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Abstract In this paper, we extend the classical Mel-
nikov method for smooth systems to a class of planar
hybrid piecewise-smooth system subjected to a time-
periodic perturbation. In this class, we suppose there
exists a switching manifold with a more general form
such that the plane is divided into two zones, and the
dynamics in each zone is governed by a smooth system.
Furthermore, we assume that the unperturbed system
is a general planar piecewise-smooth system with non-
zero trace and possesses a piecewise-smooth homo-
clinic orbit transversally crossing the switching mani-
fold. We also define a reset map to describe the instan-
taneous impact rule on the switching manifold when a
trajectory arrives at the switching manifold. Through
a series of geometrical analysis and perturbation tech-
niques, we obtain aMelnikov-type function to measure
the separation of the unstable manifold and stable man-
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ifold under the effect of the time-periodic perturbations
and the reset map. Finally, we use the presented Mel-
nikov function to study global bifurcations and chaotic
dynamics for a concrete planar piecewise-linear oscil-
lator.

Keywords Melnikov method · Planar piecewise-
smooth systems · Homoclinic orbits · Switching
manifolds · Reset maps

1 Introduction

Along with the development of nonlinear science, non-
smooth dynamical systems are becoming more and
more active in theworld.Mechanical engineering [1,2],
power electronics [3], walking machines [4], control
science [5] and other fields of natural science and social
science often employ non-smooth functions to describe
dynamical models. Therefore, developing mathemati-
cal methods and studying the dynamics for non-smooth
dynamical systems is very important. At present, global
bifurcations and chaotic dynamics for non-smooth
dynamical systems are interesting but complicated top-
ics.

It is well known that homoclinic bifurcations for
smooth dynamical systems are a usual route for the
occurrence of chaotic dynamics. The classical Mel-
nikovmethod provides analytical tools for determining
the persistence of homoclinic/heteroclinic connections
for planar regular systems subjected to periodic per-
turbations [6–9]. More specifically, the existence of a
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simple zero of the corresponding Melnikov function
implies the existence of a transversal homoclinic point
of the periodic map of the perturbed non-autonomous
smooth systems. Chaotic dynamics for these systems
can be furthermore explained mathematically by the
corresponding invariant Smale horseshoe set for the
periodic map [7]. This is perhaps the most known route
to chaos for non-autonomous smooth systems; how-
ever, there exists a special case with a different route
given by Pascoletti and Zanolin [10].

How to understand the mechanism of global bifur-
cations and chaotic dynamics for discontinuous sys-
tems is a valuable and active topic. The basic idea is
to extend the classical Melnikov method to discon-
tinuous systems. Many scholars have made a lot of
efforts and obtained some representative results about
the Melnikov method of non-smooth systems in [11–
25] and chaotic dynamics in [26–28]. For example, Du
and Zhang [11] have developed the Melnikov method
for homoclinic bifurcation in nonlinear impact oscilla-
tors. Gao and Du [12] studied homoclinic bifurcation
for an impact inverted pendulum under a quasiperiod-
ically excitation. For the case of a homoclinic orbit
which crosses transversally a switching manifold but
without jumping on it, some scholars in [13–20] have
successfully put forward theMelnikovmethod to study
the persistence of the homoclinic orbit. Kunze [13], Shi
[14] andKukučka [15] havepresented aMelnikov func-
tion but with difference items induced by the disconti-
nuity of vector fields on a switchingmanifold for a two-
dimensional periodic perturbed system. The switching
manifold considered in [13,14] is a special straight line
and the Melnikov theory derived has good geometrical
intuition; however, the difference items in theMelnikov
function looks hard to calculate in [13–15].

Battelli and Fečkan have made great contribution
to homoclinic bifurcations and chaotic dynamics for
non-smooth systems. For example, Battelli and Fečkan
in [16,17] have discussed a class of high-dimensional
non-smooth systems in which a piecewise-smooth
homoclinic orbit transversally crossing a switching
manifold is subjected to small non-autonomous per-
turbations. Battelli and Fečkan [18] also presented
the Melnikov method for sliding homoclinic cases on
a switching manifold for high-dimensional systems.
Considering the perturbations with periodic, and the
almost periodic cases (and even the case of weaker
recurrence properties), they prove the existence of a
transversal homoclinic point which immediately gives

persistence of the homoclinic trajectory and which
also furthermore proves the occurrence of chaos. The
proofs are carried on in [16–18] and then they are sur-
veyed in [19]. Since the systems considered is high-
dimensional case, Battelli and Feckan have to deal
with the adjoint variational system and with its unique
bounded solution.However, when the two-dimensional
case is deduced from the general one, the geometrical
intuition is less transparent. In order to pursuit geomet-
rical intuition and solve the problem of the difference
items hard to calculate in [13–15] in theMelnikov func-
tion for non-smooth system, Li et al. [20] have con-
sidered a planar piecewise Hamiltonian system with
a homoclinic orbit transversally crossing a switching
manifold, then studied the persistence of this homo-
clinic orbit subjected to a periodic perturbation. They
have tried to employ geometrical idea based on the clas-
sical Melnikov method in [7] and found the relation-
ship of a trajectory between two sides of a switching
manifold; then, they have presented a Melnikov func-
tion in complete integral forms. Although the result can
already be found in [16,19] for two-dimensional cases,
the proof is different and simpler with great advantage
of engineering application.

For the case of trajectories jumping on switch-
ing manifolds, Granados et al. [21] also extended the
Melnikov methods for heteroclinic and subharmonic
orbits in a piecewise-smooth system with a concrete
impact rule on a discontinuous separation line; further-
more, they employed the Melnikov method to study
a mechanical system of slender rocking block. Car-
mona et al. [22] studied the Melnikov theory of peri-
odic orbits for a class of planar autonomous hybrid
systems. Based on the idea presented in [21,22], Li
et al. [23] presented the Melnikov method for a class
of planar piecewise-smooth systems with an impacting
rule described by a reset map on a switching mani-
fold. Furthermore, Li et al. [24] considered a piecewise
Hamiltonian system with a heteroclinic orbit transver-
sally crossing two switching manifolds and presented
the Melnikov method with a simpler derivation and
proof to study the persistence of this heteroclinic orbit
under the effect of a periodic perturbation and reset
maps.

In this paper, based on the work presented by Li
et al. [20,23], we want to study global bifurcations and
chaotic dynamics for a planar hybrid discontinuous sys-
tem. We suppose that there exists a switching manifold
with a more general form such that the plane is divided
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into two zones, and the dynamics in each zone is gov-
ernedbya smooth system.Furthermore,we assume that
the unperturbed system is a general planar piecewise-
smooth system with possibly non-zero trace, and pos-
sesses a piecewise-smooth homoclinic orbit transver-
sally crossing the switching manifold. We also define
a small reset map to describe the instantaneous impact
rulewhen a trajectory arrives at the switchingmanifold.
Through a series of geometrical analysis and perturba-
tion techniques, we obtain a Melnikov-type function to
measure the separation of the unstable manifold and
stable manifold under the effect of the time-periodic
perturbations and the resetmap. Finally, we use the pre-
sented Melnikov function to study global bifurcations
and chaotic dynamics for a concrete planar piecewise-
linear oscillator.

In this paper, we will mainly focus on the analysis
of the reset map and derivation of the Melnikov func-
tion by using a simpler procedure and geometrical idea.
When the reset map is not considered, the Proposition
2 of this paper is indeed covered by Theorem 2.13 in
[16], and then surveyed in [19]. However, the proof in
this paper is different and simpler with good geomet-
rical intuition. Another point needing some illustration
is that we prove the existence of a transversal homo-
clinic point and conclude that implies the existence of
chaotic dynamics but without giving a rigorous proof.
It is indeed not rigorous because there is a case where
the critical point might be on the switching manifold
showing that the existence of a transversal homoclinic
point may not imply the insurgence of a chaotic pat-
tern in [25]. However, without the presence of the reset
map, Battelli and Fečkan in [17] have presented a full
fledged proof of the existence of chaoswhen a transver-
sal homoclinic point is present for high-dimensional
case. Hence, a similar fashion as in [17] can be carried
out to conclude the existence of chaotic dynamicswhen
the reset map considered here is small.

Here, we will also give some explanations of differ-
ent points between our work with the one presented by
Li et al. [20,23]. Firstly, the unperturbed system con-
sidered here is a general piecewise-smooth systemwith
a possibly non-zero trace, while the unperturbed sys-
tem studied by Li et al. [20,23] is a piecewise-defined
Hamiltonian system. Secondly, a switching manifold
with a general form and impacting rules are consid-
ered in this paper, while a particular separation line is
defined as the switching manifold in Li et al. [23] and
the orbits do not jump on the switching manifold in

Li et al. [20]. Thirdly, more complicated perturbation
techniques and geometric methods for discontinuous
systems are extended here to derive the non-smooth
Melnikov function. Furthermore, several lemmas and
propositions are given to facilitate the calculation of
the Melnikov function and help to understand different
points between smooth and non-smooth systems.

This paper is organized as follows. In Sect. 2, the
statement of the problem is described, the non-smooth
Melnikov function for the planar hybrid piecewise-
smooth systems is obtained. In Sect. 3, global bifur-
cations and chaotic dynamics for a concrete planar
hybrid piecewise-linear oscillator are studied by the
obtained Melnikov function. Numerical simulations
are also shown toverify the theoretical analysis. Finally,
the conclusions are given.

2 Statement of the problem

2.1 System description

We first define a scalar function h:R2 → R, h ∈
Cr (R2,R), r ≥ 1 such that the state-space R2 is split
into two open, disjoint subsets V− and V+ by a switch-
ingmanifold�. The subsets V− and V+ and the switch-
ing manifold � can be formulated as

V− =
{
(x, y) ∈ R

2 | h(x, y) < 0
}

,

� =
{
(x, y) ∈ R

2 | h(x, y) = 0
}

,

V+ =
{
(x, y) ∈ R

2 | h(x, y) > 0
}

. (1)

The normal of the switching manifold � is denoted by

n = n(x, y) = grad(h(x, y)), (x, y) ∈ �, (2)

which is a row vector, and we also assume that the
scalar function h is chosen such that n(x, y) �= 0 for
(x, y) ∈ �.

We consider a general planar piecewise-smooth sys-
tem as follows:(

ẋ
ẏ

)
=

{
f−(x, y) + εg−(x, y, t), (x, y) ∈ V−,

f+(x, y) + εg+(x, y, t), (x, y) ∈ V+,
(3)

where (x, y) ∈ R
2 and ε (0 < ε � 1) is a small

parameter. We suppose that the function f± : R2 → R

are Cr with r ≥ 2 for any (x, y) ∈ R
2, and g± :

R
2 ×R → R

2 are Cr with r ≥ 2 and T̂−periodic in t .
In order to describe impacting rules of trajectories

on the switching manifold �, let us consider a reset
map for system (3) given as follows:
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ρ̃ε : � → �

(x, y) �→ ρ̃ε(x, y) = (ρ̃1,ε(x, y), ρ̃2,ε(x, y)) (4)

satisfying ρ̃0(x, y) = (x, y) and h(ρ̃ε(x, y)) = 0
for any (x, y) ∈ �, where 0 < ε � 1, ρ̃i,ε ∈
Cr (R2) (i = 1, 2) with r ≥ 1. We denote by
ρ̃−1

ε (x, y) = (η̃1,ε(x, y), η̃2,ε(x, y)) the inverse map-
ping of ρ̃ε(x, y) for any (x, y) ∈ R

2, and 0 < ε � 1.
In the aforementioned assumptions and definitions,

the switching manifold � divides the plane into two
zones whose dynamics in each zone is governed by
a smooth system. We hope that the reset map ρ̃ε will
be adopted instantaneously when a trajectory arrive at
some point (x, y) on the switching manifold � at t =
t∗. That is to say, the point (x, y) ∈ � in this trajectory
will jump to the point ρ̃ε(x, y) ∈ � instantaneously
and then this trajectory will enter into another zone.
Before the assumptions are presented, based on our
expectation of geometrical structure, we first simply
describe a solution of the system (3) and (4), we let
q−(t; t0, x0, y0, ε) be the flow of system (3) restricted
to V−, and t1 > t0 is the smallest value of t satisfying
the condition

h(q−(t1; t0, x0, y0, ε)) = 0. (5)

Similarly, q+(t; t0, x1, y1, ε) is the flow of system (3)
restricted to V+, and t2 > t0 is the smallest value of t
satisfying the condition

h(q+(t2; t0, x1, y1, ε)) = 0. (6)

According to the position of (x0, y0) in V+ or V−, we
apply either q−(t; t0, x0, y0, ε) or (q+(t; t0, x1, y1, ε))
until the trajectory of system (3) reaches �, then we
apply (4). In order to let readers easily understand what
is a solution for a discontinuous system stated above,
here we present a trajectory of system (3) and (4) with
initial condition (x0, y0, t0) in Figs. 1 and 2 for ε = 0
and ε > 0, respectively.

Fig. 1 A solution of system (3) and (4) for ε = 0

Fig. 2 A solution of system (3) and (4) for ε > 0

Fig. 3 The homoclinic orbit of the unperturbed system of (3)
and (4)

In order to extend the Melnikov method to a gen-
eral non-smooth planar hybrid system and guarantee
the aforementioned structure,wemake the assumptions
about geometrical structure of the unperturbed system
of system (3) and(4) as follows:

(H1) For ε = 0, system (3) has a fixed point p0 ∈ V−
and a continuous, piecewise-smooth solution γ (t) ∈
R
2 which is homoclinic to p0. The analytical expres-

sion for the homoclinic orbit is assumed as follows:

γ (t) =
⎧⎨
⎩

γ 1−(t), for t ≤ tu

γ+(t), for tu ≤ t ≤ t s

γ 2−(t), for t ≥ t s
(7)

where tu < 0 < t s ,γ 1, 2
− (t) ∈ V− for t < tu and t > t s ,

γ+(t) ∈ V+ for tu < t < t s , γ 1−(tu) = γ+(tu) ∈ �

and γ 2−(t s) = γ+(t s) ∈ �.

(H2) [n · f−(γ 1−(tu))] · [n · f+(γ 1−(tu))] > 0, [n ·
f−(γ 2−(t s))] · [n · f+(γ 2−(t s))] > 0.
Without loss of generality, we assume the homo-

clinic orbits for the unperturbed system of (3) and (4)
is clockwise oriented and topologically equivalent to
the one shown in Fig. 3.

We give some definitions and lemmas utilized in
the following analysis. Firstly, let a = (x1, y1)T, b =
(x2, y2)T andn = (n1, n2), then thewedge product and
the inner product of two vectors is defined as a ∧ b =
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x1y2 − x2y1, n · a = n1a1 + n2a2, respectively. Next,
we give some lemmas.

Lemma 1 Let a = (x1, x2)T, b = (y1, y2)T, A is a
2 × 2 matrix, then we have the formula as follows:

(Ab) ∧ a + b ∧ (Aa) = traceA(b ∧ a), (8)

where traceA is the trace of the matrix A.

Proof Let

A =
(

a11 a12
a21 a22

)
,

then

(Ab) ∧ a + b ∧ (Aa)

=
∣∣∣∣
a11y1 + a12y2 x1
a21y1 + a22y2 x2

∣∣∣∣ +
∣∣∣∣
y1 a11x1 + a12x2
y2 a21x1 + a22x2

∣∣∣∣
= a11y1x2 − x1a22y2 + y1a22x2 − y2a11x1

= a11(y1x2 − y2x1 + a22(x2y1 − x1y2)

= a11

∣∣∣∣
y1 x1
y2 x2

∣∣∣∣ + a22

∣∣∣∣
y1 x1
y2 x2

∣∣∣∣
= (a11 + a22)(b ∧ a) = traceA(b ∧ a).

��
Lemma 2 Let a = (a1, a2)T, b = (b1, b2)T, c =
(c1, c2)T, and n = (n1, n2), A is a 2 × 2 matrix, A∗
is denoted as the adjoint of the matrix A, then we have
the formula as follows:

b ∧
{[

A + (b − Aa)n
n · a

]
c
}

= (nA∗) · b
n · a a ∧ c. (9)

Proof The formula (9) can be verified by some compli-
catedmatrix calculations. TheLemma2 is an important
fact and will be useful for deriving the third equality of
(37), which is amain technique in this paper to simplify
the non-smooth Melnikov function. ��
Lemma 3 If the equation ẇ(t) = A(t)w(t) + h(t)
satisfies the conditions for the existence and uniqueness
of solutions, then the solution of this equation with the
initial condition w(t0) = w0 can be given by w(t) =[
w0 +

∫ t

t0
h(s) exp

(∫ t

s
A(u)du

)
ds

]
.

Proof The Lemma 3 can be easily verified by the
method of variation of constant. The Lemma 3 is also
an important fact and will be useful for solving the

nonhomogeneous differential equations with variable
coefficients.

In order to study the global dynamics of system (3)
and (4), we rewrite the equivalent suspended system of
(3) and (4) to (10) and (11):
(
ẋ
ẏ

)
=

{
f−(x, y) + εg−(x, y, θ), (x, y) ∈ V−,

f+(x, y) + εg+(x, y, θ), (x, y) ∈ V+,

θ̇ = 1,

(10)

(x, y) �→ ρ̃ε(x, y) = (ρ̃1,ε(x, y), ρ̃2,ε(x, y)), (x, y) ∈ �,

(11)

where θ = t (mod T̂ ) ∈ S1.
In three-dimensional phase space R

2 × S1, by
extending the Lemma 4.5.1 and Lemma 4.5.2 in [7]
we get the following proposition: ��
Proposition 1 For ε = 0, under the assumptions
(H1)–(H2), the suspended system (10) and (11) has
a hyperbolic periodic orbit ψ0 = {(p0, θ) : p0 ∈
V−, θ ∈ S1}. Moreover, ψ0 has piecewise Cr two-
dimensional stable and unstable manifolds denoted by
Ws(ψ0) and Wu(ψ0), respectively, which intersect in
a two-dimensional homoclinic manifold

	 ≡
{
(γ (t), θ) ∈ R

2 × S1
}

.

For ε > 0 sufficiently small, the suspended sys-
tem (10) and (11) has a hyperbolic periodic orbit
ψε = {(pε, θ) : pε ∈ V−, θ ∈ S1} with pε =
p0 + O(ε) ∈ R

2. Moreover, ψε has piecewise Cr

two-dimensional stable manifold Ws(ψε) and unsta-
ble manifold Wu(ψε), which are ε− close to Ws(ψ0)

and Wu(ψ0), respectively.

In order to discuss Ws(ψε) and Wu(ψε) for per-
turbed system (10) and (11), basedon the ideapresented
by Kunze in [13], we fix θ0 ∈ S1 ∼= [0, T̂ ] and denote
by L , a line segment in the plane �θ0 = R

2 × {θ0} that
is perpendicular to the homoclinic orbit at γ+(0), and
therefore points in the direction of the normal vector
of f+(γ+(0)). Furthermore, denote by pε, θ0 the inter-
section of ψε, θ0 with �θ0 , and let qu,s(t, θ0, ε) be the
unique trajectory of system (10) and (11) that lie in
the unstable Wu(pε, θ0) and stable W

s(pε, θ0) of pε, θ0 ,
cross L at shortest distance to γ+(0) (see Fig. 4).

Let θ0 + T u,s(θ0, ε) be the time when the perturbed
orbit qu,s(t; θ0, ε) will cross the switching manifold,
denoted by τ uε and τ sε . Obviously,
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Fig. 4 The stable and unstable manifolds of pε(θ0)

τ uε : = θ0 + T u(θ0, ε) = θ0 + tu + O(ε),

τ sε : = θ0 + T s(θ0, ε) = θ0 + t s + O(ε). (12)

Based on the ahead of assumptions and notations, we
give some Lemmas.

Lemma 4 For each θ0 ∈ [0, T̂ ] and sufficiently small
ε > 0, there exist δi (ε) > 0, (i = 1, 2, 3, 4) such
that θ0 + tu − δ1(ε) < τ uε < θ0 + tu + δ2(ε) and
θ0+t s−δ3(ε) < τ sε < θ0+t s+δ4(ε), and the perturbed
orbit qu(t; θ0, ε) and qs(t; θ0, ε) can respectively be
expressed as

qu(t; θ0, ε) =
{
qu,−(t; θ0, ε) = γ̂ 1(t − θ0) + εqu,−

1 (t, θ0) + O(ε2), if t ∈ (−∞, τ uε ),

qu,+(t; θ0, ε) = γ̂ 2(t − θ0) + εqu,+
1 (t, θ0) + O(ε2), if t ∈ (τ uε , θ0)

(13)

with ρ̃ε(qu,−(τ uε ; θ0, ε)) = qu,+(τ uε ; θ0, ε)), and

qs(t; θ0, ε) =
{
qs,+(t; θ0, ε) = γ̂ 2(t − θ0) + εqs,+1 (t, θ0) + O(ε2), if t ∈ (θ0, τ

s
ε ),

qs,−(t; θ0, ε) = γ̂ 3(t − θ0) + εqs,−1 (t, θ0) + O(ε2), if t ∈ (τ sε ,+∞)
(14)

with ρ̃ε(qs,+(τ sε ; θ0, ε)) = qs,−(τ sε ; θ0, ε)), where

γ̂ 1(t − θ0)

=
{

γ 1−(t − θ0), if t ∈ (−∞, θ0 + tu),
γ
1, E
− (t − θ0), if t ∈ (θ0 + tu, θ0 + tu + δ2(ε))

is the solution of equation (ẋ, ẏ)T = f−(x, y) +
εg−(x, y, t) defined inR2, namely, γ 1, E

− (t − θ0) is the
extension of the solution γ 1−(t − θ0) in the V+ beyond
the switching manifold �, and

γ̂ 2(t − θ0)

=
⎧
⎨
⎩

γ
1, E
+ (t − θ0), if t ∈ (θ0+tu−δ1(ε), θ0+tu),

γ+(t − θ0), if t ∈ (θ0 + tu, θ0 + t s),
γ
2, E
+ (t − θ0), if t ∈ (θ0 + t s, θ0 + t s + δ4(ε))

is the solution of equation (ẋ, ẏ)T = f+(x, y) +
εg+(x, y, t) defined in R

2, namely γ
1, E
+ (t − θ0) and

γ
2, E
+ (t−θ0)are the extensions of the solutionγ+(t−θ0)

in the V− beyond the switching manifold �, and

γ̂ 3(t − θ0)

=
{

γ
2, E
− (t − θ0), if t ∈ (θ0 + t s − δ3(ε), θ0 + t s),

γ 2−(t − θ0), if t ∈ (θ0 + t s,+∞)

is the solution of equation (ẋ, ẏ)T = f−(x, y) +
εg−(x, y, t) defined inR2, namely, γ 2, E

− (t − θ0) is the
extension of the solution γ 2−(t−θ0) in the V+ beyond the
switching manifold �. Furthermore, qu,±

1 (t, θ0) and
qs,±1 (t, θ0) are the solutions of the following linearized
equation

ẇ = Df±(γ̂ i (t − θ0))w + g±(γ̂ i (t − θ0), t),

i = 1, 2, 3, (15)

where w = (w1, w2)
T ∈ R

2.

Proof The proof consists of a straightforward modifi-
cation of the proof for Lemma 4.5.2 of [7] for smooth
systems. In order to overcome the difficulties induced
by the discontinuity of vector fields on the switching
�, we only need to extend the solution γ (t − θ0) to
be γ̂ i (t − θ0) beyond the switching manifold and we
can show that the following argument does not depend
on the extension. Now, we define a separation between
the unstable manifold Wu(pε, θ0) and stable manifold
Ws(pε, θ0) on the section�θ0 along the direction of the
normal vector of f+(γ+(0)) as
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The Melnikov method for detecting chaotic dynamics 945

d(θ0) = f+(γ+(0)) ∧ (qu(θ0; θ0, ε) − qs(θ0; θ0, ε))

‖ f+(γ+(0))‖ .

(16)

By carrying on the Taylor expansion of the displace-
ment function defined in (16) to the first order in the
perturbation parameter ε near ε = 0 and obtain that

d(θ0) = ε
f+(γ+(0)) ∧ (qu,+

1 (θ0, θ0) − qs,+1 (θ0, θ0))

‖ f+(γ+(0))‖
+O(ε2). (17)

Let

�u(s),±(t, θ0) = f±(γ (t − θ0)) ∧ qu(s),±
1 (t, θ0), (18)

according to the (17) and (18), it is easy to get

d(θ0) = ε
�u,+(θ0, θ0) − �s,+(θ0, θ0)

‖ f+(γ+(0))‖ +O(ε2). (19)

We denote by

d(θ0) = ε
M(θ0)

‖ f+(γ+(0))‖ + O(ε2) (20)

where

M(θ0) = �u,+(θ0, θ0) − �s,+(θ0, θ0)

= [
�u,+(θ0, θ0) − �u,+(θ0 + tu, θ0)

]

+ [
�s,+(θ0 + t s, θ0) − �s,+(θ0, θ0)

]

+�u,+(θ0 + tu, θ0)

−�s,+(θ0 + t s, θ0). (21)

��

In the next main work, we want to derive M(θ0)

in a simple form. First, we calculate the derivative of
�u(s),±(t, θ0) with respect to t and obtain that

�̇u(s),±(t, θ0) = traceDf±(γ (t − θ0))�
u(s),±(t, θ0)

+ f±(γ (t − θ0))

∧g±(γ (t − θ0), t). (22)

We notice that �u,−(−∞, θ0) = �s,−(+∞, θ0) = 0
due to f−(P0) = 0 and qu(s),−

1 (t, θ0) are bounded.
Employing theLemma3 and integrating (22) from−∞
to θ0 + tu and employing the change of variables t →

t + θ0, we have

�u,−(θ0 + tu, θ0)

=
∫ tu

−∞
f−(γ 1−(t)) ∧ g−(γ 1−(t), t + θ0)

× exp

(∫ tu

t
traceDf−(γ 1−(s))ds

)
dt, (23)

Similar calculations give

�s,−(θ0 + t s, θ0)

= −
∫ +∞

t s
f−(γ 2−(t)) ∧ g−(γ 2−(t), t + θ0)

× exp

(∫ t s

t
traceDf−(γ 2−(s))ds

)
dt, (24)

�u, +(θ0, θ0) − �u, +(θ0 + tu, θ0)

=
∫ θ0

θ0+tu
f+(γ+(s − θ0)) ∧ g+(γ+(s − θ0), s)

× exp

(∫ θ0

s
traceDf+(γ+(m − θ0))dm

)
ds

μ=m−θ0�������
∫ θ0

θ0+tu
f+(γ+(s − θ0)) ∧ g+(γ+(s − θ0), s)

× exp

(∫ 0

s−θ0

traceDf+(γ+(μ))dμ

)
ds

t=s−θ0������
∫ 0

tu
f+(γ+(t)) ∧ g+(γ+(t), t + θ0)

× exp

(
−

∫ t

0
traceDf+(γ+(μ))dμ

)
dt, (25)

�s,+(θ0, θ0) − �s,+(θ0 + t s, θ0)

=
∫ θ0

θ0+t s
f+(γ+(s − θ0)) ∧ g+(γ+(s − θ0), s)

× exp

(∫ θ0

s
traceDf+(γ+(m − θ0))dm

)
ds

μ=m−θ0�������
∫ θ0

θ0+t s
f+(γ+(s − θ0)) ∧ g+(γ+(s − θ0), s)

× exp

(∫ 0

s−θ0

traceDf+(γ+(μ))dμ

)
ds

t=s−θ0������ −
∫ t s

0
f+(γ+(t)) ∧ g+(γ+(t), t + θ0)

× exp

(
−

∫ t

0
traceDf+(γ+(μ))dμ

)
dt. (26)

It is not easy to calculate straightly �u,+(θ0 + tu, θ0)
and �s,+(θ0 + t s, θ0) by the equation (18), since we
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do not know the exact qu,s
1 in the asymptotic expansion

of the solutions of the perturbed system (10) and (15).
In this paper, we can apply some skillful methods to
obtain the relationship between�u(s),+(θ0+ tu(s), θ0)

and�u(s),−(θ0+ tu(s), θ0). First, we need to obtain the
relationship between qu(s),+

1 (t, θ0) and qu(s),−
1 (t, θ0).

So we give some lemmas.

Lemma 5

qu,+
1 (θ0 + tu, θ0) =

(
∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

+Mqu,−
1 (θ0 + tu, θ0), (27)

qs,+1 (θ0 + t s, θ0) =
(

∂ρ̃−1
ε ((γ (t s))

∂ε
|ε=0

)T

+M
′qs,−1 (θ0 + t s, θ0), (28)

where the matrix M and M
′ are respectively given by

M = Dρ̃ε(γ (tu))|ε=0

+[γ̇+(tu) − Dρ̃ε(γ (tu))|ε=0γ̇
1−(tu)]n(γ (tu))

n(γ (tu)) · γ̇ 1−(tu)
,

(29)

M
′ = Dρ̃−1

ε (γ (t s))|ε=0

+[γ̇+(t s) − Dρ̃−1
ε (γ (t s))|ε=0γ̇

2−(t s)]n(γ (t s))

n(γ (tu)) · γ̇ 2−(t s)
,

(30)

Moreover,

�u,+(θ0 + tu, θ0)

= γ̇+(tu) ∧
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

+n(γ (tu))D∗ρ̃ε(γ (tu))|ε=0γ̇+(tu)

n(γ (tu)) · γ̇ 1−(tu)
�u,−

× (θ0 + tu, θ0), (31)

�s,+(θ0 + t s, θ0)

= γ̇+(t s) ∧
(

∂ρ̃−1
ε ((γ (t s))

∂ε
|ε=0

)T

+n(γ (t s))D∗ρ̃−1
ε (γ (t s))|ε=0γ̇+(t s)

n(γ (t s)) · γ̇ 2−(t s)
�s,−

× (θ0 + t s, θ0), (32)

where

Dρ̃ε(γ (tu))|ε=0

=

⎛
⎜⎜⎝

∂ρ̃1, ε(γ (tu))

∂x

∂ρ̃1, ε(γ (tu))

∂y
∂ρ̃2, ε(γ (tu))

∂x

∂ρ̃2, ε(γ (tu))

∂y

⎞
⎟⎟⎠

|ε=0

,

Dρ̃−1
ε (γ (t s))|ε=0

=

⎛
⎜⎜⎝

∂η̃1, ε(γ (t s))

∂x

∂η̃1, ε(γ (t s))

∂y
∂η̃2, ε(γ (t s))

∂x

∂η̃2, ε(γ (t s))

∂y

⎞
⎟⎟⎠

|ε=0

are 2 × 2 matrix, and D∗ρ̃ε(γ (tu))|ε=0 and D∗ρ̃−1
ε

(γ (t s))|ε=0 respectively denote the adjoint of
Dρ̃ε(γ (tu))|ε=0 and Dρ̃−1

ε (γ (t s))|ε=0.

Proof For t ∈ (τ uε , θ0) we have

qu,+(t; θ0, ε) =
(

ρ̃ε(q
u,−(τ uε ; θ0, ε), ε)

)T

+
∫ t

τ uε

( f+(qu,+(t; θ0, ε))

+ εg+(qu,+(t; θ0, ε), t))dt. (33)

Differentiating (33) with respect to ε and substituting
θ0 + tu into t and 0 into ε, we obtain

qu,+
1 (θ0 + tu, θ0)

=
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

+ Dρ̃ε(γ (tu))|ε=0q
u,−
1 (θ0 + tu, θ0)

+ [Dρ̃ε(γ (tu))|ε=0γ̇
1−(tu) − γ̇+(tu)]dτ

u
ε

dε
|ε=0.

(34)

Since qu,−(τ uε ; θ0, ε) ∈ �, we have

h(qu,−(τ uε ; θ0, ε)) = 0. (35)

Differentiating (35) with respect to ε and letting ε = 0,
we obtain

dτ uε
dε

|ε=0 = −n(γ (tu)) · qu,−
1 (θ0 + tu, θ0)

n(γ (tu)) · γ̇ 1−(tu)
. (36)
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Substituting (36) into (34), we can obtain the expres-
sions (27) and (28). Substituting (27) and (29) into (18),
we can obtain the expression (31) as follows:

�u,+(θ0 + tu, θ0)

= f+(γ (tu)) ∧ qu,+
1 (θ0 + tu, θ0)

= γ̇+(tu) ∧
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

+ γ̇+(tu) ∧ Mqu,−
1 (θ0 + tu, θ0)

= γ̇+(tu) ∧
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

+γ̇+(tu) ∧
(
Dρ̃ε(γ (tu))|ε=0

+
[
γ̇+(tu) − Dρ̃ε(γ (tu))|ε=0γ̇

1−(tu)
]
n(γ (tu))

n(γ (tu)) · γ̇ 1−(tu)

)

× qu,−
1 (θ0 + tu, θ0)

= γ̇+(tu) ∧
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

+ n(γ (tu))D∗ρ̃ε(γ (tu))|ε=0γ̇+(tu)

n(γ (tu)) · γ̇ 1−(tu)
γ̇ 1−(tu))

∧qu,−
1 (θ0 + tu, θ0)

= γ̇+(tu) ∧
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

+n(γ (tu))D∗ρ̃ε(γ (tu))|ε=0γ̇+(tu)

n(γ (tu)) · γ̇ 1−(tu)

�u,−(θ0 + tu, θ0), (37)

where the fourth equality is obtained directly by the
Lemma 2 if we let the column vectors a = γ̇ 1−(tu),
b = γ̇+(tu), c = qu,−

1 (θ0 + tu, θ0), and the matrix
A = Dρ̃ε(γ (tu))|ε=0.

The proof about the conclusions (28) and (32) is sim-
ilar with the aforementionedmethod; hence, we omit it.
Now substituting (23) and (26) into (21) and employing
the equations (31) and (32),we canobtain thefirst-order
non-smooth Melnikov-type function as follows:

M(θ0) = γ̇+(tu) ∧
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

−γ̇+(t s) ∧
(

∂ρ̃−1
ε ((γ (t s))

∂ε
|ε=0

)T

+n(γ (tu))D∗ρ̃ε(γ (tu))|ε=0γ̇+(tu)

n(γ (tu)) · γ̇ 1−(tu)

×
∫ tu

−∞
f−(γ 1−(t)) ∧ g−(γ 1−(t), t + θ0)

× exp

(∫ tu

t
traceDf−(γ 1−(s))ds

)
dt

+
∫ t s

tu
f+(γ+(t)) ∧ g+(γ+(t), t + θ0)

× exp

(
−

∫ t

0
traceDf+(γ+(μ))dμ

)
dt

+n(γ (t s))D∗ρ̃−1
ε (γ (t s))|ε=0γ̇+(t s)

n(γ (t s)) · γ̇ 2−(t s)

×
∫ +∞

t s
f−(γ 2−(t)) ∧ g−(γ 2−(t), t + θ0)

× exp

(∫ t s

t
traceDf−(γ 2−(s))ds

)
dt.

(38)

��
Now, we present the main theorem in this section to

study the global bifurcations and chaotic dynamics for
the non-smooth system (3) and (4).

Theorem 1 Let ε be sufficiently small, and all assump-
tions (H1)–(H2) are fulfilled, if there exists a number
θ0 ∈ S1 ∼= [0, T̂ ] such that

M(θ0) = 0, DM(θ0) �= 0,

then for ε be sufficiently small, Ws(ψε) and Wu(ψε)

intersect transversely near θ0.
We also give a special result of the first-order non-

smooth Melnikov-type function (38).

Proposition 2 Suppose the assumptions (H1)–(H2)
hold and the system (3) and (4) satisfies ρ̃ε(x, y) =
(ρ1,ε(x, y), ρ2,ε(x, y)) = (x, y), then the non-smooth
Melnikov-type function defined in (38) becomes

M(θ0) = n(γ (tu))γ̇+(tu)

n(γ (tu)) · γ̇ 1−(tu)

×
∫ tu

−∞
f−(γ 1−(t)) ∧ g−(γ 1−(t), t + θ0)

× exp

(∫ tu

t
traceDf−(γ 1−(s))ds

)
dt

+
∫ t s

tu
f+(γ+(t)) ∧ g+(γ+(t), t + θ0)

× exp

(
−

∫ t

0
traceDf+(γ+(μ))dμ

)
dt
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948 S. Li et al.

+ n(γ (t s))γ̇+(t s)

n(γ (t s)) · γ̇ 2−(t s)

×
∫ +∞

t s
f−(γ 2−(t)) ∧ g−(γ 2−(t), t + θ0)

× exp

(∫ t s

t
traceDf−(γ 2−(s))ds

)
dt.

(39)

Proof Since ρ̃ε(x, y) = (ρ1,ε(x, y), ρ2,ε(x, y)) =
(x, y), we have

∂ρ̃ε(γ (tu))

∂ε
= ∂ρ̃−1

ε (γ (t s))

∂ε
= (0, 0),

Dρ̃ε(x, y) = Dρ̃−1
ε (x, y) = D∗ρ̃ε(x, y)

= D∗ρ̃−1
ε (x, y) =

(
1 0
0 1

)
.

Hence, we can complete the proof through simple
calculations. ��
Proposition 3 Suppose the assumptions (H1)–(H2)
hold and the system (3) and (4) satisfies traceDf (x, y)
= 0, then the non-smooth Melnikov-type function
defined in (38) can be simplified to the following form

M(θ0) = γ̇+(tu) ∧
(

∂ρ̃ε(γ (tu))

∂ε
|ε=0

)T

− γ̇+(t s) ∧
(

∂ρ̃−1
ε ((γ (t s))

∂ε
|ε=0

)T

+ n(γ (tu))D∗ρ̃ε(γ (tu))|ε=0γ̇+(tu)

n(γ (tu)) · γ̇ 1−(tu)

×
∫ tu

−∞
f−(γ 1−(t)) ∧ g−(γ 1−(t), t + θ0)dt

+
∫ t s

tu
f+(γ+(t)) ∧ g+(γ+(t), t + θ0)dt

+ n(γ (t s))D∗ρ̃−1
ε (γ (t s))|ε=0γ̇+(t s)

n(γ (t s)) · γ̇ 2−(t s)

×
∫ +∞

t s
f−(γ 2−(t)) ∧ g−(γ 2−(t), t + θ0)dt.

(40)

Proposition 4 Suppose the assumptions (H1)–(H2)
hold, and the system (3) and (4) satisfies traceDf (x, y)
= 0 and ρ̃ε(x, y) = (ρ1,ε(x, y), ρ2,ε(x, y)) = (x, y),
then the non-smooth Melnikov-type function defined in
(38) can be further simplified to the following form

M(θ0) = n(γ (tu))γ̇+(tu)

n(γ (tu)) · γ̇ 1−(tu)
∫ tu

−∞
f−(γ 1−(t)) ∧ g−(γ 1−(t), t + θ0)dt

+
∫ t s

tu
f+(γ+(t)) ∧ g+(γ+(t), t + θ0)dt

+ n(γ (t s))γ̇+(t s)

n(γ (t s)) · γ̇ 2−(t s)∫ +∞

t s
f−(γ 2−(t)) ∧ g−(γ 2−(t), t + θ0)dt.

(41)

Nextwe apply the obtained results to study the bifur-
cations and chaotic dynamics of a concrete piecewise-
smooth linear system under a periodic and a viscous
damping.

3 Application

The equation considered in this example can be written
as{

ẋ = y,
ẏ = x + ε(−μy + f0 cos�t).

|x | < 1,

{
ẋ = y,
ẏ = −x + ε(−μy + f0 cos�t).

|x | > 1, (42)

where ε (0 < ε � 1) is a small parameter, μ is the
damping and f0 is the excitation.

The reset map is given as follows:

ρ̃ε(±1, y) =

⎧
⎨
⎩

(
±1,

y

1 + ερ0y

)
, y > 0;

(
±1,

y

1 − ερ0y

)
, y < 0.

(43)

where ρ0 is a positive parameter. The inverse mapping
of ρ̃ε(x, y) can be expressed as:

ρ̃−1
ε (±1, y) =

⎧⎨
⎩

(
±1,

y

1 − ερ0y

)
, y > 0;

(
±1,

y

1 + ερ0y

)
, y < 0.

(44)

The unperturbed system of (42) and (43), which is a
piecewise-definedHamiltonian systemand obtained by
letting ε = 0, can be written in the following form:

ẋ = ∂H

∂y
,

ẏ = −∂H

∂x
, (45)
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The Melnikov method for detecting chaotic dynamics 949

Fig. 5 The homoclinic orbit of the system (42) and (44)

where the piecewise-defined Hamiltonian function is

H(x, y) =
{
H−(x, y) = 1

2 y
2 − 1

2 x
2 + 1, |x | < 1,

H+(x, y) = 1
2 y

2 + 1
2 x

2, |x | > 1.
(46)

The equilibria of the unperturbed system (42) and (43)
can be easily given by (0, 0). For −1 < x < 1, the
eigenvalues of the Jacobian matrix at the equilibria of
the unperturbed system of (42) can be obtained to show
that (0, 0) is a saddle point. Furthermore, there exists
a pair of homoclinic orbits connecting (0, 0) to itself.
The phase structure of the unperturbed system (42) and
(44) is shown in Fig. 5. The right homoclinic orbit can
be divided by the vertical line x = 1 into an ellipti-
cal segment, marked as γ+(t), and two line segments,
marked as γ 1−(t) and γ 2−(t) which meet at the point
(0, 0) as t → −∞ and t → +∞, respectively. The
analytical expression of the homoclinic orbit is given
by

γ (t) =
⎧⎨
⎩

γ 1−(t) = (exp(t + T ), exp(t + T ))T, f or t ≤ −T
γ+(t) = (

√
2 cos t, −√

2 sin t)T, f or − T ≤ t ≤ T
γ 2−(t) = (exp(−(t − T )), − exp(−(t − T )))T, f or t ≥ T

(47)

where

T = π

4
. (48)

Applying the reset mapping (43) and (44), we have the
conclusion:

γ (tu) = γ (−T ) = γ 1−(−T ) = γ+(−T ) = (1, 1)T,

γ (t s) = γ (T ) = γ 2−(T ) = γ+(T ) = (1, −1)T, (49)

and

∂ρ̃ε(γ (tu))

∂ε
|ε=0 = (0,−ρ0),

∂ρ̃−1
ε (γ (t s))

∂ε
|ε=0 = (0,−ρ0),

Dρ̃ε(γ (tu(s))|ε=0 = Dρ̃−1
ε (γ (tu(s))|ε=0 =

(
0 0
0 1

)

D∗ρ̃ε(γ (tu(s))|ε=0 = D∗ρ̃−1
ε (γ (tu(s))|ε=0 =

(
1 0
0 0

)

(50)

Considering the expressions and the non-smoothMel-
nikov function with g(x, y) = (0, −μy + f0 cos�t)
and n(h(x, y)) = grad(h(x, y)) = (1, 0), we obtain
the corresponding Melnikov function for this example
as follows:

M(θ0) = γ̇+(−T ) ∧
(

∂ρ̃ε(γ (−T ))

∂ε
|ε=0

)T

− γ̇+(T ) ∧
(

∂ρ̃−1
ε ((γ (T ))

∂ε
|ε=0

)T

+
∫ −T

−∞
f−(γ 1−(t)) ∧ g−(γ 1−(t), t + θ0)dt

+
∫ T

−T
f+(γ+(t)) ∧ g(γ (t), t + θ0)dt

+
∫ +∞

T
f−(γ 2−(t)) ∧ g−(γ 2−(t), t + θ0)dt.

(51)

Furthermore, we obtain

M(θ0) = − 2ρ0 − 2μT

+ f0(B1(T ) + B2(T )) sin(�θ0),
(52)

where

B1(T ) = 2(sin(�T ) + � cos(�T ))

�2 + 1
,

B2(T ) = −2(sin(�T ) + � cos(�T ))

�2 − 1
,

T = π

4
,
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Fig. 6 The chaotic thresholds for system (42) and (44) obtained by the Melnikov analysis: a for ρ0 = 0.2, b for μ = 0.01

In the Melnikov function obtained above, the corre-
sponding parameter T has been given in (48). It can be
seen that

M(θ0) = 0, (53)

has a simple zero for θ0 if and only if the following
inequality holds:

2ρ0 + 2μT < f0|(B1(T ) + B2(T ))| (54)

Next, in the following numerical simulations, we
are going to verify the criterion obtained in the above
section. When the impacting coefficient ρ0 of the reset
map ρ̃ε is given as ρ0 = 0.2, the thresholds of param-
eters for the existence of a transverse homoclinic orbit
of the system (42) and (43) obtained by the Melnikov
function are shown in Fig. 6a with different parame-
ters μ. When the value of the damping μ is chosen as
μ = 0.01, the thresholds of parameters for the exis-
tence of a transverse homoclinic cycle of the system
(42) and (43) obtained by the Melnikov function are
shown in Fig. 6b with different impacting parameters
ρ0. Above the detected boundaries in Fig. 6a, b, compli-
cated dynamics near the unperturbed homoclinic cycle
will be generated.

When the value of the excitation parameter is
restricted as f0 = 0.2, the detected thresholds of
parameters for system (42) and (44) obtained by the
Melnikov function are shown in Fig. 7a with different

parameters μ. When we restrict the value of the damp-
ing μ = 0.2, the detected thresholds of parameters for
system (42) and (44) obtained by theMelnikov function
are shown in Fig. 7b for different excitation parameters
f0. Below the detected boundaries in Fig. 7a, b, compli-
cated dynamics near the unperturbed homoclinic cycle
will be generated.

We have employed the Melnikov function to obtain
the thresholds of parameters for the existence of a
transversal homoclinic orbit of system (42) and (44).
All parameters chosen in the following numerical anal-
ysis guarantee the criterion for the existence of a trans-
verse homoclinic orbit.

For one case, we do not consider the influence of the
reset map (43) and (44) by letting ρ0 = 0. Firstly, we
restrict the value of the parameter ε and the frequency
� of the external excitation to ε = 0.9 and � = 1.05.
Chaotic motions are found and shown in Fig. 8a, b.
The parameters are, respectively, chosen as μ = 0.75,
f0 = 1.3 in Fig. 8a and μ = 1.08, f0 = 1.25 in
Fig. 8b.

Secondly, we restrict the damping μ and the per-
turbation parameter ε, chaotic motions are found and
shown in Fig. 9a, b. The value of amplitude f0 and
the frequency � of the external excitation are, respec-
tively, chosen as f0 = 1.25, � = 0.92 in Fig. 9a and
f0 = 1.05, � = 0.85 in Fig. 9b.
For another case, we consider the influence of the

reset map (43) and (44) by letting ρ0 = 0.05 and
ρ0 = 0.35, respectively. Chaotic motions are found
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Fig. 7 The chaotic thresholds for system (42) and (44) obtained by the Melnikov analysis: a for f0 = 0.2, b for μ = 0.2

Fig. 8 The phase portraits of the chaotic motions for system (42) and (43): a for μ = 0.75, f0 = 1.3, b for μ = 1.08, f0 = 1.3

and shown in Fig. 10a, b. The parameters are chosen as
μ = 0.8, f0 = 1.2 and � = 1.05.

4 Conclusions

In this paper, we turn our attention from the famous
Melnikov method for smooth systems to a general
planar hybrid piecewise-smooth system under a time-
periodic perturbation. We consider a general system
such that its unperturbed part has a piecewise-smooth
homoclinic orbit transversally crossing a switching

manifold. The switching manifold we considered is a
hypersurface which divides the plane into two zones,
and the dynamics in each zone is governed by a smooth
system. A reset map will be worked and describes the
instantaneous impacting rule when a trajectory arrives
at the switching manifold. Then, we employ some per-
turbation techniques to derive a Melnikov-type func-
tion to measure the separation of the unstable man-
ifold and stable manifold under perturbation, which
extends the classicalMelnikov function for smooth sys-
tems. Finally, we apply the obtained results to study
the chaotic dynamics of a concrete piecewise smooth
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Fig. 9 The phase portraits of the chaotic motions for system (42) and (43): a for f0 = 1.25 and � = 0.92, b for f0 = 1.05 and
� = 0.85.

Fig. 10 The phase portraits of the chaotic motions for system (42) and (43): a for ρ0 = 0.05, b for ρ0 = 0.35

system. Numerical simulations are also presented to
show that the analytical non-smoothMelnikov method
is an effective tool to study the global bifurcations and
chaotic dynamics for non-smooth systems.
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16. Battelli, F., Fečkan, M.: Homoclinic trajectories in discon-
tinuous systems. J. Dyn. Differ. Equat. 20, 337–376 (2008)
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18. Battelli, F., Fečkan, M.: Bifurcation and chaos near sliding
homoclinics. J. Differ. Equat. 248, 2227–2262 (2010)
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