

where Mr and Mθ are vectors of translational and
torsional mass matrix of rotor; Mb is the vector of
mass matrix of blade; Mθb and Msb are coupling
mass matrix of system.

(3) Crb is damping matrix of rotor–blade system
(including proportional damping and gyro matrix)

Crb =
⎡
⎣ Cr Csθ Csb

CT
sθ Cθ Cθb

CT
sb CT

θb Cb

⎤
⎦ (52)

where Cr and Cθ are vectors of translational and
torsional damping matrix of rotor; Cb is the vector
of damping matrix of blade; Csθ , Csb and Cθb are
coupling damping matrix of system.

(4) Krb is stiffness matrix of rotor–blade coupling sys-
tem

Krb =
⎡
⎣ Kr 0 0

0 Kθ 0
0 0 Kb

⎤
⎦ (53)

where Kr and Kθ are vectors of translational and tor-
sional stiffness matrices of rotor; Kb is the vector of
stiffness matrix of blade.
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