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Abstract In this paper, nonlinear dynamics of an
unbalanced composite spinning shaft are studied.
Extensional–flexural–flexural–torsional equations of
motion are derived via utilizing the three-dimensional
constitutive relations of the material and Hamilton’s
principle. The gyroscopic effects, rotary inertia and
coupling due tomaterial anisotropy are included, while
the shear deformation is neglected. To analyze the rotor
dynamic behavior, the full form of the equations with-
out any simplification assumption (e.g., stretching or
shortening assumption) is used. Themethod ofmultiple
scales is applied to the discretized equations.An analyt-
ical expression as a function of the system parameters
describing the forced vibration of a spinning composite
shaft in the neighborhood of the primary resonance is
obtained. The discretization is done with both one and
two modes, and the results are compared. It is shown
that although the excitation is tuned in the neighbor-
hood of the first mode, one-mode discretization is not
sufficient and it leads to inaccurate results. It shows the
necessity of employing at least twomodes in discretiza-
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tion due to the coupling in the equations. The effects
of the external damping, eccentricity and the lamina-
tion angle on the vibration amplitude are investigated.
In addition, the effect of the extensional–torsional cou-
pling on the frequency response curves is investigated.
To validate the perturbation results, numerical simula-
tion is used.
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List of symbols

a f 1 Amplitude of forward motion
a f 2 Amplitude of backward motion
aki (i = 1, 2) Amplitude of longitudinal motion
agi (i = 1, 2) Amplitude of angular motion
A11 Longitudinal stiffness
B16 Extensional–torsional coupling term
C External damping coefficient
D11, D66 Flexural and torsional stiffness
e Strain along the shaft centerline
ez, ey Eccentricity distribution with respect

to the y- and z-axes
I1, Ip Polar mass moment of inertia of the

shaft
I2 Diametrical mass moment of inertia of

the shaft
I0,m Mass per unit length of the shaft
l Length of the shaft
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ri , ri+1 Inner and outer radii of the i th layer of
laminate

u Longitudinal displacement
v,w Transverse displacements
Q Laminate stiffness matrix
Q̄ Lamina stiffness matrix
φ Torsional deformation angle
ρ Density of the i th layer of laminate
ωi , i = 1 − 3 Angular velocities of the local frame
� Spinning speed

1 Introduction

Without doubt, spinning shafts can be considered as a
vital part in various mechanical devices such as auto-
mobiles and helicopters in a long range of history up to
now. Composite material shafts have also been investi-
gated in recent decades as a new reliable potential can-
didates for replacement of conventional metallic shafts
in a vast area of applications. A composite shaft not
only has a great strength-to-weight ratio, but also has a
lower vibration level and a longer service life compared
to itsmetallic counterpart. According to these consider-
able benefits, various investigations have been carried
out to analyze these shafts which have led to different
mathematical models describing dynamic behavior of
composite material shafts.

Symonds and Zinberg [1], for example, used an
equivalent modules beam theory (EMBT) to model
composite shaft and compared the critical speed with
those of the tests they had performed. dos Reis et al.
[2] considered Timoshenko beam theory with the Don-
nell thin shell theory to derive the stiffness matrix.
They employed an approximate finite element of Ruhl
and Booker [3] to derive the equations of motion of
the shaft. The model was used to calculate the critical
speed.Bert [4] later in 1992 usedEuler–Bernoulli beam
theory to present a model which include gyroscopic
as well as bending–torsion coupling effect. Kim and
Bert [5] employed a shell theory of first-order approx-
imation to derive the equation of motion. They used
their model to obtain the critical speed. Bert and Kim
[6] adopted Bresse–Timoshenko beam theory to derive
the governing equations. They had shown that the trans-
verse shear deformation effect is important in the deter-
mination of the critical speed of short shafts. Singh and
Gupta [7] presented two models by invoking EMBT
and layer-wise beam theory for each one of them. The

model included bending and stretching deformation
effects. It was shown that two models result in differ-
ent critical speed in the case of asymmetric lamination.
Chen and Peng [8] adopted a Timoshenko beam the-
ory to obtain the equations of motion. They studied
the stability condition of a composite shaft under peri-
odic axial compressive load by employing the finite
element method. In 2001, Song et al. [9] further devel-
oped a model for thin-walled composite shaft based
on a thin-walled beam theory. The model was used to
investigate the natural frequencies and stability in the
case of axial edge loads and variation of lamination
angle. Chang et al. [10] presented a model based on
first-order Timoshenko beam theory and adopted finite
element method to derive the governing equations. The
model was used to investigate the critical speed, natu-
ral frequencies, mode shapes and the transient response
caused by unbalance force. Chang et al. [11] ana-
lyzed the vibration of a composite shaft containing ran-
domly oriented reinforcement. They adopted theMori–
Tanakamean-field theory to account for the interactions
at finite concentrations of reinforcements in the com-
posite material. The finite element method was used
to investigate the natural frequencies of the station-
ary shafts, and the whirling speeds as well as the crit-
ical speeds of rotating shafts. Banerjee and Su [12]
developed the dynamic stiffness matrix of a spinning
composite beam to analyze free vibration of a compos-
ite shaft. Hamilton’s principle was used to derive the
governing equations. They applied Wittrick–Williams
algorithm to the resulting dynamic stiffness matrix to
obtain the natural frequencies. Themodel also included
torsion–bending coupling effect. Sino et al. [13] intro-
duced a simplified homogenized beam theory (SHBT)
to evaluate natural frequencies and instability thresh-
olds. Badi et al. [14] employed finite element analysis
(FEA) to examine the effects of fiber orientation angles
and stacking sequence on the torsional stiffness, natural
frequencies, bending strength fatigue, life and failure
modes of composite tubes. Experimental testswere car-
ried out on a composite drive shaft to validate the FEA
model. Montagnier and Hochard [15] considered Tim-
oshenko beam model to develop a formulation for the
flexural vibration of a composite driveshaft mounted
on viscoelastic supports. They studied the optimiza-
tion by invoking the genetic algorithm. Montagnier
and Hochard [16] later used the Rayleigh–Timoshenko
equation to study the dynamic of a supercritical com-
posite shaft mounted on viscoelastic supports to pre-
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dict instabilities. They investigated the effects of dif-
ferent factors such as rotary inertia, gyroscopic forces,
transverse shear and the supports stiffness. They also
included hysteric damping in their analysis. The most
effective factors were the transverse shear and supports
stiffness. The effects of composite stacking sequence,
the shaft length and supports stiffness on the threshold
speed were studied in the paper. Yongshen et al. [17]
employed variational asymptotic method (VAM) and
Hamilton’s principle to derive the equations of motion
of a composite shaft. The effects of fiber orientation,
ratios of length over radius, ratios of radius over thick-
ness and shear deformation on natural frequency and
critical speeds were investigated. The next year Yan
Qing Wang [18] studied the large-amplitude (geomet-
rically nonlinear) vibrations of rotary laminated com-
posite circular cylindrical shells. The shell was sub-
jected to radial harmonic excitation in the neighbor-
hood of the lowest resonance. The Donnell’s nonlinear
shallow shell theory was utilized to consider nonlin-
earities due to the large-amplitude shell motion. The
method of harmonic balance was applied to investigate
the forced vibration response of the two-degrees-of-
freedom system. The stability of analytical steady-state
solution was analyzed. The effect of rotating speed on
the nonlinear dynamic response of the system was also
investigated. Yongshen et al. [19] investigated the pri-
mary resonances of a composite nonlinear shaft using
thin-walled beam theory. Nonlinearity was due to von
Karman effect. All coupling terms were neglected, and
equations were reduced to flexural–flexural ones.

Using accurate analytical solution results in a good
prediction of the system’s behavior and could definitely
cause the performance of the shafts made of composite
materials to improve and provides a better understand-
ing of underlying physics concepts and highly complex
interactions of the system encountered in cases of non-
linear vibration phenomena. However, the usual proce-
dure in composite shaft vibration analysis in nonlinear
cases is numeric. The model is usually assumed linear
when theproblem is solved analytically. There are some
nonlinear analytical investigations considering vibra-
tions of spinning metallic shafts. For example, Hos-
seini and Khadem [20] used themultiple scales method
to analyze the free vibration of a rotating shaft with
nonlinearity in curvature and inertia. They found that
both forward and backward natural frequencies were
excited. An analytical expression for transverse vibra-
tion in two planes was obtained. Later same authors

[21] investigated combination resonances in a rotating
shaft. They used the harmonic balance method to ana-
lyze the system and obtained the frequency response
curve. The effects ofmassmoment of inertia, eccentric-
ity and external damping coefficient were studied. The
loci of saddle node bifurcation points were also inves-
tigated. Khadem et al. [22] adopted the method of mul-
tiple scales to analyze the primary resonances of a sim-
ply supported in-extensional rotating shaft with large
amplitudes. The effects of diametrical mass moment
of inertia, eccentricity and external damping as well
as bifurcation points were investigated. Shahgholi and
Khadem [23] studied primary and parametric reso-
nances of a nonlinear rotating asymmetrical shaft with
unequal mass moments of inertia and bending stiff-
ness in the direction of principle axes. The method of
multiple scales was applied. The influences of inequal-
ity of mass moments of inertia and bending stiffness
and inequality between two eccentricities both corre-
sponding to the principle axes were investigated. Hos-
seini and Zamanian [24] studied the free vibration of
a simply supported rotating shaft with stretching non-
linearity. Rotary inertia and gyroscopic effects were
included, but shear deformation was neglected. The
equations of motion were derived with the aid of the
Hamilton’s principle. The method of multiple scales
was applied directly to the complex form of the equa-
tions to analyze the free vibration. An analytical solu-
tion describing the nonlinear vibration in two trans-
verse planes was obtained. Again it was shown that
both forward and backward natural frequencies were
excited. The results were validatedwith numerical sim-
ulation. Pai et al. [25] analyzed dynamic characteris-
tic of a downward vertical spinning Rayleigh beams
with six different sets of boundary conditions in both
linear and nonlinear methods. They showed that an
important linear term was missing in many reports in
the literature because of inconsistent use of nonlinear
terms in derivation. The influences of rotary inertia,
spinning speed, Coriolis and centrifugal forces, slen-
derness and gravity on forward and backward whirling
speeds, whirling mode shapes and critical speeds were
investigated. They found that there are infinite forward
and backward critical speeds for a spinning Rayleigh
beam.Hosseini [26] investigated the stability and bifur-
cations in a simply supported rotating shaft. The shaft
was modeled as an in-extensional spinning beam with
large amplitude. The bifurcations considered was Hopf
and double zero eigenvalues. Center manifold theory
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and the method of normal form were used to obtain
analytical expression. Hosseini et al. [27] investigated
free vibration of an in-extensional spinning beam with
six general boundary conditions. Nonlinearities were
due to curvature and inertia. Rotary inertia and gyro-
scopic effects were included, while shear deformation
was neglected. The method of multiple scales was used
to obtain an analytical expression for lateral vibration
in two planes. Shahgholi and Khadem [28] studied the
Hopf and double bifurcations analysis of an asymmetri-
cal rotating shaft with stretching nonlinearity. The shaft
was composed of viscoelasticmaterial whichwasmod-
eled using a Kelvin–Voigt model. The center manifold
theory was utilized to study the dynamic of the system.
Zhu and Chung [29] developed new nonlinear model
based on Bernoulli–Euler and von Karman nonlinear
strain theory for a spinning beam. Extensional–flexural
coupling was included.

There are also a number of researches that have dealt
with cylindrical shell. For example, Wang et al. [30]
studied nonlinear travelling wave response of a can-
tilever circular cylindrical shell. The shell was sub-
jected to a concentrated harmonic force moving in a
concentric circular path at a constant velocity. They
used Donnell’s shallow shell theory to analyze mod-
erately large vibration. The method of harmonic bal-
ance was adopted to investigate the nonlinear dynamic
response in forced oscillation of the system. They also
studied the stability of period solution. Wang et al.
[31,32] analyzed nonlinear dynamic response of a can-
tilever rotating circular cylindrical shell with preces-
sion of vibrating shape subjected to a harmonic excita-
tion. They used Donnell’s shallow shell theory. Wang
et al. [33] studied the nonlinear vibration of a can-
tilever cylindrical shell under a concentrated harmonic
excitation moving in a concentric circular path. They
developed the method of averaging to study the non-
linear traveling wave responses of the multi-degrees-
of-freedom system. They used the averaged system to
investigate the bifurcation phenomenon. Wang et al.
[34] studied the nonlinear vibration of a thin lami-
nated composite cylindrical shellmoving in axial direc-
tion having internal resonances. They developed an
improved nonlinear model and used harmonic balance
method to analyze the nonlinear dynamic response.

The shaft models which were mentioned above have
an acceptable accuracy in small amplitude, but none of
them has dealt with large amplitude except for those
of the metallic shafts. Most researchers have also used

numeric methods for dealing with nonlinear problems
in composite rotors. In this paper, a new set of nonlin-
ear equations is derived for composite spinning shafts
based on Bernoulli–Euler theory. Of particular inter-
est in this study is that the governing equations include
the extensional–flexural–flexural–torsional vibrations
of the spinning shaft with geometrical nonlinearity and
linear couplings due to thematerial anisotropy.Without
any simplifying assumption (e.g., shortening or stretch-
ing assumption), these equations are employed to inves-
tigate the nonlinear dynamics behavior using pertur-
bation theory. Noted that in previous works [20–24],
with employing these assumptions, the equations were
reduced to flexural–flexural ones. But, in the present
paper, due to coupling presence, full version of the
equations is used. The equations include gyroscopic as
well as extensional–flexural–torsional coupling effects.
Shear deformation is neglected due to the assump-
tion that the shaft is slender. The equations of motion
are derived by employing the Hamilton’s principle. To
study the forced vibration of the spinning composite
shaft, it is assumed that there is an unbalance force
due to the imperfection in the composite shaft geome-
try and the shaft is hinged at both ends. The equations
are discretized using the Galerkin method, and then,
the method of multiple scales is used to analyze the
primary resonance. Although the spin is tuned in the
neighborhood of the first mode, one-mode discretiza-
tion is not sufficient due to the second-order nonlin-
ear terms existing in the equations of motion. The dis-
cretization is done with both one mode and two modes,
and the results are compared which shows discrepancy
between amplitudes in the neighborhood of the pri-
mary resonance. This is an important result showing
that the one-mode discretization is not always accurate.
A comparison is made between amplitude variations of
these two cases. There is no assumption in the stacking
sequence which means lamination can be either sym-
metric or asymmetric. The effects of the external damp-
ing, eccentricity and the lamination angle on the vibra-
tion amplitude are investigated.Each result is compared
with numerical simulation to validate the solution.

2 Equations of motion

Figure 1 shows a composite hollow shaft made of
boron/epoxy laminas that has ten layers, each one with
a specific fiber orientation angleη. The shaft is spinning
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Fig. 1 Principal coordinate
axes on an arbitrary layer of
the shaft

with a constant angular velocity � about its longitudi-
nal axis (i.e.,X-axis) and has a length of l. The bearings
are stiff in comparison with the shaft so the bound-
ary conditions can be assumed as hinge. The layup is
[90◦/45◦/ − 45◦/0◦

6/90
◦] starting from the inside sur-

face of the shaft. In this section, extensional–flexural–
flexural–torsional equations of the shaft are derived.
The nonlinearity due to the large deformation is con-
sidered in the equations.

Figure 1 shows a composite shaft with the cylin-
drical and principal coordinates systems attached to it.
Cylindrical coordinate system denoted by x − r − τ

shows the general direction of the shaft, but the princi-
pal coordinate system denoted by 1-2-3 is attached to
an arbitrary lamina and depicts the principal directions
of the material.

2.1 Kinetic and strain energies

Here, the kinetic and strain energies will be derived.
Figure 2 shows a schematic of a deformed rotating
composite shaft. There are two coordinate systems. The
frame X−Y−Z is an inertial coordinate system posi-
tioned at point O , and frame x−y−z is a local coordi-
nate system fixed to the centerline of the shaft.

The following assumptions aremade concerning the
description of the composite shaft motion:

1. The rotating shaft is hinged at both ends. Indeed, it
is assumed that the bearings are much stiffer than
of the shaft; so, the compliance of the bearing is
negligible.

2. The shaft is hollow and has a uniform annular cross
section.

3. The shaft is spinning at a constant angular velocity
about the axial coordinate.

Fig. 2 A schematic of the deformed shaft and the local coordi-
nates, x−y−z

4. The shaft is slender; so, the gyroscopic effects is
included, but shear deformation is neglected.

5. Amplitude is large, and this leads to geometrical
nonlinearity.

6. Dissipation in the shaft ismodeled as viscous damp-
ing.

7. The material in every layer is linear elastic and
macroscopic. The shaft ismodeledwith orthotropic
material property.

The kinetic energy of the shaft can be expressed as [20]

T = 1

2

∫ l

0
I0(u̇

2 + v̇2 + ẇ2) + IPω
2
1

+I2(ω
2
2 + ω2

3)dx (1)

where ωi (i = 1, 2, 3) are angular velocities of local
frame x−y−z with respect to frame X−Y−Z and u, v
andw are the displacements of the local frame x−y−z
in X , Y and Z directions, respectively. In addition,

I0 = π

n∑
i=1

ρi (r
2
i+1 − r2i ),
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Fig. 3 Euler angles and the frames rotation sequence

IP = π

2

n∑
i=1

ρi (r
4
i+1 − r4i ),

I2 = π

4

n∑
i=1

ρi (r
4
i+1 − r4i ) (2)

in which n is the number of layers in the laminate, ρi is
the density of the i th layer, and ri and ri+1 are inner and
outer radii of the i th layer, respectively. In the above,
I0 is mass per unit length, IP, and I2 are polar and
diametrical mass moment of inertia, respectively.

To obtain the orientation of the local frame x−y−z
with respect to frame X−Y−Z , Euler angles are used.
Figure 3 shows how inertial frame X−Y−Z with three
successive rotations ψ, θ and β coincide with the local
frame x−y−z. First, frame X−Y−Z rotates about Z -
axis with angle ψ to coincide with frame X1−Y1 −
Z . This frame rotates about Y1-axis with angle θ to
coincidewith frame X2−Y1−Z2, andfinally, this frame
rotates about X2-axis with angle β to coincide with
frame x−y−z.

By use of the aforementioned Euler angles, angular
velocity of the local frame x−y−z with respect to the
inertial frame X−Y−Z becomes [20]

ω = ω1e1 + ω2e2 + ω3e3
= (β̇ − ψ̇ sin θ)e1 + (ψ̇ sin β cos θ + θ̇ cosβ)e2

+(ψ̇ cosβ cos θ − θ̇ sin β)e3 (3)

For a constant spin rate, the rotation angle β can be
resolved as β = φ + �t ; the variable φ is the angular
displacement of the cross section due to shaft torsional
deformation, and �t is rigid body rotation of the shaft
about x-axis.

The kinetic energy Te, which is due to the eccentric-
ity, can be written as [21]

Te = 1

2

∫ l

0
I0�

2
[
e2y(x) + e2z (x)

]

−2I0�
{[
ez(x)v̇ + ey(x)ẇ

]
sin β

+ [
ey(x)v̇ − ez(x)ẇ

]
cosβ

}
dx (4)

where ey(x) and ez(x) denote the eccentricities with
respect to y- and z-axes, respectively.

The following form of the strain expression of the
shaft is assumed in order to derive the strain energy
[20]

εxx = e + zρy − yρz

γxy = −zρx

γxz = yρx (5)

where ρ is the curvature of the shaft and in the local
frame (x−y−z) computed as

ρ = ρx ex + ρyey + ρzez

= (
ϕ′ − ψ ′ sin θ

)
ex + (ψ ′ sin ϕ cos θ

+θ ′ cosϕ)ey + (
ψ ′ cosϕ cos θ − θ ′ sin ϕ

)
ez (6)

If shear deformation is neglected, angles ψ and θ can
be related to the displacements as [20]

ψ = sin−1

(
v′√

(1 + u′)2 + v′2

)

θ = sin−1

(
−w′√

(1 + u′)2 + v′2 + w′2

)
(7)

It is more convenient to express the stress–strain rela-
tion in cylindrical coordinate. Tomeet the requirement,
a transformation matrix is employed as follows [10]⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx
εττ

εrr
γxτ
γrτ
γxr

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 n2 m2 0 −2mn 0
0 m2 n2 0 2mn 0
0 0 0 −n 0 m
0 −mn mn 0 m2 − n2 0
0 0 0 m 0 n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
γxy
γyz
γxz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
(8)

where m = cos(τ ) and n = sin(τ ).
Substituting Eq. (5) into Eq. (8) and letting y =

r cos(τ ) and z = r sin(τ ), it is found

εxx = e − r cos(τ )ρz + r sin(τ )ρy

εxτ = rρx

εττ = εrr = εrτ = εxr = 0 (9)
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Finally, the stress–strain relation can be written as
follows

σxx = Q̄11εxx + Q̄16γxτ

τxτ = Q̄16εxx + Q̄66γxτ (10)

The strain energy for a composite shaft can be
expressed as

Us = 1

2

∫
v

(σxxεxx + σrrεrr + σττ εττ

+τxrγxr + τxτ γxτ + τrτ γrτ ) dV (11)

By substituting Eqs. (9) and (10) into Eq. (11), the
strain energy becomes

Us = 1

2

[
A11e

2 + D11(ρ
2
z + ρ2

y)

+D66ρ
2
x + 2B16ρx e

]
(12)

where

A11 = π

n∑
i=1

Q11i (r
2
i+1 − r2i ),

B16 = 2π

3

n∑
i=1

Q16i (r
3
i+1 − r3i )

D11 = π

4

n∑
i=1

Q11i (r
4
i+1 − r4i ),

D66 = π

2

n∑
i=1

Q66i (r
4
i+1 − r4i ) (13)

where A11 is longitudinal stiffness, D11 is bending stiff-
ness, D66 is torsional rigidity and B16 is extensional–
torsional coupling term. Parameters Q11, Q16 and Q66

are presented in “Appendix 1.”

2.2 Derivation of equations of motion

Considering the kinetic and strain energy expressions
obtained above, the equations of motion can be derived
by invoking the Hamilton’s principle. First, Eq. (7) is
substituted into Eqs. (3) and (6) to compute the curva-
ture and angular velocity. Then, the results are substi-
tuted into the kinetic and strain energies, expanded to
Taylor series and only the terms which are up to O(ε3)

are retained. Finally, by applying Hamilton’s principle
to the computed kinetic and strain energies, the follow-
ing is obtained

I0ü − A11

(
v′v′′ + w′w′′ − v′2u′′ − w′2u′′

+u′′ − 2v′u′v′′ − 2w′u′w′′)
−B16

(−6u′v′′′w′ + 2w′′v′u′′ − 6u′′v′′w′

+2v′′w′′ − 4u′v′′w′′ − 2w′φ′w′′ − 2φ′v′v′′

−w′2φ′′ − φ′′v′2 + 2u′w′′′v′

+2v′′′w′ + 2φ′′) − D11
(−5v′u′′v′′′

−4v′u′′′v′′ − 3v′′u′v′′′ − 3w′′u′w′′′ + v′v(I V )

−5w′′′w′u′′ − 3w(I V )w′u′ − 4w′′w′u′′′

−2v′′2u′′ + w(I V )w′ + v′′v′′′ − v′2u(I V )

−w′2u(I V ) − 2w′′2u′′ − 3v′u′v(I V ) + w′′w′′′)

−D66
(
φ′w′′′v′ + 2φ′′w′′v′ − φ′v′′′w′

+φ′′′w′v′) − I2
(−ẅ′w′′ − v̈′′v′

−v̈′v′′ − ẅ′′w′ + v′2ü′′

+w′2ü′′ + 2w′ẇ′′u̇′ + 2w′ẇ′u̇′′

+3v̈′′v′u′ + 3v̈′v′′u′

+3v̈′v′u′′ + 2v′′v̇′u̇′ + 2v′v̇′′u̇′

+2v′v̇′u̇′′ + 2w′′ẇ′u̇′ + 3ẅ′′w′u′

+3ẅ′w′′u′ + 3ẅ′w′u′′ + 2v′ü′v′′ + 2w′ü′w′′)
−Ip

(
�
(
3v′u′ẇ′ − 3v̇′w′u′′ + v̇′′w′ + v̇′w′′

−3v̇′′w′u′ − 3v̇′w′′u′ − v′ẇ′′ + 3v′′u′ẇ′

+3v′u′′ẇ′ − v′′ẇ′)
−φ̈v′′w′ − φ̇v′′ẇ′ − φ̈v′w′′ − φ̈′v′w′ − φ̇′v′ẇ′

+φ̇v̇′′w′ + φ̇v̇′w′′ −φ̇v′ẇ′′ + φ̇′v̇′w′) = 0 (14)

I0v̈ + cv̇ − A11
(
w′v′w′′ + v′u′′ + v′′u′

+3

2
v′2v′′ + 1

2
w′2v′′ − 2v′u′u′′

−v′′u′2) − B16(6w
′u′u′′′ + 6w′u′′2

+14w′′u′u′′ − 4u′′w′′ − 2w′′v′′v′ + 2φ′′v′

+2φ′v′′ − 6w′w′′2 − 2u′w′′′ − 2u′′′w′

−3w′2w′′′ − w′′′v′2 + 4u′2w′′′

−2φ′′v′u′ − 2φ′v′′u′ − 2φ′v′u′′)
−D11(w

(I V )w′v′ + 8v′′v′v′′′ + 3w′v′′w′′′

+w′′v′w′′′ + v′u(I V ) + 2v(I V )u′

+w′2v(I V ) + 2v(I V )v′2 + 2w′′2v′′ + 4v′′′u′′

+4w′v′′′w′′ + 2v′′3 + 3v′′u′′′ − v(I V )

−3v(I V )u′2 − 7v′u′′u′′′

−12u′u′′v′′′ − 9u′u′′′v′′ − 8v′′u′′2 − 3v′u′u(I V ))

−D66(−4w′v′′′w′′ − 2φ′′w′′ − φ′′′w′ − 2w′′2v′′
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−w′2v(I V ) − 2w′v′′w′′′ − φ′w′′′ + φ′w′u′′′

+3φ′′w′u′′ − w′2v(I V ) + 4φ′′w′′u′ + 2φ′w′′′u′

+3φ′w′′u′′ + 2φ′′′w′u′)
−I2(−2w′v̈′w′′ − 4v̇′v′v̇′′

−2w′v̇′′ẇ′ − 4v̈′v′v′′ − ẅ′w′′v′

−ẅ′w′v′′ − 2w′v̇′ẇ′′ − 2ẇ′v̇′w′′

−2u̇′v̇′′

−2v̇′2v′′ − 2u̇′′v̇′ − 2v̈′′v′2

−v′′ü′ − v′ü′′ − 2v̈′′u′ − 2v̈′u′′ − ẅ′′w′v′

−w′2v̈′′ + v̈′′ + 3v′u′ü′′ + 3v̈′′u′2

+2v′′u̇′2 − 2v̇′u̇′′ + 6v̈′u′u′′

+4v′u̇′u̇′′ + 6v̇′′u′u̇′ + 6v̇′u′′u̇′ + 6v̇′u′u̇′′

+3v′′u′ü′ + 3v′u′′ü′) − Ip(�(−w′u̇′′

−3

2
w′2ẇ′′ − 3w′w′′ẇ′ − w′′u̇′ − 3ẇ′v′v′′ + ẇ′′

−3

2
ẇ′′v′2 − 2ẇ′′u′ − 2ẇ′u′′ + 3ẇ′′u′2

+3w′u′′u̇′ + 3w′′u′u̇′

+6ẇ′u′u′′ + 3w′u′u̇′′) + φ̇ẇ′′

+φ̇′ẇ′ + φ̈w′′ + 2ẇ′v̇′w′′ + w′2v̈′′

+φ̈′w′ + 2w′v̇′′ẇ′ + 2w′v̈′w′′ + 2w′v̇′ẇ′′

−2φ′′w′u′′ − 2φ̇ẇ′u′′ − w′φ̇u̇′′

−2φ̈′w′u′ − w′′φ̇u̇′ − w′φ̇′u̇′ − 2φ̇ẇ′′u′

−2φ̇′ẇ′u′ − 2φ̈w′′u′)
= �2 I0(ey(x) cos(�t) − ez(x) sin(�t)) (15)

I0ẅ + cẇ − A11(w
′v′v′′ + w′u′′ + w′′u′

+3

2
w′2w′′ + 1

2
v′2w′′ − 2w′u′u′′

−w′′u′2) − B16(2u
′′v′′ + 6w′′v′′w′

+2φ′′w′ + 2φ′w′′ + 2v′v′′2 + 2u′v′′′

+v′2v′′′ + 3v′′′w′2 − 2w′φ′′u′ − 4u′2v′′′

−2v′u′′2 − 2w′′φ′u′ − 2w′φ′u′′

−10v′′u′u′′ − 2v′u′u′′′) − D11(2w
(I V )u′

+2w(I V )w′2 + v(I V )w′v′ + 4w′′′v′v′′

+2w′′v′′2 + 4u′′w′′′ + w′v′′v′′′

−w(I V ) + 3w′′v′v′′′ + 8w′′w′w′′′ + w(I V )v′2

+w′u(I V ) + 3u′′′w′′ + 2w′′2 − 7w′u′′u′′′

−3w′u′u(I V ) − 8w′′u′′2 − 12w′′′u′u′′

−9w′′u′u′′′ − 3w(I V )u′2) − D66(φ
′′v′′

+v′′2w′′ + 2w′v′′v′′′ + φ′v′′′

−φ′′v′u′′ − 2φ′v′′′u′

−2φ′′v′′u′ − 3φ′v′′u′′ − φ′v′u′′′)
−I2(−2ẇ′2w′′ − 2u̇′ẇ′′ − 2u̇′′ẇ′ − w′′ü′

+ẅ′′ − ẅ′′v′2 − 2ẅ′′w′2 − 2ẅ′u′′

−4ẇ′w′ẇ′′ − 2ẅ′′u′ − 2v′′ẇ′v̇′

−2v′ẇ′′v̇′ − 2v′ẇ′v̇′′ − 4ẅ′w′w′′

−v′′w′v̈′ − v′w′′v̈′ − v′w′v̈′′ − 2ẅ′v′v′′

−w′ü′′ + 2w′′u̇′2 − 3ẅ′′u′2

+4w′u̇′u̇′′ + 3w′′u′ü′ + 3w′u′′ü′

+3w′u′ü′′ + 6ẅ′u′u′′ + 6ẇ′′u′u̇′

+6ẇ′u′′u̇′

+6ẇ′u′u̇′′) − Ip(�(3v̇′w′w′′ + v′u̇′′

+3v̇′v′v′′ + v′′u̇′ − v̇′′ + 2v̇′′u′ + 2v̇′u′′

+3

2
v̇′′w′2 + 3

2
v̇′′v′2 − 3v′u′u̇′′

−3v′′u′u̇′ − 6v̇′u′u′′ − 3v′u′′u̇′ − 3v̇′′u′2)
−φ̇v̇′′ − φ̇′v̇′ − w′′v̇′2 − 2w′v̇′v̇′′ + 2φ̇′v̇′u′

+2φ̇v̇′′u′ + 2φ̇v̇′u′′

−2w′v̇′v̇′′ + v′φ̇′u̇′ + v′φ̇u̇′′

+v′′φ̇u̇′) = �2 I0(ez(x) cos(�t)

+ey(x) sin(�t)) (16)

B16
(
2u′′ + 2w′w′′ + 2v′v′′

−2v′u′v′′ − 2w′u′w′′ − w′2u′′ − v′2u′′)

+D66
(
v′′w′′ + φ′′ + v′′′w′ − w′′v′u′′

−3u′′v′′w′ − 2u′v′′w′′ − 2u′v′′′w′ − w′v′u′′′)
+Ip

(−φ̈ − v̈′w′ − v̇′ẇ′ + 3v̇′w′u̇′

+ẇ′v′u̇′ + 2v̇′ẇ′u′ + w′v′ü′ + 2v̈′w′u′) = 0

(17)

Note that in Eqs. (14)–(17), dot (.) and prime (
′
) denote

derivative with respect to time and spatial variables,
respectively. A simplified procedure for derivation of
the above equations is presented in “Appendix 2.”

These are full equations governing the extensional–
flexural–flexural–torsional vibration of the composite
shaft with geometrical nonlinearity. Equations show
linear as well as nonlinear couplings. Linear cou-
pling is due to anisotropy properties in composite
material, and nonlinear coupling is due to the large
deformation of the shaft. In previous researches (e.g.,
[20]), the equations were reduced by application of
in-extensionality assumption and neglect of torsional
inertia to a flexural–flexural one. In addition, in some
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cases (e.g., [22]), the equations were again reduced to
flexural–flexural one by neglecting the axial and tor-
sional inertias. But, in the above equations due to linear
extensional–torsional coupling, these kinds of reduc-
tion are not acceptable and full version of equations
are employed. Later, it will be shown that the neglect-
ing of couplings leads to inaccurate results.

The equations of motion presented in the literature
are either linear (with anisotropic material) or for a
metallic shaft (with nonlinear effects), but equations
derived here are nonlinear equations of motion of a
composite shaft based on the Bernoulli–Euler theory.
If the material is assumed isotropic, the composite cou-
pling coefficient B16 vanishes, while the other coeffi-
cients are changed accordingly, which finally yields the
equations governing the motion of a metallic shaft as
in references [20,30]. In addition, if the terms resulting
from Timoshenko theory are removed from equations
of motion presented in reference [10], which is derived
for a spinning composite shaft, then its equations will
reduce to the equations obtained here. This confirms
partially the validity of equations obtained in this paper.

For a slender composite shaft, bending stiffness D11

and torsional rigidity D66 are much smaller than the
longitudinal stiffness A11; so their nonlinear coeffi-
cients (power or product of them) can be neglected.
The same strategy is taken into account for rotary iner-
tia I2 and coupling term, B16.

Applying these simplifications, and using the fol-
lowing dimensionless quantities

v̄ = v

l
, w̄ = w

l
, ū = u

l
, ēy = ey

l
, ēz = ez

l
,

x̄ = x

l
, t̄ = tω, �̄ = �

ω
, B̄16 = B16

ω2 I0l3

D̄66 = D66

ω2 I0l4
, D̄11 = D11

ω2 I0l4
, Ā11 = A11

ω2 I0l2
,

Ī2 = I2
I0l2

, Īp = Ip
I0l2

, c̄ = c

ωI0
(18)

the final dimensionless equations of motion in a sim-
plified form are found as

¨̄u − B̄16φ̄′′ − Ā11
(
v̄′v̄′′ + w̄′w̄′′

− v̄′2ū′′ − w̄′2ū′′ + ū′′

− 2v̄′ū′v̄′′ − 2w̄′ū′w̄′′) = 0 (19)

¨̄v + c̄ ˙̄v − D̄11(−v̄(I V ))

− Īp�
˙̄

w′′ − Ā11
(
w̄′v̄′w̄′′ + v̄′ū′′

+ v̄′′ū′ + 3

2
v̄′2v̄′′ + 1

2
w̄′2v̄′′

− 2v̄′ū′ū′′ − v̄′′ū′2
)

= �̄2(ēy(x̄) cos(�̄t̄) − ēz(x̄) sin(�̄t̄)) (20)

¨̄w + c̄ ˙̄w − D̄11

(
−w̄(I V )

)
− Īp�

˙̄
v′′

− Ā11
(
w̄′v̄′v̄′′ + w̄′ū′′ + w̄′′ū′

+ 3

2
w̄′2w̄′′ + 1

2
v̄′2w̄′′

− 2w̄′ū′ū′′ − w̄′′ū′2
)

= �̄2(ēz(x̄) cos(�̄t̄) + ēy(x̄) sin(�̄t̄)) (21)

Īp
¨̄φ − B̄162ū′′ − D̄66

(
v̄′′w̄′′

+ φ̄′′ + ¯v′′′w̄′ − w̄′′v̄′ū′′ − 3ū′′v̄′′w̄′

− 2ū′v̄′′w̄′′ − 2ū′ ¯v′′′w̄′ − w̄′v̄′ ¯u′′′) = 0 (22)

Asmentioned earlier, the bearings aremuch stiffer than
the shaft itself which let the shaft to rotate freely but
limits the transverse movement of the shaft at the bear-
ings. In fact, bearings can bemodeled as hinged bound-
aries. So the boundary conditions are

ū = 0, v̄ = 0, v̄′′ = 0, w̄ = 0, w̄′′ = 0,

φ̄′ = 0 @x̄ = 0 & x̄ = 1 (23)

where ω is the shaft linear natural frequency. In the
above equations, B̄16 is the extensional–torsional cou-
pling coefficient and Īp� ˙̄w′′

and Īp� ˙̄v′′
are gyroscopic

terms which couple the two transverse motions lin-
early. For the ease of notation, the bars are dropped
from equations hereafter. Equations (19)–(22) can be
generally used for any kinds of boundary condition.

To verify the aforementioned simplification, ana-
lytical method (perturbation method in the next sec-
tion) was applied to full equations (14)–(17) and sim-
plified version (19)–(22). It was observed that the
results are practically equal. This shows that the omit-
ted terms are really negligible and the simplified
form of the equations are sufficient for the analy-
sis.

Equations (19)–(22) and the perturbation theory
are used in the next section to investigate the shaft
dynamics in the neighborhood of the primary reso-
nance. Due to the extensional–torsional coupling, fur-
ther reduction of equations is not possible. It should
be noted that, in previous works [18–22], the equa-
tions corresponding to extension and torsion were
solved in terms of flexural variables with some assump-
tions (e.g., stretching or shortening) due to the lack
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of coupling, and finally the reduced flexural–flexural
equations of motion were obtained and analyzed. But
here, these reductions are not applied and extensional–
flexural–flexural–torsional equations of motion are
used.

3 Method of multiple scales

The method of multiple scales [36] is a powerful per-
turbationmethod. In this method, the independent vari-
able t is split up into several new independent vari-
ables, T0, T1, . . .. Although these new variables are
not perfectly independent and can be related to each
other by means of a bookkeeping parameter, they are
treated as independent variables in the solution pro-
cedure. Here, the multiple scales method is used to
analyze the forced vibration of the system. Before
application of the multiple scales method, the partial
differential equations of motion should be discretized
with a suitable method. In this paper, the equations
are discretized using Galerkin method by taking suit-
able shape functions. It is usually common in non-
linear vibration [37] that if the excitation is tuned in
the neighborhood of a specific mode and this mode
does not involve in an internal resonance, then other
modes are decayed with the passage of time and one-
mode discretization is sufficient for steady-state anal-
ysis. Here, this is not the case. Although the excita-
tion (i.e., spin) is tuned in the neighborhood of the first
mode and the first mode does not involve in an internal
resonance with other modes, it will be shown that one-
mode discretization is not sufficient. Here both one-
mode discretization and two-mode discretization are
implemented, and a comparison is made between the
results. To investigate the effect of the mode number
on the convergence of the solution, three-mode dis-
cretization was also applied (the results are not pre-
sented here). Numerical solutions of three-mode and
two-mode discretization show that the results (steady-
state solutions) are equal and two-mode discretization
is sufficient for the present problem. So, our analysis
concentrates on one-mode and two-mode discretization
methods.

3.1 Primary resonances with one-mode discretization

In order to use the Galerkin method with one mode, the
following form may be assumed

u(x, t) = νn(x)U (t)

v(x, t) = ψn(x)V (t)

w(x, t) = ξn(x)W (t)

φ(x, t) = ζn(x)ϕ(t) (24)

where ν, ψ, ξ and ζ are the mode shapes obtained
by solving linear form of the existing equations [i.e.,
Eqs. (14)–(17)] considering the boundary conditions in
(23) and n is the mode number:

νn = √
2 sin(nπx)

ψn = √
2 sin(nπx)

ξn = √
2 sin(nπx)

ζn = √
2 cos(nπx) (25)

Substituting Eq. (24) into Eqs. (19)–(22) and multiply-
ing each equation by its corresponding mode shape,
finally the discretized equations are obtained in the fol-
lowing form by using the orthogonality relation [38]

3

2
A11V (t)2π4U (t) + 3

2
A11W (t)2π4U (t)

− A11U (t)π2 − d2

dt2
U (t) = 0 (26)

−3

4
A11W (t)2π4V (t) + 3

2
A11V (t)π4U (t)2

− 3

4
A11V (t)3π4 − D11V (t)π4

− Ip�
d

dt
W (t)π2 − d2

dt2
V (t)

− c
d

dt
V (t) + �2e2 cos(�t)

−�2e1 sin(�t) = 0 (27)

−3

4
A11V (t)2π4W (t) + 3

2
A11W (t)π4U (t)2

− 3

4
A11W (t)3π4 − D11W (t)π4 + Ip�

d

dt
V (t)π2

− d2

dt2
W (t) − c

d

dt
W (t) + �2e1 cos(�t)

+�2e2 sin(�t) = 0 (28)
3

2
D66V (t)π5W (t)U (t) − D66ϕ(t)π2

− d2

dt2
ϕ(t) = 0 (29)

where e1 = ∫ 1
0 [√2ey(x) sin(πx)]ddx and e2 =∫ 1

0 [√2ez(x) sin(πx)]dx . Here, the analysis is carried
out for the first mode, although the procedure is appli-
cable in similar fashion to other modes.
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Now, dependent variables are expanded in the fol-
lowing form in order to apply the multiple scales
method

U (t) = εU1(T0, T1, T2) + ε2U2(T0, T1, T2)

+ε3U3(T0, T1, T2)

V (t) = εV1(T0, T1, T2) + ε2V2(T0, T1, T2)

+ε3V3(T0, T1, T2)

W (t) = εW1(T0, T1, T2) + ε2W2(T0, T1, T2)

+ε3W3(T0, T1, T2)

ϕ(t) = εϕ1(T0, T1, T2) + ε2ϕ2(T0, T1, T2)

+ε3ϕ3(T0, T1, T2) (30)

where T0 = t, T1 = εt and T2 = ε2t are different
time scales and ε is a small dimensionless bookkeep-
ing parameter. Damping c and unbalance parameters
e j ( j = 1, 2) are scaled as cε2 and e jε3 so that their
effects are balanced with the third-order nonlinearities.

Using the chain rule, time derivatives, in terms of
T0, T1 and T2, become

∂

∂t
= D0 + εD1 + ε2D2

∂

∂t2
= D2

0 + 2εD0D1 + ε2D2
1 + 2ε2D0D2 (31)

where Dn = ∂
∂Tn

, (n = 0, 1, 2). Substituting Eqs. (30)
and (31) into Eqs. (26)–(29) and equating coefficients
of like power of ε, the equations in different orders are
obtained in the following form

O(ε)

π2A11U1(T0, T1, T2) + ∂2

∂T 2
0

U1(T0, T1, T2) = 0

π4D11V1(T0, T1, T2) + ∂2

∂T 2
0

V1(T0, T1, T2)

+π2�IP
∂

∂T0
W1(T0, T1, T2) = 0

π4D11W1(T0, T1, T2) + ∂2

∂T 2
0

W1(T0, T1, T2)

−π2�IP
∂

∂T0
V1(T0, T1, T2) = 0

π2D66ϕ1(T0, T1, T2) + ∂2

∂T 2
0

ϕ1(T0, T1, T2) = 0

(32)

O(ε2)

π4D11V2(T0, T1, T2) + ∂2

∂T 2
0

V2(T0, T1, T2)

+π2�IP
∂

∂T0
W2(T0, T1, T2)

= −2
∂2

∂T0∂T1
V1(T0, T1, T2)

−π2�IP
∂

∂T1
W1(T0, T1, T2)

π4D11W2(T0, T1, T2) + ∂2

∂T 2
0

W2(T0, T1, T2)

−π2�IP
∂

∂T0
V2(T0, T1, T2)

= −2
∂2

∂T0∂T1
W1(T0, T1, T2)

+π2�IP
∂

∂T1
V1(T0, T1, T2)

π2A11U2(T0, T1, T2) + ∂2

∂T 2
0

U2(T0, T1, T2)

= −2
∂2

∂T0∂T1
U1(T0, T1, T2)

π2D66ϕ2(T0, T1, T2) + ∂2

∂T 2
0

ϕ2(T0, T1, T2)

= −2
∂2

∂T0∂T1
ϕ1(T0, T1, T2) (33)

O
(
ε3
)

D11π
4V3 (T0, T1, T2) + ∂2

∂T 2
0

V3 (T0, T1, T2)

+IP�π2 ∂

∂T0
W3 (T0, T1, T2)

= −c
∂

∂T0
V1 (T0, T1, T2)

+A11

[
3

2
π4V1 (T0, T1, T2)U1(T0, T1, T2)

2

−3

4
π4V1 (T0, T1, T2)

3

−3

4
π4W1 (T0, T1, T2)

2 V1 (T0, T1, T2)

]

−2
∂2

∂T1∂T0
V2(T0, T1, T2)

−2
∂2

∂T2∂T0
V1(T0, T1, T2)
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− ∂2

∂T 2
1

V1(T0, T1, T2)

−IP�π2
[

∂

∂T1
W2 (T0, T1, T2)

+ ∂

∂T2
W1 (T0, T1, T2)

]
− �2e1 sin(�T0)

+�2e2 cos(�T0)

D11π
4W3(T0, T1, T2) + ∂2

∂T 2
0

W3(T0, T1, T2)

−IP�π2 ∂

∂T0
V3(T0, T1, T2)

= −c
∂

∂T0
W1(T0, T1, T2)

+A11

[
3

2
π4W1(T0, T1, T2)U1(T0, T1, T2)

2

−3

4
π4W1(T0, T1, T2)

3

−3

4
π4V1(T0, T1, T2)

2W1 (T0, T1, T2)

]

−2
∂2

∂T1∂T0
W2 (T0, T1, T2)

−2
∂2

∂T2∂T0
W1 (T0, T1, T2)

− ∂2

∂T 2
1

W1(T0, T1, T2)

+IP�π2
[

∂

∂T1
V2(T0, T1, T2)

+ ∂

∂T2
V1(T0, T1, T2)

]
+ �2e2 sin(�T0)

+�2e1 cos(�T0)

A11π
2U3(T0, T1, T2) + ∂2

∂T 2
0

U3(T0, T1, T2)

= A11

[
3

2
π4W1(T0, T1, T2)

2U1(T0, T1, T2)

+3

2
π4V1(T0, T1, T2)

2U1(T0, T1, T2)

]

−2
∂2

∂T1∂T0
U2(T0, T1, T2) − ∂2

∂T 2
1

U1(T0, T1, T2)

D66π
2ϕ3(T0, T1, T2) + ∂2

∂T 2
0

ϕ3(T0, T1, T2)

= D66

[
3

2
π5V1 (T0, T1, T2)W1 (T0, T1, T2)

U1 (T0, T1, T2)] − ∂2

∂T 2
1

ϕ1(T0, T1, T2)

−2
∂2

∂T1∂T0
ϕ2(T0, T1, T2)−2

∂2

∂T2∂T0
ϕ1(T0, T1, T2)

(34)

The general solution of (32) can be expressed as

V1(T0, T1, T2) = F1(T1, T2)e
β f T0i

+F2(T1, T2)e
βbT0i

+F̄1(T1, T2)e
−β f T0i

+F̄2(T1, T2)e
−βbT0i

W1(T0, T1, T2) = αi F1(T1, T2)e
β f T0i

+δi F2(T1, T2)e
βbT0i

−αi F̄1(T1, T2)e
−β f T0i

−δi F̄2(T1, T2)e
−βbT0i

U1(T0, T1, T2) = 1

2
H1(T1, T2)e

−βuT0i

+1

2
H̄1(T1, T2)e

βuT0i

ϕ1(T0, T1, T2) = 1

2
G1(T1, T2)e

−βϕT0i

+1

2
Ḡ1(T1, T2)e

βϕT0i (35)

where Fi (T1, T2), G1(T1, T2) and H1(T1, T2), (i =
1, 2) are complex functions which will be determined
at the third order of approximation. β f and βb are for-
ward and backward natural frequencies corresponding
to flexural modes. The solution in this form is due to
the existence of the gyroscopic term. Also, βu and βϕ

are natural frequencies corresponding to extensional–
torsional modes. They are computed as

β f = − 1

2

√
2
√

π8 I 2p �2(I 2p �2 + 4D11) + (4D11 + 2π4 I 2p �2)

βb = − 1

2

√
−2

√
π8 I 2p �2(I 2p �2 + 4D11) + (4D11 + 2π4 I 2p �2)

βu = π
√
A11

βϕ = π
√
D66 (36)
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where α and δ are coefficients computed as

α = −1

2
i

⎛
⎝ (−2

√
π8 I 2p�2(I 2p�2 + 4D11) + (−4D11 − 2π4 I 2p�2))

3
2

Ip�π6D11

+
π4(I 2p�2 + D11)

√
−2

√
π8 I 2p�2(I 2p�2 + 4D11) + (−4D11 − 2π4 I 2p�2)

Ip�π6D11

⎞
⎟⎟⎠

δ = −1

2
i

⎛
⎝ (2

√
π8 I 2p�2(I 2p�2 + 4D11) + (−4D11 − 2π4 I 2p�2))

3
2

Ip�π6D11

+
π4(I 2p�2 + D11)

√
2
√

π8 I 2p�2(I 2p�2 + 4D11) + (−4D11 − 2π4 I 2p�2)

Ip�π6D11

⎞
⎟⎟⎠ (37)

Substituting Eqs. (35) into (33) yields

π4D11V2(T0, T1, T2) + ∂2

∂T 2
0

V2(T0, T1, T2)

+π2�IP
∂

∂T0
W2(T0, T1, T2)

= i(2β f + Ip�π2α)
∂

∂T1
F1(T1, T2)e

iβ f T0

+i(2βb + Ip�π2δ)
∂

∂T1
F2(T1, T2)e

iβbT0 + cc

π4D11W2(T0, T1, T2) + ∂2

∂T 2
0

W2(T0, T1, T2)

−π2�IP
∂

∂T0
V2(T0, T1, T2)

= (2αβ f + Ip�π2)
∂

∂T1
F1(T1, T2)e

iβ f T0

+(2δβb + Ip�π2)
∂

∂T1
F2(T1, T2)e

iβbT0 + cc

π2A11U2(T0, T1, T2) + ∂2

∂T 2
0

U2(T0, T1, T2)

= − ∂2

∂T0∂T1
H̄1(T1, T2)e

iβuT0 + cc

π2D66ϕ2(T0, T1, T2) + ∂2

∂T 2
0

ϕ2(T0, T1, T2)

= − ∂2

∂T0∂T1
Ḡ1(T1, T2)e

iβϕT0 + cc (38)

where cc stands for the complex conjugate terms. As
Eq. (38) show, no non-secular term exists at this order,
so the inhomogeneous solution of Eq. (38) yields

U2(T0, T1, T2) = 0, V2(T0, T1, T2) = 0,

W2(T0, T1, T2) = 0, ϕ2(T0, T1, T2) = 0 (39)

The solvability conditions are satisfied if the terms that
lead to secular terms are eliminated. Because the first
two equations in (38) are coupled, the solvability con-
dition can be obtained through a procedure explained in
the following. To find the solvability conditions, solu-
tion of the first two equations in (38) is assumed in
following form [35]

V2(T0, T1, T2) = F11(T1, T2)e
iβ f T0

+F12(T1, T2)e
iβbT0

W2(T0, T1, T2) = F21(T1, T2)e
iβ f T0

+F22(T1, T2)e
iβbT0 (40)

By substituting Eqs. (40) into (38) and equating the
coefficients of eiβ f T0 and eiβbT0 from both sides of the
result, one can obtain
[(π4D11 − β2

f )F11(T1, T2) + i Ip�π2β f F21(T1, T2)]eiβ f T0

= i(2β f + Ip�π2α)
∂

∂T1
F1(T1, T2)e

iβ f T0

[(π4D11 − β2
b )F12(T1, T2) + i Ip�π2βbF22(T1, T2)]eiβbT0

= i(2βb + Ip�π2δ)
∂

∂T1
F2(T1, T2)e

iβbT0

[ − i Ip�π2β f F11(T1, T2) + (π4D11 − β2
f )F21(T1, T2)]eiβ f T0

= (2αβ f + Ip�π2)
∂

∂T1
F1(T1, T2)e

iβ f T0
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[ − i Ip�π2βbF12(T1, T2) + (π4D11 − β2
b )F22(T1, T2)]eiβbT0

= (2δβb + Ip�π2)
∂

∂T1
F2(T1, T2)e

iβbT0 (41)

Equation (41) forms two systems of equations and
they both have non-trivial solution if∣∣∣∣∣
(π4D11 − β2

f ) i(2β f + Ip�π2α) ∂
∂T1

F1(T1, T2)

−i Ip�π2β f (2αβ f + Ip�π2) ∂
∂T1

F1(T1, T2)

∣∣∣∣∣ = 0

∣∣∣∣∣
(π4D11 − β2

b ) i(2βb + Ip�π2δ) ∂
∂T1

F2(T1, T2)

−i Ip�π2β f (2δβb + Ip�π2) ∂
∂T1

F2(T1, T2)

∣∣∣∣∣ = 0

(42)

So, the solvability conditions for the second order
become[
(π4D11 − β2

f )(2αβ f + Ip�π2)

−Ip�π2β f (2β f + Ip�π2α)
] ∂

∂T1
F1(T1, T2) = 0

[
(π4D11 − β2

b )(2δβb + Ip�π2)

−Ip�π2β f (2βb + Ip�π2δ)
] ∂

∂T1
F2(T1, T2) = 0

(43)

which demand that F1(T1, T2) and F2(T1, T2) to be
function of only T2. To satisfy the solvability conditions
for the last two equations in (38), their secular terms
are directly eliminated due to the decoupling of the
equations. Thus, it can be written

∂

∂T1
H̄1(T1, T2) = 0

∂

∂T1
Ḡ1(T1, T2) = 0 (44)

Again the solvability conditions demand that H1(T1, T2)
and G1(T1, T2) to be function of only T2. Finally,
Eq. (35) can be rewritten as

V1(T0, T2) = F1(T2)e
β f T0i + F2(T2)e

βbT0i

+ F̄1(T2)e
−β f T0i + F̄2(T2)e

−βbT0i

W1(T0, T2) = αi F1(T2)e
β f T0i + δi F2(T2)e

βbT0i

−αi F̄1(T2)e
−β f T0i −δi F̄2(T2)e

−βbT0i

U1(T0, T2) = 1

2
H1(T2)e

−βuT0i + 1

2
H̄1(T2)e

βuT0i

ϕ1(T0, T2) = 1

2
G1(T2)e

−βϕT0i + 1

2
Ḡ1(T2)e

βϕT0i

(45)

The third order is treated in the same procedure to com-
pute solvability conditions. To express the nearness
of the excitation frequency to the natural frequency,
a detuning parameter σ is introduced which is defined
as

� = β f + ε2σ (46)

Again, solvability conditions for the first two equations
in (34) must be obtained through a system of equations
because of the existence of the gyroscopic coupling in
the equations. So one may assume

V3(T0, T1, T2) = P11(T1, T2)e
iβ f T0

+P12(T1, T2)e
iβbT0

W3(T0, T1, T2) = P21(T1, T2)e
iβ f T0

+P22(T1, T2)e
iβbT0 (47)

By substitutingEqs. (39), (45)–(47) into (34) and equat-
ing the coefficients of eiβ f T0 and eiβ f T0 from both side
of it one can obtain[

(π4D11 − β2
f )P11(T1, T2)

+i Ip�π2β f P21(T1, T2)
]
eiβ f T0

=
[
A11π

4
(

−
(
9

2
+ 3

2
δ2
)
F1(T2)F2(T2)F̄2(T2)

−
(
9

4
+ 3

4
α2
)
F1(T2)

2 F̄1(T2)

+3

4
F1(T2)H1(T2)H̄1(T2)

)

+i(−2β f − Ip�π2α)
d

dT2
F1(T2)

−icβ f F1(T2) + 1

2
�2(ie1 + e2)e

iσT2

]
eiβ f T0

[
(π4D11 − β2

b )P12(T1, T2)

+i Ip�π2βb P22(T1, T2)
]
eiβbT0

=
[
A11π

4
(

−
(
9

2
+ 3

2
α2
)
F1(T2)F2(T2)F̄1(T2)

−
(
9

4
+ 3

4
δ2
)
F2(T2)

2 F̄2(T2)

+3

4
F2(T2)H1(T2)H̄1(T2)

)
+ i(−2βb

+Ip�π2δ)
d

dT2
F2(T2) − icβbF2(T2)

]
eiβbT0

[
−i Ip�π2β f P11(T1, T2)

+(π4D11 − β2
f )P21(T1, T2)

]
eiβ f T0
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=
[
A11iπ

4
(

−
(
9

2
αδ2

+3

2
α

)
F1(T2)F2(T2)F̄2(T2)

−
(
9

4
α3 + 3

4
α

)
F1(T2)

2 F̄1(T2)

+3

4
αF1(T2)H1(T2)H̄1(T2)

)

+(2αβ f + Ip�π2)
d

dT2
F1(T2) + cαβ f F1(T2)

+1

2
�2(e1 − ie2)e

iσT2

]
eiβ f T0

[
−i Ip�π2βb P12(T1, T2)

+(π4D11 − β2
b )P22(T1, T2)

]
eiβbT0

=
[
A11iπ

4
(

−
(
9

2
α2δ + 3

2
δ

)

F1(T2)F2(T2)F̄1(T2)

−
(
9

4
δ3 + 3

4
δ

)
F2(T2)

2 F̄2(T2)

+3

4
δF2(T2)H1(T2)H̄1(T2)

)

+(2δβ f + Ip�π2)
d

dT2
F2(T2)

+cδβbF2(T2)] e
iβbT0 (48)

The solvability conditions are computed in the fol-
lowing form as

∣∣∣∣∣∣∣∣∣∣∣∣

(π4D11 − β2
f )

A11π
4
(− ( 9

2 + 3
2 δ2

)
F1(T2)F2(T2)F̄2(T2) − ( 9

4 + 3
4α2

)
F1(T2)2 F̄1(T2)

+ 3
4 F1(T2)H1(T2)H̄1(T2)) + i

(−2β f − Ip�π2α
) d
dT2

F1(T2) − icβ f F1(T2) + 1
2�2(ie1 + e2)eiσT2

−i Ip�π2β f

A11iπ4
(− ( 9

2αδ2 + 3
2α

)
F1(T2)F2(T2)F̄2(T2) − ( 9

4α3 + 3
4α

)
F1(T2)2 F̄1(T2)

+ 3
4αF1(T2)H1(T2)H̄1(T2)) + (2αβ f + Ip�π2) d

dT2
F1(T2) + cαβ f F1(T2)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣∣∣∣∣∣∣∣

(π4D11 − β2
b )

A11π
4
(− ( 9

2 + 3
2α2

)
F1(T2)F2(T2)F̄1(T2) − ( 9

4 + 3
4 δ2

)
F2(T2)2 F̄2(T2)

+ 3
4 F2(T2)H1(T2)H̄1(T2)) + i(−2βb + Ip�π2δ) d

dT2
F2(T2) − icβbF2(T2) + 1

2�2(e1 − ie2)eiσT2

−i Ip�π2βb

A11iπ4
(− ( 9

2α2δ + 3
2 δ
)
F1(T2)F2(T2)F̄1(T2) − ( 9

4 δ3 + 3
4 δ
)
F2(T2)2 F̄2(T2)

+ 3
4 δF2(T2)H1(T2)H̄1(T2)) + (2δβ f + Ip�π2) d

dT2
F2(T2) + cδβbF2(T2)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0

(49)

which can be rewritten as

i�1F1(T2)F2(T2)F̄2(T2) + i�1F1(T2)
2 F̄1(T2)

+i�1F1(T2)H1(T2)H̄1(T2) + �1D2F1(T2)

+
(
−π4D11αβ1 + β3

1α − β2
1 Ip�π2

)
cF1(T2)

+1/2
(
−β2

1 − Ipπ
2�β1

+π4D11

)
eiσT2 (−e1 + ie2) �2 = 0

i�2F2(T2)F1(T2)F̄1(T2) + i�2F2(T2)
2 F̄2(T2)

+i�2F2(T2)H1(T2)H̄1(T2) + �2D2F2(T2)

+
(
−β2

2 Ip�π2 − π4D11δβ2

+β3
2δ
)
cF2(T2) = 0 (50)

where �i ,�i , �i ,�i , (i = 1, 2) are the coefficients
expressed in “Appendix 3” in more details. For the last
two equations of (34), again the solvability conditions
are obtained by substituting Eqs. (39) and (45), and
eliminating the secular terms directly:

XF2(T2)F̄2(T2)H̄1(T2) + �F1(T2)F̄1(T2)H̄1(T2)

−iβ3D2 H̄1(T2) = 0 − iβ4D2Ḡ1(T2) = 0 (51)

where

X =
(
1 + δ2

) 3

2
π4A11 � =

(
1 + α2

) 3

2
π4A11

(52)

It is seen from the second equation of (51) that the
steady-state solution corresponding to Ḡ1 is zero. So,
complex-valued functions F1(T2), F2(T2) and H1(T2)
are expressed in the polar form as
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F1(T2) = 1

2
a f 1(T2)e

iθ f 1(T2),

F2(T2) = 1

2
a f 2(T2)e

iθ f 2(T2),

H1(T2) = 1

2
ah1(T2)e

iθh1(T2) (53)

where real-valued quantities ai (T2) and θi (T2), (i =
f 1, f 2, k1) are amplitude and phase angle of the
responses, respectively. Substituting Eq. (53) into
Eq. (50) and the first equation in (51) and separating
real and imaginary parts, the modulation equations are
computed as

1

2

(
π4D11β1 − β2

1 Ip�π2 − β3
1

)
ca f 1 + 1

2
�1D2a f 1

= 1

2
�2 (e2 sin (γ1) − cos (γ1) e1)

(
−β2

1

−Ipπ
2�β1 + π4D11

) 1

8
a f 1

(
�1a

2
f 2 + �1a

2
h1

+ 4�1σ + a2f 1�1

)

= 1

2
�2 (e1 sin (γ1)

+ cos (γ1) e2)
(
−β2

1 − Ipπ
2�β1 + π4D11

)

×1

8
�2a f 2a

2
f 1 + 1

8
�2a

3
f 2 + 1

8
�2a f 2a

2
h1

+1

2
a f 2�2σ

= 0
1

2
�2D2a f 2

+1

2
ca f 2

(
−π4D11β2 + β3

2 − β2
2 Ip�π2

)
= 0

×1

8
Xa2f 2ah1 + 1

8
�a2f 1ah1 − 1

2
β3ah1D2θh1 = 0

−1

2
β3D2ah1 = 0 (54)

where γi = σ1T2 − θi , (i = 1, 2). To investigate the
steady-state response, the time derivatives in (54) must
vanish, which results in a f 2(T2) = 0 and ah1(T2) = 0
that means the unbalance force does not excite back-
ward whirling and extensional vibration mode; so they
vanish at this stage. By substituting a f 2(T2) = 0 and
ah1(T2) = 0 into equations of (54) and eliminating γ

between the remaining equations finally, the following
modulation equation is obtained

λ1a
6
f 1 + λ2a

4
f 1 + λ3a

2
f 1

= 1

4
�4e2t

(
−β2

1 − Ipπ
2�β1 + π4D11

)2
(55)

where

λ1 = 1

64
�2

1

λ2 = 1

8
�1σ�1

λ3 = 1

4
c2β6

1α
2 − 1

2
c2β4

1α
2π4D11

−1

2
c2β5

1α Ip�π2 + 1

4
c2π8D2

11α
2β2

1

+1

2
c2π6D11αβ3

1 Ip�+ 1

4
c2β4

1 I
2
p�2π4+ 1

4
�2

1σ
2

et =
√
e21 + e22 (56)

Equation (55) gives an analytical expression explain-
ing the amplitude variation versus different parameter
changes, such as detuning parameter, damping coeffi-
cient and other parameters.

3.2 Primary resonances with two-mode discretization

In this section, the method of multiple scales is applied
to the governing equations like the previous section,
but here the discretization is done using two modes, so
the main procedure is similar to the previous section.

Using Eqs. (24)–(25) and expanding for two modes,
it is obtained

u(x, t) = U1(t)
√
2 sin(πx) +U2(t)

√
2 sin(2πx)

v(x, t) = V 1(t)
√
2 sin(πx) + V 2(t)

√
2 sin(2πx)

w(x, t) = W1(t)
√
2 sin(πx) + W2(t)

√
2 sin(2πx)

φ(x, t) = ϕ1(t)
√
2 cos(πx) + ϕ2(t)

√
2 cos(2πx)

(57)

Again using Eq. (57) and the orthogonality relation, the
discretized equations are obtained as

d2

dt2
U1 (t) − 32

3
B16ϕ2 (t) π

−A11

[√
2V 1 (t) π3V 2 (t)

+√
2W1 (t) π3W2 (t) +U1 (t) π2

−8V 1 (t) π4V 2 (t)U2 (t)

−8W1 (t) π4W2 (t)U2 (t) − 4 (V 2 (t))2 π4U1 (t)

−3

2
(V 1 (t))2 π4U1 (t) − 4 (W2 (t))2 π4U1 (t)

−3

2
(W1 (t))2 π4U1 (t)

]
= 0
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d2

dt2
U2 (t) + 16

3
B16P1 (t) π

−A11
[
4 (W1 (t))2 π4U2 (t)

−8W1 (t) π4W2 (t)U1 (t)

−24 (W2 (t))2 π4U2 (t)

−4 (V 1 (t))2 π4U2 (t) + 1

2

√
2 (V 1 (t))2 π3

−8V 1 (t) π4V 2 (t)U1 (t) + 1

2

√
2 (W1 (t))2 π3

+4U2 (t) π2 − 24 (V 2 (t))2 π4U2 (t)
] = 0 (58)

A11

[√
2V 2 (t) π3U1 (t) + 6V 1 (t) π4 (V 2 (t))2

+√
2V 1 (t) π3U2 (t) + 2 (W2 (t))2 π4V 1 (t)

−8V 2 (t) π4U1 (t)U2 (t) − 3

2
V 1 (t) π4 (U1 (t))2

−4V 1 (t) π4 (U2 (t))2 + 3

4
(V 1 (t))3 π4

+3

4
(W1 (t))2 π4V 1 (t) + 4W1 (t) π4V 2 (t)W2 (t)

]

+Ip�π2
(
d

dt
W1 (t)

)
+ D11V 1 (t) π4

+c
d

dt
V 1 (t) + d2

dt2
V 1 (t)

= �2 [e2 cos (�t) − e1 sin (�t)]

A11
[
12 (W2 (t))2 π4V 2 (t) − 24V 2 (t) π4 (U2 (t))2

+4W1 (t) π4V 1 (t)W2 (t) + 6 (V 1 (t))2 π4V 2 (t)

−8V 1 (t) π4U2 (t)U1 (t) + 12 (V 2 (t))3 π4

+√
2V 1 (t) π3U1 (t) − 4V 2 (t) π4 (U1 (t))2

+2 (W1 (t))2 π4V 2 (t)
] + 16D11V 2 (t) π4

+c
d

dt
V 2 (t) + d2

dt2
V 2 (t)

+4Ip�π2
(
d

dt
W2 (t)

)
= 0 (59)

A11

[
3

4
π4W1 (t) (V 1 (t))2 + 6π4W1 (t) (W2 (t))2

+2π4W1 (t) (V 2 (t))2 − 3

2
π4W1 (t) (U1 (t))2

−4π4W1 (t) (U2 (t))2 + 4π4W2 (t) V 1 (t) V 2 (t)

+√
2π3W2 (t)U1 (t) + √

2π3W1 (t)U2 (t)

−8π4W2 (t)U2 (t)U1 (t) + 3

4
π4 (W1 (t))3

]

−�Ipπ
2
(
d

dt
V 1 (t)

)
+ D11π

4W1 (t) + c
d

dt
W1 (t)

+ d2

dt2
W1 (t) = �2e1 cos (�t) + �2e2 sin (�t)

A11
[−4W2 (t) π4 (U1 (t))2 + 6 (W1 (t))2 π4W2 (t)

+12 (W2 (t))3 π4 + √
2W1 (t) π3U1 (t)

−8W1 (t) π4U1 (t)U2 (t) − 24W2 (t) π4 (U2 (t))2

+4W1 (t) π4V 2 (t) V 1 (t) + 2W2 (t) π4 (V 1 (t))2

+12W2 (t) π4 (V 2 (t))2
] + c

d

dt
W2 (t)

+16D11W2 (t) π4

−4�I pp

(
d

dt
V 2 (t)

)
π2 + d2

dt2
W2 (t) = 0

(60)

D66

[
−8π5W2 (t) V 1 (t)U2 (t)

−4π5W2 (t) V 2 (t)U1 (t)

+ϕ1 (t) π2 − π4
√
2V 1 (t)W2 (t)

+2π4
√
2V 2 (t)W1 (t)

−3

2
π5W1 (t) V 1 (t)U1 (t)

]

+64

3
πB16U2 (t) + d2

dt2
ϕ1 (t) = 0

D66

[
−48π5W2 (t) V 2 (t)U2 (t)

−8π5U2 (t) V 1 (t)W1 (t) + 4π2ϕ2 (t)

+π4
√
2V 1 (t)W1 (t)

−16π5U1 (t) V 2 (t)W1 (t)
]

+ d2

dt2
ϕ2 (t) − 8

3
πB16U1 (t) = 0 (61)

Expanding the dependent variable in the following
form

Ui(T0, T2)=εUi1(T0, T2)+ε2Ui2(T0, T2)+ε3Ui3(T0, T2)

V i(T0, T2)=εV i1(T0, T2)+ε2V i2(T0, T2)+ε3V i3(T0, T2)

Wi(T0, T2)=εWi1(T0, T2)+ε2Wi2(T0, T2)+ε3Wi3(T0, T2)

ϕi(T0, T2)=εϕi1(T0, T2)+ε2ϕi2(T0, T2)+ε3ϕi3(T0, T2)

(i = 1, 2)

(62)

Using chain rule [i.e., Eq. (31)] for Eqs. (58)–(61) and
equating coefficients of like power of ε, the equations
are obtained in the following form

O(ε)

∂2

∂T 2
0

U11 (T0, T2) + A11π
2U11 (T0, T2)

− 32

3
B16πϕ21 (T0, T2) = 0

∂2

∂T 2
0

U21 (T0, T2) + 4A11π
2U21 (T0, T2)

+ 16

3
B16πϕ11 (T0, T2) = 0

∂2

∂T 2
0

V 11 (T0, T2) + D11π
4V 11 (T0, T2)
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+ Ip�π2 ∂

∂T0
W11 (T0, T2) = 0

∂2

∂T 2
0

V 21 (T0, T2) + 16D11π
4V 21 (T0, T2)

+ 4Ip�π2 ∂

∂T0
W21 (T0, T2) = 0

∂2

∂T 2
0

W11 (T0, T2) + D11π
4W11 (T0, T2)

− Ip�π2 ∂

∂T0
V 11 (T0, T2) = 0

∂2

∂T 2
0

W21 (T0, T2) + 16D11π
4W21 (T0, T2)

− 4Ip�π2 ∂

∂T0
V 21 (T0, T2) = 0

∂2

∂T 2
0

ϕ11 (T0, T2) + D66π
2ϕ11 (T0, T2)

+ 64

3
B16πU21 (T0, T2) = 0

∂2

∂T 2
0

ϕ21 (T0, T2) + 4D66π
2ϕ21 (T0, T2)

− 8

3
B16πU11 (T0, T2) = 0 (63)

O(ε2)

∂2

∂T 2
0

U12 (T0, T2) − 32

3
B16πϕ22 (T0, T2)

+ A11π
2U12 (T0, T2)

= −√
2A11π

3 [W11 (T0, T2)W21 (T0, T2)

+ V 11 (T0, T2) V 21 (T0, T2)]

∂2

∂T 2
0

U22 (T0, T2) + 16

3
B16πϕ12 (T0, T2)

+ 4A11π
2U22 (T0, T2)

= −1

2

√
2A11π

3
[
(W11 (T0, T2))

2

+ (V 11 (T0, T2))
2
]

∂2

∂T 2
0

V 12 (T0, T2) + D11π
4V 12 (T0, T2)

+ Ip�π2 ∂

∂T0
W12 (T0, T2)

= −√
2A11π

3 [V 11 (T0, T2)U21 (T0, T2)

+ V 21 (T0, T2)U11 (T0, T2)]

∂2

∂T 2
0

V 22 (T0, T2) + 16D11π
4V 22 (T0, T2)

+4Ip�π2 ∂

∂T0
W22 (T0, T2)

= −√
2A11π

3V 11 (T0, T2)U11 (T0, T2)

∂2

∂T 2
0

W12 (T0, T2) + D11π
4W12 (T0, T2)

−Ip�π2 ∂

∂T0
V 12 (T0, T2)

= −√
2A11π

3 [W21 (T0, T2)U11 (T0, T2)

+W11 (T0, T2)U21 (T0, T2)]

∂2

∂T 2
0

W22 (T0, T2) + 16D11π
4W22 (T0, T2)

−4Ip�π2 ∂

∂T0
V 22 (T0, T2)

= √
2A11π

3W11 (T0, T2)U11 (T0, T2)

∂2

∂T 2
0

ϕ12 (T0, T2) + 64

3
B16πU22 (T0, T2)

+D66π
2ϕ12 (T0, T2)

= √
2D66π

4 [W21 (T0, T2) V 11 (T0, T2)

−2W11 (T0, T2) V 21 (T0, T2)]

∂2

∂T 2
0

P22 (T0, T2) − 8

3
B16πU12 (T0, T2)

+4D66π
2P22 (T0, T2)

= −√
2D66π

4W11 (T0, T2) V 11 (T0, T2) (64)

O(ε3)

∂2

∂T 2
0

U13 (T0, T2) + A11π
2U13 (T0, T2)

− 32

3
B16π P23 (T0, T2)

= 3

2
A11π

3
{
π
[
(V 11 (T0, T2))

2U11 (T0, T2)

+ 3

2
(W11 (T0, T2))

2U11 (T0, T2)

+ 4 (W21 (T0, T2))
2U11 (T0, T2)

+ 8W11 (T0, T2)W21 (T0, T2)U21 (T0, T2)

+ 8V 11 (T0, T2) V 21 (T0, T2)U21 (T0, T2)

+ 4 (V 21 (T0, T2))
2U11 (T0, T2)

]

−√
2W11 (T0, T2)W22 (T0, T2)

−√
2W12 (T0, T2)W21 (T0, T2)
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−√
2V 12 (T0, T2) V 21 (T0, T2)

−√
2V 11 (T0, T2) V 22 (T0, T2)

}

− 2
∂2

∂T2∂T0
U11 (T0, T2)

∂2

∂T 2
0

U23 (T0, T2) + 16

3
B16π P13 (T0, T2)

+ 4A11π
2U23 (T0, T2)

= 4A11π
3
{
π
[
(W11 (T0, T2))

2U21 (T0, T2)

+ 24 (W21 (T0, T2))
2U21 (T0, T2)

+ 8W11 (T0, T2)W21 (T0, T2)U11 (T0, T2)

+ 4 (V 11 (T0, T2))
2U21 (T0, T2)

+ 24 (V 21 (T0, T2))
2U21 (T0, T2)

+ 8V 11 (T0, T2) V 21 (T0, T2)U11 (T0, T2)]

−√
2V 11 (T0, T2) V 12 (T0, T2)

−√
2W11 (T0, T2)W12 (T0, T2)

}

− 2
∂2

∂T2∂T0
U21 (T0, T2)

D11π
4V 13 (T0, T2) + Ip�π2 ∂

∂T0
W13 (T0, T2)

+ ∂2

∂T 2
0

V 13 (T0, T2)

= 6A11π
3
{
π
[
− (V 21 (T0, T2))

2 V 11 (T0, T2)

+ 3

2
V 11 (T0, T2) (U11 (T0, T2))

2

− 3

4
(V 11 (T0, T2))

3

+ 8V 21 (T0, T2)U21 (T0, T2)U11 (T0, T2)

− 4W21 (T0, T2) V 21 (T0, T2)W11 (T0, T2)

+ 4V 11 (T0, T2) (U21 (T0, T2))
2

− 2 (W21 (T0, T2))
2 V 11 (T0, T2)

− 3

4
(W11 (T0, T2))

2 V 11 (T0, T2)

]

−√
2V 22 (T0, T2)U11 (T0, T2)

−√
2V 12 (T0, T2)U21 (T0, T2)

−√
2V 11 (T0, T2)U22 (T0, T2)

−√
2V 21 (T0, T2)U12 (T0, T2)

}

+�2 [−e1 sin (�T0) + e2 cos (�T0)]

− c
∂

∂T0
V 11 (T0, T2) − Ip�π2 ∂

∂T2
W11 (T0, T2)

− 2
∂2

∂T2∂T0
V 11 (T0, T2)

− 16D11π
4V 23 (T0, T2)

+ 4Ip�π2 ∂

∂T0
W23 (T0, T2)

+ ∂2

∂T 2
0

V 23 (T0, T2)

= 12A11π
3
{
π
[
− (V 21 (T0, T2))

3

+ 24V 21 (T0, T2) (U21 (T0, T2))
2

− 4W11 (T0, T2) V 11 (T0, T2)W21 (T0, T2)

− 6 (V 11 (T0, T2))
2 V 21 (T0, T2)

+ 8V 11 (T0, T2)U11 (T0, T2)U21 (T0, T2)

− 12 (W21 (T0, T2))
2 V 21 (T0, T2)

+ 4V 21 (T0, T2) (U11 (T0, T2))
2

− 2 (W11 (T0, T2))
2 V 21 (T0, T2)

]

−√
2V 12 (T0, T2)U11 (T0, T2)

−√
2V 11 (T0, T2)U12 (T0, T2)

}

− 4Ip�π2 ∂

∂T2
W21 (T0, T2)

− c
∂

∂T0
V 21 (T0, T2) − 2

∂2

∂T2∂T0
V 21 (T0, T2)

− Ip�π2 ∂

∂T0
V 13 (T0, T2) + D11π

4W13 (T0, T2)

+ ∂2

∂T 2
0

W13 (T0, T2) = A11π
3

{
π

[
−3

4
(W11 (T0, T2))

3

+ 3

2
W11 (T0, T2) (U11 (T0, T2))

2

+ 8W21 (T0, T2)U11 (T0, T2)U21 (T0, T2)

− 2W11 (T0, T2) (V 21 (T0, T2))
2

− 4W21 (T0, T2) V 11 (T0, T2) V 21 (T0, T2)

+ 4W11 (T0, T2) (U21 (T0, T2))
2

− 3

4
W11 (T0, T2) (V 11 (T0, T2))

2

− 6 (W21 (T0, T2))
2 W11 (T0, T2)

]

−√
2W22 (T0, T2)U11 (T0, T2)

−√
2W12 (T0, T2)U21 (T0, T2)

−√
2W21 (T0, T2)U12 (T0, T2)

−√
2W11 (T0, T2)U22 (T0, T2)

}
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− c
∂

∂T0
W11 (T0, T2)

+ Ip�π2 ∂

∂T2
V 11 (T0, T2)

− 2
∂2

∂T2∂T0
W11 (T0, T2)

+�2 [e1 cos (�T0) + e2 sin (�T0)]

16D11π
4W23 (T0, T2) + ∂2

∂T 2
0

W23 (T0, T2)

− 4Ip�π2 ∂

∂T0
V 23 (T0, T2)

= A11π
3
{
π
[
−12 (W21 (T0, T2))

3

−2W21 (T0, T2) (V 11 (T0, T2))
2

+ 4W21 (T0, T2) (U11 (T0, T2))
2

+ 8W11 (T0, T2)U11 (T0, T2)U21 (T0, T2)

+ 24W21 (T0, T2) (U21 (T0, T2))
2

− 6 (W11 (T0, T2))
2 W21 (T0, T2)

− 12W21 (T0, T2) (V 21 (T0, T2))
2

− 4W11 (T0, T2) V 21 (T0, T2) V 11 (T0, T2)]

−√
2W12 (T0, T2)U11 (T0, T2)

−√
2W11 (T0, T2)U12 (T0, T2)

}

+ 4Ip�π2 ∂

∂T2
V 21 (T0, T2)

− c
∂

∂T0
W21 (T0, T2) − 2

∂2

∂T2∂T0
W21 (T0, T2)

64

3
B16πU23 (T0, T2)

+ ∂2

∂T 2
0

P13 (T0, T2)

+ D66π
2P13 (T0, T2)

= D66π
4
{
−2

√
2W11 (T0, T2) V 22 (T0, T2)

+√
2W21 (T0, T2) V 12 (T0, T2)

−2
√
2W12 (T0, T2) V 21 (T0, T2)

+√
2W22 (T0, T2) V 11 (T0, T2)

+π

[
3

2
V 11 (T0, T2)U11 (T0, T2)W11 (T0, T2)

+ 8V 11 (T0, T2)U21 (T0, T2)W21 (T0, T2)

+ 4V 21 (T0, T2)U11 (T0, T2)W21 (T0, T2)]}
−2

∂2

∂T2∂T0
P11 (T0, T2)

∂2

∂T 2
0

P23 (T0, T2) + 4D66π
2P23 (T0, T2)

− 8

3
B16πU13 (T0, T2)

= D66π
4
{
−√

2W11 (T0, T2) V 12 (T0, T2)

−√
2W12 (T0, T2) V 11 (T0, T2)

+π [48V 21 (T0, T2)U21 (T0, T2)W21 (T0, T2)

+ 16V 21 (T0, T2)U11 (T0, T2)W11 (T0, T2)

+ 8V 11 (T0, T2)U21 (T0, T2)W11 (T0, T2)]}
−2

∂2

∂T2∂T0
P21 (T0, T2) (65)

The general solution of (63) can be expressed as

V 11(T0, T2) = F1(T2)e
β f T0i + F2(T2)e

βbT0i

+F̄1(T2)e
−β f T0i + F̄2(T2)e

−βbT0i

W11(T0, T2) = αi F1(T2)e
β f T0i + δi F2(T2)e

βbT0i

−αi F̄1(T2)e
−β f T0i − δi F̄2(T2)e

−βbT0i

V 21(T0, T2) = Y1(T2)e
4β f T0i + Y2(T2)e

4βbT0i

+Ȳ1(T2)e
−4β f T0i + Ȳ2(T2)e

−4βbT0i

W21(T0, T2) = αiY1(T2)e
4β f T0i + δiY2(T2)e

4βbT0i

−αi Ȳ1(T2)e
−4β f T0i − δi Ȳ2(T2)e

−4βbT0i

U11(T0, T2) = ζH1(T2)e
βu1T0i + ζ H̄1(T2)e

−βu1T0i

+λH2(T2)e
βϕ2T0i + λH̄2(T2)e

−βϕ2T0i

ϕ21(T0, T2) = H1(T2)e
βu1T0i + H̄1(T2)e

−βu1T0i

+H2(T2)e
βϕ2T0i + H̄2(T2)e

−βϕ2T0i

U21(T0, T2) = ηG1(T2)e
βu2T0i + ηḠ1(T2)e

−βu2T0i

+μG2(T2)e
βϕ1T0i + μḠ2(T2)e

−βϕ1T0i

ϕ11(T0, T2) = G1(T2)e
βu2T0i + Ḡ1(T2)e

−βu2T0i

+G2(T2)e
βϕ1T0i + Ḡ2(T2)e

−βϕ1T0i (66)

Note that the first mode’s solution of U is coupled
with the second mode’s solution of ϕ and vice versa.
Fi (T2),Yi (T2), Hi (T2) and Gi (T2), (i = 1, 2) are
complex functionswhichwill be determined at the third
order of approximation. β f and βb are forward and
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backward natural frequencies, and βu1, βϕ1, βu2 and
βϕ2 are corresponding natural frequencies for the first
and second modes in u and ϕ directions. So

β f = −1

2
i

√
−2

√
π8 I 2p�2

(
I 2p�2 + 4D11

)
+
(
−4D11 − 2I 2p�2

)
π4

βb = −1

2
i

√
2

√
π8 I 2p�2

(
I 2p�2 + 4D11

)
+
(
−4D11 − 2I 2p�2

)
π4

βu1 = −1

6
i

√√√√−6
√
9

√(
(A11 − 4D66)

2 π2 + 1024

9
B2
16

)
π2 + (−72D66 − 18A11) π2

βu2 = −1

6
i

√√√√√−6
√
144

√√√√
((

A11 − 1

4
D66

)2

π2 + 256

9
B2
16

)
π2 + (−18D66 − 72A11) π2

βϕ1 = −1

6
i

√√√√√6
√
144

√√√√
((

A1 − 1

4
D66

)2

π2 + 256

9
B2
16

)
π2 + (−18D66 − 72A11) π2

βϕ2 = −1

6
i

√√√√6
√
9

√(
(A11 − 4D66)

2 π2 + 1024

9
B2
16

)
π2 + (−72D66 − 18A11) π2 (67)

α, δ, ζ, λ, η and μ are coefficients presented in
“Appendix 4.” Substituting Eq. (66) into Eq. (64) and
solving for the inhomogeneous solution, one can obtain
U12(T0, T2),U22(T0, T2)V 12(T0, T2), V 22(T0, T2),
W12(T0, T2), W22(T0, T2), ϕ12(T0, T2) and ϕ22(T0,
T2); the general form of the solutions can be found
in “Appendix 5,” and the detailed expressions are pre-
sented in [39] for the sake of simplicity.

The solvability conditions are obtained in the same
manner as onemode, but here only the number of opera-
tions is doubled. Again, to express the nearness of exci-
tation frequency to the natural frequency, Eq. (46) is
used. The following form is assumed in order to obtain
a system of equation and compute the solvability con-
ditions for v andw, in both the first and second modes:

V 13(T0, T1, T2) = P11(T1, T2)e
iβ f T0

+P12(T1, T2)e
iβbT0

W13(T0, T1, T2) = P21(T1, T2)e
iβ f T0

+P22(T1, T2)e
iβbT0 (68)

Substituting Eqs. (46), (66), the found inhomoge-
neous solution and (68) into (65) and equating the

coefficients of eiβ f T0 and eiβbT0 on both sides, the
solvability conditions are computed in the following
form

�1
vF1(T2)H1(T2)H̄1(T2) + �1

vF1(T2)H2(T2)H̄2(T2)

+�1
vF1(T2)G1(T2)Ḡ1(T2) + �1

v F1(T2)G2(T2)Ḡ2(T2)

+�1
vF1(T2)Y1(T2)Ȳ1(T2) + K1

vF1(T2)Y2(T2)Ȳ2(T2)

+Z1
vF1(T2)F2(T2)F̄2(T2) + �1

vF1(T2)
2 F̄1(T2)

+X1
vD2F1(T2) +

(
β3
1α − D11π

4αβ1

−Ip�π2β2
1

)
cF1(T2) = 1

2

(
−β2

1 − Ip�π2β1

+D11π
4
)

(e1 − ie2) �2eiσ1T2

�1
wF2(T2)H1(T2)H̄1(T2) + �1

wF2(T2)H2(T2)H̄2(T2)

+�1
wF2(T2)G1(T2)Ḡ1(T2) + �1

wF2(T2)G2(T2)Ḡ2(T2)

+�1
wF2(T2)Y1(T2)Ȳ1(T2) + K1

wF2(T2)Y2(T2)Ȳ2(T2)

+Z1
wF2(T2)F1(T2)F̄1(T2) + �1

wF2(T2)
2 F̄2(T2)

+X1
wD2F2(T2) +

(
δβ3

2 − D11π
4δβ2

−Ip�π2β2
2

)
cF2(T2) = 0 (69)

Through the same procedure, solvability conditions
corresponding to the second mode are computed as

�2
vY1(T2)H1(T2)H̄1(T2) + �2

vY1(T2)H2(T2)H̄2(T2)

+�2
vY1(T2)G1(T2)Ḡ1(T2)

+�2
vY1(T2)G2(T2)Ḡ2(T2)
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+�2
vY1(T2)F1(T2)F̄1(T2)

+K2
vY1(T2)F2(T2)F̄2(T2)

+Z2
vY1(T2)Y2(T2)Ȳ2(T2) + �2

vY1(T2)
2Ȳ1(T2)

X2
vD2Y1(T2) +

(
−β3

1α + D11π
4αβ1

+Ip�π2β2
1

)
64cY1(T2) = 0

�2
wY2(T2)H1(T2)H̄1(T2) + �2

wY2(T2)H2(T2)H̄2(T2)

+�2
wY2(T2)G1(T2)Ḡ1(T2)

+�2
wY2(T2)G2(T2)Ḡ2(T2)

+�2
wY2(T2)F1(T2)F̄1(T2)

+K2
wY2(T2)F2(T2)F̄2(T2)

+Z2
wY2(T2)Y1(T2)Ȳ1(T2) + �2

wY2(T2)
2Ȳ2(T2)

X2
wD2Y2(T2) +

(
−β3

2δ + D11π
4δβ2

+Ip�π2β2
2

)
64cY2(T2) = 0 (70)

where�i
j ,�

i
j ,�

i
j , �

i
j ,�

i
j ,K

i
j ,Z

i
j ,�

i
j ,X

i
j , (i=1, 2),

( j = v,w) are the coefficients presented in numeric
form for the special case studied in Sect. 4 because
unfortunately they are too large to be expressed in ana-
lytical form. For the two equations of motion corre-
sponding to the u and ϕ, the solvability conditions
are obtained by substituting (66) and the second-order
solution into (65) and following the same procedure as
previous section to find for the first mode as

�1
u H1(T2)Y1(T2)Ȳ1(T2) + �1

u H1(T2)Y2(T2)Ȳ2(T2)

+�1
u H1(T2)F1(T2)F̄1(T2)

+K1
u H1(T2)F2(T2)F̄2(T2) + X1

u D2H1(T2) = 0

�2
ϕH2(T2)Y1(T2)Ȳ1(T2) + �2

ϕH2(T2)Y2(T2)Ȳ2(T2)

+�2
ϕH2(T2)F1(T2)F̄1(T2)

+K2
ϕH2(T2)F2(T2)F̄2(T2) + X2

ϕD2H2(T2) = 0

(71)

and for the second mode as

�2
uG1(T2)Y1(T2)Ȳ1(T2) + �2

uG1(T2)Y2(T2)Ȳ2(T2)

+�2
uG1(T2)F1(T2)F̄1(T2)

+K2
uG1(T2)F2(T2)F̄2(T2) + X2

u D2G1(T2) = 0

�1
ϕG2(T2)Y1(T2)Ȳ1(T2) + �1

ϕG2(T2)Y2(T2)Ȳ2(T2)

+�1
ϕG2(T2)F1(T2)F̄1(T2)

+K1
ϕG2(T2)F2(T2)F̄2(T2) + X1

ϕD2G2(T2) = 0

(72)

where �i
j ,�

i
j ,�

i
j ,K

i
j ,X

i
j , (i = 1, 2), ( j = u, ϕ)

are the coefficients and are treated in the same way

as before. Expressing the complex-valued functions
Fi (T2), Hi (T2),Gi (T2), (i = 1, 2) in the polar form

F1(T2) = 1

2
a f 1(T2)e

iθ f 1(T2),

F2(T2) = 1

2
a f 2(T2)e

iθ f 2(T2),

H1(T2) = 1

2
ah1(T2)e

iθh1(T2)

H2(T2) = 1

2
ah2(T2)e

iθh2(T2),

G1(T2) = 1

2
ag1(T2)e

iθg1(T2),

G2(T2) = 1

2
ag2(T2)e

iθg2(T2) (73)

where real-valued quantities ai (T2) and θi (T2), (i =
f 1, f 2, h1, h2, g1, g2) are the amplitudes and phase
angles of the response, respectively. Substituting
Eq. (73) into (69)–(72) and separating real and imagi-
nary parts, the modulation equations are computed for
the first mode as

X1
vD2a f 1 + ca f 1

[
αβ3

1 − D11π
4αβ1

−Ip�π2β2
1

]

= �2 (sin (γ1) e2 + e1 cos (γ1))
(
−β2

1

−Ip�π2β1 + D11π
4
)

1

4
a f 1

[
4σX1

v − 4X1
vD2γ1 + Z1

va
2
f 2

+K1
va

2
y2 + �1

va
2
y1 + �1

va
2
g2

+�1
va

2
g1 + �1

va
2
h2

+�1
va

2
f 1 + �1

va
2
h1

]

= �2
(
−β2

1 − Ip�π2β
1

+D11π
4
)

(e1 sin (γ1) − e2 cos (γ1))

X1
wD2a f 2 + ca f 2

[
δβ3

2

−D11π
4δβ2 − Ip�π2β2

2

]
= 0

a f 2

[
4X1

wσ − 4X1
wD2γ2 + �1

wa
2
f 2

+K1
wa

2
y2 + �1

wa
2
y1 + �1

wa
2
g2

+�1
wa

2
g1 + �1

wa
2
h2

+�1
wa

2
h1 + Z1

wa
2
f 1

]
= 0 (74)

1

4

[
�1
uah1a

2
y1 + �1

uah1a
2
y2
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+�1
uah1a

2
f 1 + K1

uah1a
2
f 2

]
− X1

uah1D2θh1 = 0

X1
u D2ah1 = 0

1

4

[
�2

ϕah2a
2
y1 + �2

ϕah2a
2
y2

+�2
ϕah2a

2
f 1 + K2

ϕah2a
2
f 2

]
− X2

ϕah2D2θh2 = 0

X2
ϕD2ah2 = 0 (75)

where γi = σT2 − θi , (i = 1, 2). For the second mode
it is obtained as
1

2
X2

vD2ay1 + 32c ay1
[
−αβ3

1

+D11π
4αβ1 + Ip�π2β2

1

]
= 0

1

4

[
�2

vay1a
2
g2 + Z2

vay1a
2
y2

+�2
vay1a

2
f 1 + K2

vay1a
2
f 2 + �2

vay1a
2
g1

+�2
vay1a

2
h2 + �2

va
3
y1

+�2
vay1a

2
h1

]
+ X2

vay1D2θy1 = 0

1

2
X2

wD2ay2 − 32cay2
[
δβ3

2

+D11π
4δβ2 + Ip�π2β2

2

]
= 0

1

4

[
�2

way2a
2
f 1 + �2

way2a
2
g2

+Z2
way2a

2
y1 + �2

way2a
2
g1 + K2

way2a
2
f 2

+�2
wa

3
y2 + �2

way2a
2
h1 + �2

way2a
2
h2

]

+X2
way2D2θy2 = 0 (76)

1

4
ag1

[
�2
ua

2
y1 + �2

ua
2
y2

+�2
ua

2
f 1 + K2

ua
2
f 2

]
− X2

uag1D2θg1 = 0

X2
u D2ag1 = 0

1

4
ag2

[
�1

ϕa
2
y1 + �1

ϕa
2
y2

+�1
ϕa

2
f 1 + K1

ϕa
2
f 2

]
− X1

ϕag2D2θg2 = 0

X1
ϕD2ag2 = 0 (77)

For steady-state solution, the time derivatives in
(74)–(77) are set to zero which results in

a f 2 = ay1 = ay2 = ag1 = ag2 = ah1 = ah2 = 0 (78)

Substituting Eq. (78) into Eqs. (74)–(77) and eliminat-
ing γi between the remaining equations finally yield

ϑ1a
6
f 1 + ϑ2a

4
f 1 + ϑ3a

2
f 1

= 1

4
�4e2t

(
−β2

1 − Ip�π2β1 + D11π
4
)2

(79)

where

ϑ1 = 1

64
�12

v

ϑ2 = 1

8
X1

vσ�1
v

ϑ3 = 1

4
c2β2

1

(
−β2

1α + D11π
4α + Ip�π2β1

)2

+1

4
(X1

v)
2σ 2

et =
√
e21 + e22 (80)

Here an explanation about the effect of the secondmode
in the solution is presented. It was assumed that the
excitation was tuned in the neighborhood of the first
mode. Consequently, the excitation does not actuate the
second mode directly; so the linear amplitudes (first-
order solution) of the second mode are all zero which
means there is no first-order solution for the second
mode (i.e., a f 2 = ay2 = ag2 = ah2 = 0), but, mean-
while, the second-order solution (i.e., the solution of
(71)) corresponding to the secondmode which consists
of nonlinear terms are nonzero due to inhomogeneous
parts appearing in the right-hand side of the equations in
second order of the second mode. So, this fact explains
although linear solution to the second mode vanishes,
nonlinear solution remains, so its components must be
kept till the last steps of the calculations.

4 Numerical examples

In this section, numerical examples are studied to exam-
ine forced vibration of the composite shaft with the
following dimensionless parameters [10]

Ip = 0.000657 I2 = 0.000328 D66 = 0.0224

D11 = 0.101

A11 = 307.754 B16 = −0.00105 c = 0.05 (81)

The layup is [90◦/45◦/−45◦/0◦
6/90

◦] starting from
inside surface of the hollow shaft. By substituting
parameters (81) and Eq. (80) into Eq. (79), one can
obtain the equation for two-mode as

937446.506a6f 1 − 786.524a4f 1σ

+(0.164σ 2 + 0.041c)a2f 1 = 0.413e2t (82)

and for one-mode discretization, the equation is

2109255.490a6f 1 − 1179.786636a4f 1σ

+(0.164σ 2 + 0.041c)a2f 1 = 0.413e2t (83)
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Fig. 4 Frequency response
curves for different
eccentricity and one-mode
discretization

Fig. 5 Frequency response
curves for different
eccentricity and two-mode
discretization

These expressions are amplitude–frequency relations
(bifurcation diagram) for one- and two-mode dis-
cretization methods. These relations clearly show the
differences between two methods of discretization.
Note that the amplitude presented here is total displace-
ment of the shaft cross section central point in y–z plane
(see Eqs. 45 and 53). In otherwords, the term amplitude
is used here for shaft whirl radius.

Figures 4 and 5 show the frequency response curves
of the composite shaft for one-mode and two-mode dis-
cretization, respectively. These figures are plotted for
different values of eccentricities. As Figs. 4 and 5 show

the curves are bent to the right in regions near the peak
which means that the effective nonlinearity here is of
hardening type. For some ranges of σ , there is one solu-
tion, and for some others, three solutions exist, includ-
ing one unstable; so jump and bifurcation phenomena
happen. In addition, it is observed that for small eccen-
tricity, all solution branches are stable. By increasing
the eccentricity, the amplitude grows up, and unstable
branches appear. The unstable regions were identified
using a Jacobian matrix constructed for this case. As
Figs. 4 and 5 show, the amplitude increases as exci-
tation frequency gets closer to the natural frequency
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Fig. 6 Comparison of
frequency response curves
for one- and two-mode
discretization

and decreases as excitation frequency goes upper than
natural frequency so a peak is formed in the curves.
It should be noted that in the linear analysis, the peak
must lead straight upward,while here in nonlinear anal-
ysis, the peak is bent to the right which shows that
maximum amplitude is achieved in a frequency more
than linear natural frequency which means that more
energy is needed to raise the amplitude to its maximum
amount and that is called hardening. It means that the
system is harder than what is estimated by linear meth-
ods; meanwhile, the two-mode discretization can esti-
mate the response with more accuracy which is a softer
system in result. To verify the perturbation solution
for both one-mode discretization and two-mode dis-
cretization, numerical simulations are applied in these
figures using the Runge–Kutta–Fehlberg method. It is
seen that the results agree well. So, it is concluded that
the perturbation results are valid.

Figure 6 compares frequency response curves for
one-mode and two-mode discretization which shows
a considerable difference especially near the peak. It
is obvious from the figure that peak values for both
cases are approximately equal. But this peak occurs in
different frequencies. These differences increase when
amplitude increases. This difference is important. For
example, for σ = 0.2, one-mode response predicts two
stable solution branches,while two-mode response pre-
dicts one stable solution branch.

The figure shows that the one-mode discretization
has harder nonlinearity, while two-mode nonlinearity

is softer. The presented result is interesting. Although
the excitation (i.e., spin) is tuned in the neighborhood of
the first flexuralmode and thismode does not involve in
an internal resonance with other modes, the presented
result shows that one-mode discretization is not suf-
ficient. This is in contrast to usual idea in nonlinear
vibration [37] that if the excitation is tuned in the neigh-
borhood of amode and this mode does not involve in an
internal resonance, then other modes are decayed with
passing of time and one-mode discretization is suffi-
cient for steady-state analysis. Here, the reason is the
existence of the second-order nonlinear terms. In dis-
cretization procedure, when one-mode discretization
is employed, some second-order nonlinear terms exist-
ing in extensional and torsional equations of motion
(26 and 29) vanish. So, their effects are not observed
in the solution. On the other hand, with application of
two-mode discretization, the effects of these terms are
included in the solution.

Figures 7 and 8 show amplitude versus total eccen-
tricity for one-mode and two-mode discretization,
respectively, for various values of σ . For some values
of σ , jump phenomenon happens. For some values of σ
and a certain rangeof et , the curve consists of three parts
including one unstable. For example, in Fig. 8 when
σ = 0.3 for et < 0.00082, curve has three parts, and
for et > 0.00082, the curve is one part. Figure 9 makes
a comparison between Figs. 7 and 8. The figure shows
that the differences between one-mode and two-mode
discretization increase with increasing eccentricity. All
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Fig. 7 Amplitude versus
total eccentricity for
one-mode discretization

Fig. 8 Amplitude versus
total eccentricity for
two-mode discretization

Fig. 9 Comparison of
amplitude–total eccentricity
curves for one- and
two-mode discretization
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Fig. 10 Amplitude versus
external damping for
one-mode discretization

Fig. 11 Amplitude versus
external damping for
two-mode discretization

the parameters are the same as introduced earlier in this
section.

Figures 10 and 11 show amplitude versus damp-
ing coefficient. Again for some values of σ , the curve
becomes multi-valued. For example, in Fig. 11 when
σ = −0.1 for every value of c the curve is single
valued but when σ = 0.3 for c < 0.2, the curve
consists of three parts which one of them is unsta-
ble, and for c > 0.2, the curve is again single val-
ued. All parameters used here are the same as before
except for the eccentricity which is assumed to be
0.0005, i.e., e1 = e2 = 0.0005. It should be noted that
Figs. 10 and 11 are for the one-mode and two-mode

discretization, respectively, and Fig. 12 is the compar-
ison between these two results. Figure 12 shows again
that two methods of discretization for different damp-
ing coefficient values lead to large differences.

Because bifurcation phenomenon happens, it would
be useful to plot loci of bifurcation points versus damp-
ing coefficient and eccentricity. Here, the bifurcation
points are shown with σbifurcation which denotes the
coordinate that a bifurcation occur (e.g., distance from
the origins of Figs. 4 and 5). The first bifurcation point
is lower saddle point, and the secondbifurcation point is
upper one. Saddle node bifurcation is one of three static
bifurcation points which occurs at the meeting point of
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Fig. 12 Comparison
between
amplitude–damping curves
for one- and two-mode
discretization

Fig. 13 σbifurcation versus
damping coefficient;
one-mode discretization

fixed points’ branches [40]. As Figs. 4 and 5 show,
when detuning parameter and consequently the spin-
ning speed increases (see Eq. 46), the solution becomes
multi-valued. Specifically, we consider Fig. 4. In the
left-hand side of point A, there is no fixed point. In
point A, there is one fixed point and in the right-hand
side of this point, there are two branches of fixed points:
one stable and the other unstable. So, in point A, there
are two branches of fixed points. This scenario is a sad-
dle node bifurcation [40]. Similarly, this bifurcation
occurs in the neighborhood of point B. To analytically
determine the type of bifurcation, Jacobian matrix of
modulation of Eq. (54) and its partial derivative with
respect to control parameter must be computed. In the
saddle node bifurcation, the vector of partial derivative

does not belong to the range of Jacobian matrix. This
can be checked by the range of augmented matrix [40].

Figures 13 and 14 show loci of bifurcation points
versus damping coefficient for one-mode and two-
mode discretization. These figures show that the first
saddle node bifurcation point is approximately constant
with variation of damping. But the variation of second
one is large. Figure 15 shows a comparison between
these two results. Again, the difference between two
methods of discretization is considerable. It should be
noted that in Figs. 13 and 14, all the parameters are
the same as introduced earlier in this section and the
eccentricity has the value of 0.0003 in both one-mode
and two-mode discretization methods.
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Fig. 14 σbifurcation versus
damping coefficient;
two-mode discretization

Fig. 15 Comparison
between one- and two-mode
discretization for σbifurcation
versus damping coefficient

Fig. 16 σbifurcation versus
total eccentricity; one-mode
discretization
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Fig. 17 σbifurcation versus
total eccentricity; two-mode
discretization

Fig. 18 Comparison
between one- and two-mode
discretization for σbifurcation
versus total eccentricity

Figures 16 and 17 show the loci of bifurcation points
versus total eccentricity. In contrast to previous figures,
both thefirst and secondbifurcationpoints varywith the
variation of eccentricity. However, the variation for the
second bifurcation point is larger which is confirmed
by Figs. 4 and 5. In addition, it is seen that σbifurcation
is ascending with increasing et , in contrast to Figs. 13
and 14 which show descending trend upon increasing
c. The two points get farther from each other as the
eccentricity increases which is confirmed by Figs. 4
and 5. Figure 18 makes a comparison between Figs. 16
and 17. This figure shows a considerable error with use
of one-mode discretization. It should be noted that the

more the eccentricity, the more error is produced, and
this confirms the undeniable role of nonlinear terms
which would be kept through two-mode discretization
method. All parameters are the same as before for the
diagrams presented in Figs. 16 and 17.

Figure 19 shows the frequency response curves for
a fixed value of eccentricity and different lamination
angles, for two-mode discretization. This figure shows
that for three present lamination patterns, the bifurca-
tion diagrams are not so different. If lamination angle
increases with respect to the longitudinal axis of the
shaft, system responses in a softer manner.
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Fig. 19 Frequency
response curves for different
lamination angles;
e1 = e2 = 0.0003

One of the interesting aspects of this paper is that
the derived equations of motion are used in the anal-
ysis without any reduction (i.e., neglecting coupling
terms). They consist of extensional–flexural–flexural–
torsional coupling, while in some works such as [18],
coupling effects are neglected. Here, the effect of cou-
pling in the results is considered.

Actually, this coupling is associated with longitu-
dinal and torsional motions. Its effect is reflected in
the coefficient B16. This coupling vanishes when the
fibers have an orientation angle equal to 0◦ and 90◦
(i.e., cross-ply lamination). In angle-ply lamination, the
coefficient B16 is nonzero. Now, in angle-ply lamina-
tion, according to the symmetry in stacking sequence
the problem divides into two cases: symmetric layup
and asymmetric layup.

It must be noted that symmetric layup here is defined
as a layup which consists of both θ and −θ orientation
angle, while in asymmetric layup, any fiber orientation
angle can be considered without its negative counter-
part. So, the first layup mentioned in this paper is con-
sidered as symmetric according to the assumptionmade
in this paper, and the following layup is considered as
asymmetric.

In case 1 (symmetric layup), because the fibers are
plied with both θ and −θ orientation and consider-
ing the small thickness nature of composite layers,
each pair of fibers with opposite angle approximately

neutralize each other’s effect; so in this case, cou-
pling coefficient (B16) does not vanish but has a small
value. In case 2 (asymmetric layup), the effect of cou-
pling is considerable due to the asymmetry in stack-
ing sequence. So, consider the coupling is necessary in
response analysis. The following explanation confirms
this claim.

In order to investigate the effect of the extensional–
torsional coupling, a numerical example considering
an asymmetric layup is studied with these equations.
Finally, the results are compared with those of a shaft
with previous data, but it is obtained using the firstly
derived equations in this paper. Omitting extensional–
torsional coupling in Eqs. (19)–(22), the new equations
of motion become

¨̄u − Ā11(v̄′v̄′′ + w̄′w̄′′

−v̄′2ū′′ − w̄′2ū′′ + ū′′

−2v̄′ū′v̄′′ − 2w̄′ū′w̄′′) = 0 (84)
¨̄v + c̄ ˙̄v − D̄11(−v̄(I V ))

− Ī p�
˙̄

w′′ − Ā11(w̄′v̄′w̄′′

+v̄′ū′′ + v̄′′ū′

+3

2
v̄′2v̄′′ + 1

2
w̄′2v̄′′ − 2v̄′ū′ū′′ − v̄′′ū′2)

= �̄2(ēy(x̄) cos(�̄t̄) − ēz(x̄) sin(�̄t̄)) (85)

¨̄w + c̄ ˙̄w − D̄11(−w̄(I V )) − Ī p�
˙̄
v′′

− Ā11(w̄′v̄′v̄′′ + w̄′ū′′ + w̄′′ū′
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Fig. 20 Frequency curve
obtained including and
excluding
extensional–torsional
coupling for one-mode
discretization

+3

2
w̄′2w̄′′ + 1

2
v̄′2w̄′′ − 2w̄′ū′ū′′ − w̄′′ū′2)

= �̄2(ēz(x̄) cos(�̄t̄) + ēy(x̄) sin(�̄t̄)) (86)

Ī p
¨̄φ − D̄66(v̄′′w̄′′

+φ̄′′ + ¯v′′′w̄′ − w̄′′v̄′ū′′ − 3ū′′v̄′′w̄′ − 2ū′v̄′′w̄′′

−2ū′ ¯v′′′w̄′ − w̄′v̄′ ¯u′′′) = 0 (87)

The solution procedure is the same as before. The
frequency response curve is obtained for the shaft in
Sect. 4 but with an asymmetric stacking sequence as
below[
90◦, 45◦, 45◦, 30◦, 60◦, 0◦, 0◦, 0◦, 0◦, 90◦] (88)

So the new dimensionless parameters are

A11 = 253.20, D11 = 0.08359, D66 = 0.03233,

I2 = 0.000328, Ip = 0.000657, B16 = .937,

c = 0.05 (89)

and the eccentricity is e1 = e2 = 0.0003. As it
can be seen in (89), the extensional–torsional coupling
obtained with asymmetric layup assumption is much
bigger than what was calculated before with symmet-
ric layup.

Using the parameters obtained above, the final equa-
tion for one mode and without coupling is as follows

2109255.49a6f 1 − 1179.786a4f 1σ

+(0.165σ 2 + 0.0001)a2f 1 = 0.412e2t (90)

and the equation for two-mode discretization and with-
out coupling becomes

523080.744a6f 1 − 484.149a4f 1σ

+(0.112σ 2 + 0.000065)a2f 1 = 0.34e2t (91)

For one- and two-mode discretization including cou-
pling, the equation is, respectively,

1176931.678a6f 1 − 726.224a4f 1σ

+(0.112σ 2 + 0.000066)a2f 1 = 0.34e2t

314961.871a6f 1 − 375.685a4f 1σ

+(0.112σ 2 + 0.000066)a2f 1 = 0.34e2t (92)

Figures 20 and 21 show the frequency curve for
the composite shaft with aforementioned asymmetric
stacking sequence obtained with and without
extensional–torsional coupling for one-mode and two-
mode discretization. As it can be seen, inclusion of cou-
pling term results in more accurate frequency response
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Fig. 21 Frequency curve
obtained including and
excluding
extensional–torsional
coupling for two-mode
discretization

Fig. 22 A comparison
between one-mode and
two-mode discretization
including and excluding
extensional–torsional
coupling

curves. The difference between two cases is consid-
erable in the resonance tip. A comparison between
response curves in Figs. 20 and 21 shows that the
coupling term has softening nonlinearity effect on the
response.

Figure 22 shows a comparison between one-mode
and two-mode discretization with and without inclu-
sion of extensional–torsional coupling. This figure
shows the combination effect of the linear coupling

and number of modes. It is observed that the effect of
linear coupling in one-mode discretization is negligi-
ble. The reason is that the coupling coefficient affects
the second-order nonlinear terms, and these terms van-
ish when one-mode discretization is employed. So, the
effect of coupling in one-mode discretization is small
and is completely due to the few remaining linear terms
associated with this coupling. On the other hand, in the
case of two-mode discretization, the second-order non-
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linear terms do not vanish and consequently coupling
coefficient has an important effect on the response. In
this case, the coupling can affect the response through
both the second-order nonlinear terms and few linear
terms associated with coupling so as it can be seen the
effect of coupling in two-mode discretization is more
than that of one mode. This figure clearly shows the
order of error induced in the case of one-mode dis-
cretization and neglecting of coupling terms.

5 Summary and conclusion

In this paper, nonlinear forced vibration of a rotating
composite shaft under the excitation due to the eccen-
tricity was studied. The flexural–flexural–extensional–
torsional equations of motion were derived via utiliz-
ing the three-dimensional constitutive relations of the
material and application of the Hamilton’s principle.
Rotary inertia andgyroscopic effectswere included, but
the shear deformationwas neglected due to the slender-
ness of the shaft. To analyze the equations, the method
of multiple scales was applied to the discrete equations
with inclusion of one and two modes. Although the
excitation was tuned in the neighborhood of the first
mode, one-mode discretization resulted in inaccurate
results, and at least twomodes are necessary in the anal-
ysis. The effects of external damping, total eccentricity
and lamination angle were considered on the response
of the shaft. All the results were obtained for both one-
mode discretization and two-mode discretization, and
the results were compared. The nonlinearity effect due
to the large deformation of the shaft is of the hardening
type. There is jump phenomenon, and the bifurcation
points are affected by the external damping and the
eccentricity. Lamination angle does not affect bifurca-
tion point, while it can soften the system as lamination
angle increases with respect to the longitudinal axis
of the shaft. Finally, the effect of extensional–torsional
coupling on the frequency curves was investigated, and

it was shown that when the stacking sequence is asym-
metric, the coupling should be considered in the anal-
ysis to obtain more accurate results.

Appendix 1

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11
σ22
σ33
τ23
τ31
τ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
γ23
γ31
γ12

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σxx
σθθ

σrr
τrθ
τxr
τxθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Q11 Q12 Q13 0 0 Q16

Q12 Q22 Q23 0 0 Q26

Q13 Q23 Q33 0 0 Q36

0 0 0 Q44 Q45 0
0 0 0 Q45 Q55 0

Q16 Q26 Q36 0 0 Q66

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εxx
εθθ

εrr
γrθ
γxr
γxθ

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

[
Q̄
] = [T ]−1 [Q] [T ]−T

where Q̄ is the stiffness matrix of the layer in which

[T ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

m2 n2 0 0 0 2mn
n2 m2 0 0 0 −2mn
0 0 1 0 0 0
0 0 0 m −n 0
0 0 0 n m 0

−mn mn 0 0 0 m2 − n2

⎤
⎥⎥⎥⎥⎥⎥⎦

m = cos η, n = sin η

where η is shown in Fig. 1.

Q11 = E1

1 − ν212E2
E1

, Q12 = E2ν12

1 − ν212E2
E1

,

Q22 = E2

1 − ν212E2
E1

, Q44 = G23, Q55 = G13,

Q66 = G12, Q13 = Q23 = Q33 = 0
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Appendix 2

Derivation of equations of motion
Kinetic energy
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Potential energy

U = 1
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First the above kinetic and potential energies are
expanded in Taylor series up to order four and then
Hamilton’s principle∫ t2

t1
[δ(T ) − δU ] dt = 0

is applied to obtain Eqs. (14)–(17).
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Appendix 4
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Appendix 5

U12 (T0, T1, T2) = �1uφ1 (T2) e
−5iβ1T0

+�1uφ2 (T2) e
−5iβ2T0 + �1uφ3 (T2) e

−3iβ1T0

+�1uφ4 (T2) e
−3iβ2T0 + �1uφ5 (T2) e

−2iβ1T0

+�1uφ6 (T2) e
−2iβ2T0 + �1uφ7 (T2) e

−iT0(−4β2+β1)

+�1uφ8 (T2) e
−iT0(−β2+β1) + �1uφ9 (T2) e

−iT0(−β2+4β1)

+�1uφ10 (T2) e
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iT0(4β2+β1) + �1uφ19 (T2) e

2iβ1T0

+�1uφ20 (T2) e
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iT0(−4β2+β1) + �2uφ14 (T2) e

iT0(−β2+β1)

+�2uφ15 (T2) e
iT0(−β2+4β1) + �2uφ16 (T2) e

iT0(β2+β1)

+�2uφ17 (T2) e
iT0(β2+4β1) + �2uφ18 (T2) e

iT0(4β2+β1)

+�2uφ19 (T2) e
2iβ1T0 + �2uφ20 (T2) e

2iβ2T0

+�2uφ21 (T2) e
3iβ1T0 + �2uφ22 (T2) e

3iβ2T0

+�2uφ23 (T2) e
5iβ1T0 + �2uφ24 (T2) e

5iβ2T0

ϕ12 (T0, T2) = �1uφ1 (T2) e
−5iβ1T0 + �1uφ2 (T2) e

−5iβ2T0

+�1uφ3 (T2) e
−3iβ1T0 + �1uφ4 (T2) e

−3iβ2T0

+�1uφ5 (T2) e
−2iβ1T0 + �1uφ6 (T2) e

−2iβ2T0

+�1uφ7 (T2) e
−iT0(−4β2+β1) + �1uφ8 (T2) e

−iT0(−β2+β1)

+�1uφ9 (T2) e
−iT0(−β2+4β1) + �1uφ10 (T2) e

−iT0(β2+β1)

+�1uφ11 (T2) e
−iT0(β2+4β1) + �1uφ12 (T2) e

−iT0(4β2+β1)

+�1uφ13 (T2) e
iT0(−4β2+β1) + �1uφ14 (T2) e

iT0(−β2+β1)

+�1uφ15 (T2) e
iT0(−β2+4β1) + �1uφ16 (T2) e

iT0(β2+β1)

+�1uφ17 (T2) e
iT0(β2+4β1) + �1uφ18 (T2) e

iT0(4β2+β1)

+�1uφ19 (T2) e
2iβ1T0 + �1uφ20 (T2) e

2iβ2T0

+�1uφ21 (T2) e
3iβ1T0

+�1uφ22 (T2) e
3iβ2T0 + �1uφ23 (T2) e

5iβ1T0

+�1uφ24 (T2) e
5iβ2T0

V 12(T0, T2) = �1vw1e
−iT0(β1−β32)

+�1vw2e
−iT0(β1+β32)

+�1vw3e
−iT0(β1−βφ) + �1vw4e

−iT0(β1+βφ)

+�1vw5e
−iT0(4β1−β31) + �1vw6e

−iT0(β2−β32)

+�1vw7e
−iT0(β2+β32) + �1vw8e

−iT0(β2−βφ)

+�1vw9e
−iT0(β2+βφ) + �1vw10e

−iT0(4β2−β2φ)

+�1vw11e
−iT0(−β31+4β2) + �1vw12e

−iT0(β31+4β1)

+�1vw13e
−iT0(β31+4β2) + �1vw14e

−iT0(−β2φ+4β1)

+�1vw15e
−iT0(β2φ+4β1) + �1vw16e

−iT0(β2φ+4β2)

+�1vw17e
iT0(β1−β32) + �1vw18e

iT0(β1+β32)

+�1vw19e
iT0(β1−βφ) + �1vw20e

iT0(β1+βφ)

+�1vw21e
iT0(4β1−β31) + �1vw22e

iT0(β2−β32)

+�1vw23e
iT0(β2+β32) + �1vw24e

iT0(β2−βφ)

+�1vw25e
iT0(β2+βφ) + �1vw26e

iT0(4β2−β2φ)

+�1vw27e
iT0(−β31+4β2) + �1vw28e

iT0(β31+4β1)

+�1vw29e
iT0(β31+4β2) + �1vw30e

iT0(−β2φ+4β1)

+�1vw31e
iT0(β2φ+4β1) + �1vw32e

iT0(β2φ+4β2)

W12(T0, T2) = �1vw1e
−iT0(β1−β32)

+�1vw2e
−iT0(β1+β32) + �1vw3e

−iT0(β1−βφ)

+�1vw4e
−iT0(β1+βφ) + �1vw5e

−iT0(4β1−β31)

+�1vw6e
−iT0(β2−β32) + �1vw7e

−iT0(β2+β32)

+�1vw8e
−iT0(β2−βφ) + �1vw9e

−iT0(β2+βφ)

+�1vw10e
−iT0(4β2−β2φ)

+�1vw11e
−iT0(−β31+4β2) + �1vw12e

−iT0(β31+4β1)

+�1vw13e
−iT0(β31+4β2) + �1vw14e

−iT0(−β2φ+4β1)

+�1vw15e
−iT0(β2φ+4β1)

+�1vw16e
−iT0(β2φ+4β2) + �1vw17e

iT0(β1−β32)

+�1vw18e
iT0(β1+β32) + �1vw19e

iT0(β1−βφ)

+�1vw20e
iT0(β1+βφ) + �1vw21e

iT0(4β1−β31)

+�1vw22e
iT0(β2−β32) + �1vw23e

iT0(β2+β32)

+�1vw24e
iT0(β2−βφ)

+�1vw25e
iT0(β2+βφ) + �1vw26e

iT0(4β2−β2φ)

+�1vw27e
iT0(−β31+4β2) + �1vw28e

iT0(β31+4β1)

+�1vw29e
iT0(β31+4β2) + �1vw30e

iT0(−β2φ+4β1)

+�1vw31e
iT0(β2φ+4β1) + �1vw32e

iT0(β2φ+4β2)

V 22 (T0, T2) = �2vw1 (T2) e
−iT0(β1−β31)

+�2vw2 (T2) e
−iT0(β1+βu1)

+�2vw3 (T2) e
−iT0(β1−βφ2)

+�2vw4 (T2) e
−iT0(β1+βφ2)

+�2vw5 (T2) e
−iT0(β2−βu1)

+�2vw6 (T2) e
−iT0(β2+βu1)

+�2vw7 (T2) e
−iT0(β2−βφ2)

+�2vw8 (T2) e
−iT0(β2+βφ2)

+�2vw9 (T2) e
iT0(β1−βu1)

+�2vw10 (T2) e
iT0(β1+βu1)

+�2vw11 (T2) e
iT0(β1−βφ2)

+�2vw12 (T2) e
iT0(β1+βφ2)

+�2vw13 (T2) e
iT0(β2−βu1)

+�2vw14 (T2) e
iT0(β2+βu1)

+�2vw15 (T2) e
iT0(β2−βφ2)

+�2vw16 (T2) e
iT0(β2+βφ2)
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W22 (T0, T2) = �2vw1 (T2) e
−iT0(β1−β31)

+�2vw2 (T2) e
−iT0(β1+βu1) + �2vw3 (T2) e

−iT0(β1−βφ2)

+�2vw4 (T2) e
−iT0(β1+βφ2) + �2vw5 (T2) e

−iT0(β2−βu1)

+�2vw6 (T2) e
−iT0(β2+βu1) + �2vw7 (T2) e

−iT0(β2−βφ2)

+�2vw8 (T2) e
−iT0(β2+βφ2) + �2vw9 (T2) e

iT0(β1−βu1)

+�2vw10 (T2) e
iT0(β1+βu1) + �2vw11 (T2) e

iT0(β1−βφ2)

+�2vw12 (T2) e
iT0(β1+βφ2) + �2vw13 (T2) e

iT0(β2−βu1)

+�2vw14 (T2) e
iT0(β2+βu1) + �2vw15 (T2) e

iT0(β2−βφ2)

+�2vw16 (T2) e
iT0(β2+βφ2)
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