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Abstract This paper investigates the problem of
parameter estimation for fractional-order linear sys-
tems when output signal is polluted by noise and out-
liers. Different from conventional filtering and semi-
definite programming methods, the outliers detection
problem is formulated as a matrix decomposition prob-
lem based on a novel nuclear norm method, which can
not only make exact detection of outliers, but also esti-
mate measurement noise at the same time. Then, a new
parameter estimation approach is developedvia amodi-
fied fractional-order gradient method with variable ini-
tial value mechanism and fractional-order parameter
update law. With the adoption of recovered output sig-
nal, the proposed approach can obtain much better esti-
mation performance, whose effectiveness and superi-
ority are verified by strict mathematical analysis and
detailed numerical examples.
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1 Introduction

Fractional-order calculus is an extension of ordinary
differentiation and integration to arbitrary order [1]. In
recent decades, it has been widely used to describe a
complex system more concisely and precisely such as
viscoelastic structures [2], heat conduction [3]. It has
also attracted increasing attention from the signal pro-
cessing and systems control community. A tremendous
amount of valuable results on system identification [4–
6], controllability and observability [7,8], controller
synthesis [9,10] of fractional-order systems (FOSs)
have been reported.

Outliers occur frequently and cause serious conse-
quences in practice such as signal processing [11,12],
mechanical devices [13]. When it comes to system
identification, outliers caused by sensor malfunctions
and data transmission errors will lead to worse esti-
mation performance. Thus, they should be eliminated
from the observed signal. So far, there have been some
approaches for outliers detection, such as Hampel filter
and robust regression methods. However, the Hampel
filter behaves badly with coarsely quantized data [14].
Robust regressionmethods are inherently less sensitive
to outliers, such as the least absolute deviations (LAD)
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[15]. Recently, Wright et al. put forward robust prin-
cipal component analysis (RPCA) [16], which decom-
posed a corrupted matrix into a low-rank matrix and
a sparse matrix, and then solved a semi-definite pro-
gramming problem [17]. However, their algorithms are
only for integer systems and need to filter measure-
ment noise before detecting outliers. As we all know,
filter is bound to reduce the values of outliers, leading
to bad detection result. Unlike above approaches, we
formulate the outliers detection problem as a matrix
decomposition problem with the aid of a new nuclear
norm method, which can detect outliers accurately and
estimate noise concurrently. Besides, different from
[18,19], it does not need to construct a noise model in
advance. Generally, it is not easy to describe measure-
ment noise using a concrete model. After eliminating
the detected outliers and estimated measurement noise
from the output signal, we obtain recovered “clean”
data for system identification.

Up to now, there have been several kinds of meth-
ods for FOSs identification in continuous- and discrete-
time domains. Liao et al. [20] studied a subspace algo-
rithm via the Poisson filter. Victor et al. [5] proposed
an optimal instrumental variable method for estimating
transfer function coefficients. In this paper,we study the
parameter estimation problem from a new angle. It is
well known that the gradient method is simple and con-
venient for parametrization model estimation and has
attracted wide interest, which is firstly generalized to a
fractional one named fractional-order gradient method
(FOGM) [21]. Of course, there are other forms and
applications of fractional gradient, such as fractional
generalization of gradient systems using Riemann–
Liouville derivative [22], fractional vector calculus by
Grünwald–Letnikov definition [23], while theCaputo’s
derivative and its difference are utilized generally in
the literature. Though the FOGM algorithm is able to
achieve faster convergence speed, it cannot converge
to the extreme point [24]. In order to solve this prob-
lem, we modify the calculus’s low terminal of FOGM.
In addition, it is proved that fractional-order parame-
ter update law can obtain better steady accuracy. Wei
et al. extended the conventional gradient estimator to
the fractional-order field in continuous case [25,26].
In the discrete case, the LMS algorithm is extended
to fractional-order case, fractional-order parameter
update law, by means of replacing the first-order dif-
ference with a fractional-order 0 < α < 1 [27]. It is
unfortunate that the contradiction between estimation

accuracy and convergence speed cannot be coordinated
taking advantage of both of them. To solve this prob-
lem, a novel fractional-order update gradient method
(FOUGM) is proposed based on them.

Motivated by above discussions, this paper aims at
designing an effective approach to estimate parameters
of FOSs when the output signal is disturbed by Gauss
white noise and outliers. A novel outliers detection
approach is developed via nuclear norm and infinite
norm for detecting outliers and estimating noise simul-
taneously. The modified FOGM with variable initial
value mechanism can reduce the effect of non-locality
of fractional calculus. With the help of fractional-order
parameter update law and themodified FOGM, the pro-
posed algorithm is developed step by step, which sig-
nificantly improves parameter estimation performance.

After recalling the definitions of widely used
fractional-order calculus and a necessary lemma in
Sect. 2, Section3 describes the problem of identify-
ing fractional-order linear system and proposes a novel
outliers detection approach. Then the fractional-order
update gradient method is presented. Meanwhile, its
convergence is also analyzed. In Sect. 4, some numer-
ical simulations are provided to illustrate the validity
and superiority of the proposed approach. Conclusions
are drawn in Sect. 5.

2 Preliminaries

2.1 Continuous fractional-order calculus

Fractional-order calculus is a generalization and unifi-
cation of the classical integer-order calculus. In view
of its good properties on fractional-order derivative of
constant and the initial value of Laplace transforma-
tion, the following Caputo’s derivative is adopted in
this study

t0D
α
t f (t) = 1

Γ (m−α)

∫ t
t0

f (m)(τ )

(t−τ)α−m+1 dτ , (1)

where m − 1 < α < m,m ∈ N+, Γ (α)

= ∫ ∞
0 xα−1e−xdx is the Gamma function, and f (t)

is a smooth function. To simplify the notation, the frac-
tional derivative of order α with the lower terminal at
0 can be denoted as Dα instead of 0Dα

t .
Alternatively, when 0 < α < 1, (1) can be rewritten

in a form similar as the conventional Taylor series

t0D
α
t f (t) =

∞∑
i=0

f (i+1)(t0)
Γ (i+2−α)

(t − t0)i+1−α. (2)
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2.2 Discrete fractional-order calculus

Several basic definitions and relevant properties of dis-
crete fractional-order calculus will be presented in this
section.

The αth fractional-order sum of a discrete sequence
f (n), n ∈ N0, is defined as

∇−α f (n) =
n∑

j=0
(−1) j

( −α
j

)
f (n − j), (3)

where α > 0 and
( p
q
) = Γ (p+1)

Γ (q+1)Γ (p−q+1) .
The conventional mth-order difference is given by

∇m f (n) =
m∑

j=0
(−1) j

( m
j
)
f (n − j). (4)

Then the Caputo fractional difference can be defined
as
C∇α f (n) = ∇α−m∇m f (n) , (5)

with m − 1 < α < m.
ThediscreteMittag-Leffler function canbe expressed

as [28]

Fα,β (λ, n) =
∞∑
j=0

λ j Γ ( jα+β+n−1)
Γ ( jα+β)Γ (n)

. (6)

Before moving on, the following lemma is neces-
sary.

Lemma 1 (See [29]) If m − 1 < α < m, then the
solution to the fractional difference system

∇α f (n) = λ f (n) + u (n) , λ �= 1, (7)

with initial conditions∇k f (n)|n=0 = bk, k = 0, 1, . . . ,
m − 1, is unique and is given by

f (n) =
m−1∑

k=0

bkFα,k+1 (λ, n)

+
n∑

τ=1

Fα,α (λ, τ ) u (n − τ + 1) . (8)

The system (7) has the following properties with
u(n) = 0.

(i) If λ > 0 and λ �= 1, f (n) is divergent.
(ii) If λ = 0, f (n) = ∑m−1

k=0
bk
k!

Γ (k+n)
Γ (n)

, therefore
f (n) may be divergent or constant.

(iii) If λ < 0, f (n) is convergent. More specifically,
if 0 < α ≤ 1, f (n) is monotone convergent for
large n. If 1 < α < 2, f (n) is convergent with or
without overshoot.

According to Lemma 1, when 0 < α ≤ 1, u(n) = 0,
only Fα,1 (λ, n) needs to be considered. If λ < 0 and
n → ∞, the asymptotic line forFα,1 (λ, n) is [29,30]

Fα,1 (λ, n) =
∞∑

j=0

λ j Γ ( jα + n)

Γ ( jα + 1) Γ (n)

∼ − 1

λ(n − 1)αΓ (1 − α)
. (9)

Under this situation, (8) turns out to be

f (n) = b0Fα,1 (λ, n) ∼ − b0
λ(n−1)αΓ (1−α)

. (10)

Moreover, the bigger the |λ| or α is, the faster the
convergence speed of f (n) is.

3 Parameter estimation of fractional-order linear
systems

3.1 Problem description

Consider the fractional-order single-input and single-
output plant with the differential equation
n∑

i=0
aiD iαx (t) =

m∑

j=0
b jD jαu (t), (11)

wherem, n ∈ N andm < n. u(t) and x(t) are the input
and output signals, respectively. The commensurate-
order α is known and satisfies 0 < α < 1. ai (i =
0, 1, . . . , n−1) and b j ( j = 0, 1, . . . ,m) are constants
but unknown. Let y(t) be a noisy observation of x(t)
on the interval of t . ε(t) is the Gauss white noise and
z(t) consists of 0 and outliers,

y (t) = x (t) + ε (t) + z (t) . (12)

Thenput (12) into systemEq. (11) anddonate v(t) =
ε (t) + z (t), rewriting the equation as
n∑

i=0
aiD iα y (t) =

m∑

j=0
b jD jαu (t) +

n∑

i=0
aiD iαv(t).

(13)

Unlike the discrete-time case, the difficulty for direct
identification method of continuous-time systems lies
in inability to measure the differentiation of all kinds of
orders of input and output signals, and casting approxi-
mateways on differentiation items enlarges the impacts
of noises.

In this paper, the Poissonmoment functionalmethod
(PMF) [31] is chosen to solve this difficulty. The trans-
fer function of PMF can be given as

L [gl(t)] = Gl(s) =
(

η

s + ξ

)l

, (14)
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where s is the Laplace variable and gl(t) is the lth-
order Poisson pulse function. ξ ∈ R

+ and η ∈ R
+ are,

respectively, the Poisson filter constant and gain. More
detailed information about PMF can be seen in [6].

The essential idea of pre-filtering by Poisson filter
is to find a way to transmit the time derivative in the
fractional-order sense to a known and special function.
Define the procedure of pre-filtering as follows [6]

Pgl (t)[Dα y(t)] = gl(t) ∗ Dα y(t)

= L −1[Gl(s)s
αY (s)]

= Dαgl(t) ∗ y(t), (15)

where ∗ represents the convolution product operator.
Then performing this operation on Eq. (13), one can
obtain

n∑

i=0

ai Pgl (t)[D iα y(t)] =
m∑

j=0

b j Pgl (t)[D jαu (t)]

+
n∑

i=0

ai Pgl (t)[D iαv(t)].

(16)

As the concept of continuous-time noise or out-
liers is not a trivial extension of the discrete-time case
[32], therefore, the data are collected with a sampling
period which is so small that the approximate errors are
negligible during the numerical computation of frac-
tional derivatives. Moreover, the number of samples
is assumed to be large enough to guarantee the conver-
gence of the estimated parameters to the true ones. Pre-
scribe y(k) = y(kT ), u(k) = u(kT ), v(k) = v(kT ),
and yi (k) = Pgl (k)[D iα y(k)], u j (k) = Pgl (k)[D jα

u(k)], V (k) =
n∑

i=0
ai Pgl (k)[D iαv(k)], (k = 1, 2,

. . . , N ). Then, Eq. (16) can be rewritten as
n∑

i=0
ai yi (k) =

m∑

j=0
b ju j (k) + V (k). (17)

Generally, an = 1. Eq. (17) is expressed as

yn(k) = ϕT
k θ + V (k), (18)

where ϕk = [−y0(k),−y1(k), . . . ,−yn−1(k), u0(k),
u1(k), . . . , um(k)]T and θ = [a0, a1, . . . , an−1, b0,
b1, . . . , bm]T. The least squares estimate for θ is given
by

θ̂ =
[

∑N
k=1 ϕkϕ

T
k

]−1[∑N
k=1 ϕk yn(k)

]

. (19)

It is obvious that the least squares estimate from (19)
will be biased even if only Gauss white noise exists let
alone outliers. Because outliers in y(k) may cause big
errors in parameter estimation, it should be eliminated
from the observed signal.

3.2 Outliers detection and noise estimation

We formulate the outliers detection problem as amatrix
decomposition problem with the help of nuclear norm
and infinite norm. To our best knowledge, our method
is the first one to detect outliers and estimate noise
simultaneously.

Construct a Hankel form from y(k) as follows:

D =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y(1) y(2) y(3) · · · y(q)

y(2) y(3) y(4) · · · y(q + 1)
y(3) y(4) y(5) · · · y(q + 2)

...
...

...
. . .

...

y(p) y(p + 1) y(p + 2) · · · y(ND)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (20)

where p + q − 1 = ND , p ≤ q ≤ N . Assume the
system order is much smaller than the dimension of D.
The problem of matrix decomposition is described as

D = L + S, (21)

where L =

⎡

⎢
⎢
⎢
⎣

x(1) x(2) · · · x(q)

x(2) x(3) · · · x(q + 1)
...

...
. . .

...

x(p) x(p + 1) · · · x(ND)

⎤

⎥
⎥
⎥
⎦
and S =

⎡

⎢
⎢
⎢
⎣

v(1) v(2) · · · v(q)

v(2) v(3) · · · v(q + 1)
...

...
. . .

...

v(p) v(p + 1) · · · v(ND)

⎤

⎥
⎥
⎥
⎦

.

Ourgoal is to recover L from (21). In viewof integer-
order system, L is a low-rank matrix; thus, it can be
achieved by solving a rank minimization problem [16]
in which S can be described as a sparse matrix. How-
ever, here the L is not a low-rank matrix due to the
non-locality of fractional calculus. We construct the
following convex problem

min
v

‖ L ‖2∗ +r ‖ S ‖∞,

s.t. L + S = D,
(22)

where r is a tuning parameter.
Unlike general rank minimization problem, the rank

is replaced by the nuclear norm. Since the fractional-
order differential value of a function at some point
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mainly depends on recent function values and the effect
of earlier function values can be ignored, y(k) ismainly
related to recent data. Then the nuclear norm is still
a valid criterion. However, because the measurement
noise is inevitable in practice, S cannot be described
as a sparse matrix, so we replace 0-norm with infinite
norm for the first time, enlarging the range of practical
application.

Remark 1 One may attempt to filter out the noise
before detecting outliers, but the filter will also reduce
the values of outliers, causing unsatisfying detection
result. By the aid of infinite norm, not only can accu-
rate detection be achieved, but also noise could be esti-
mated to a certain degree at the same time. In addition,
exact detection results will always be obtained no mat-
ter whether noise exists or not.

3.3 Parameter estimation algorithm

After eliminating the detected outliers and estimated
noise, the recovered “clean” data are used to estimate
parameters of systems. FOUGM is put forward with
the analysis of convergence and effectiveness.

Similar to Eq. (18),

ȳn(k) = ϕ̄T
k θ + ε(k), (23)

where ϕ̄k = [−ȳ0(k),−ȳ1(k), . . . ,−ȳn−1(k), u0(k),
u1(k), . . . , um(k)]T. ȳi (k) = Pgl (k)[D iα ȳ(k)] with the
recovered data ȳ(k) from measured output y(k), and
ε(k) = ∑n

i=0 ai Pgl (k)[D iαε̄(k)], (k = 1, 2, . . . , N ). It
is worth mentioning that the recovered data ȳ(k) have
a bit of noise, whereas the values of noise are small.
Thanks to the proposed outliers detection method, all
outliers can be detected accurately, so ȳ(k) does not
contain z(k), which is very exciting.

ŷn(k) = ϕ̄T
k θ̂k, (24)

where θ̂k and ŷn(k) are the estimations of θ and ȳn(k),
respectively.

Set the prediction error as

e(k) = ȳn(k) − ŷn(k)

= ϕ̄T
k (θ − θ̂k) + ε(k)

= ϕ̄T
k θ̃k + ε(k), (25)

where θ̃k = (θ − θ̂k) is the parameter vector estimation
error.

The objective function is chosen as

J (θ̂ ) = 1

2
e(k)2 = 1

2
[ϕ̄T

k (θ − θ̂k) + ε(k)]2. (26)

Then the identification of θ in (26) is to find a θ̂k that
minimizes J (θ̂). The FOGM can be used to derive the
recursive equation of θ̂k , given as [21]

θ̂k+1 − θ̂k = −μ
θ̂0
D

γ

θ̂k
J (θ̂), (27)

where μ > 0 is the iteration step size, and 0 < γ < 1.
However, it cannot converge to true extreme value [24].
To solve this problem, a modified counterpart is estab-
lished with the aid of variable initial value mechanism,
which is expressed as

θ̂k+1 − θ̂k = −μ
θ̂k−1

D
γ

θ̂k
J (θ̂). (28)

On the basis of definition (2) and considering the fact
that Taylor series cannot be implemented in practice,
only the first item is reserved to reduce the complexity,
obtaining

θ̂k−1
D

γ

θ̂k
J (θ̂) = J (1)(θ̂k−1)

Γ (2 − γ )
(θ̂k − θ̂k−1)

1−γ . (29)

The step size of gradient descent method must be
positive to guarantee that θ̂k is corrected along the
negative gradient direction until the extreme value of
J (θ̂) is obtained. So we replace (θ̂k − θ̂k−1)

1−γ with
|θ̂k − θ̂k−1|1−γ . Here follows the formula

θ̂k−1
D

γ

θ̂k
J (θ̂) = J (1)(θ̂k)

Γ (2 − γ )
|θ̂k − θ̂k−1|1−γ

= − |θ̂k − θ̂k−1|1−γ

Γ (2 − γ )
ϕ̄ke(k)

= − |θ̂k − θ̂k−1|1−γ

Γ (2 − γ )
ϕ̄k[ϕ̄T

k (θ − θ̂k)

+ ε(k)].

(30)

One may find that J (1)(θ̂k−1) is replaced by J (1)(θ̂k).
This is in order to guarantee the convergence of the
algorithm, since lim

k→∞ J (1)(θ̂k)|θ̂k− θ̂k−1|1−γ = 0 indi-

cates J (1)(θ̂k) = 0 for |θ̂k − θ̂k−1|1−γ �= 0.
Instead of the first-order difference at the right-hand

side of (28), a fractional-order parameter update law is
adopted. Combining it with the modified FOGM, the
FOUGM is proposed, described as

∇β θ̂k = −μ
θ̂k−1

D
γ

θ̂k
J (θ̂), (31)

where 0 < β ≤ 2.
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According to definition (3), (4) and (5), it is easy to
obtain

∇β θ̂k = ∇β−m θ̂k∇m θ̂k

= ∇m θ̂k +
k∑

j=1

(−1) j
(

β − m

j

)

∇m θ̂k− j

= ∇m θ̂k +
k−1∑

j=0

(−1) j+1
(

β − m

j + 1

)

∇m θ̂k− j−1.

(32)

Considering g (k) = (−1)k+1 (
β−m
k+1

)
and θ̂d (k)

= g (k) ∗ ∇m θ̂ (k), we get

∇β θ̂k = ∇m θ̂k + θ̂d (k − 1) . (33)

Combining (30), (31) and (33), the designed algo-
rithm can be divided into the following two cases.

(i) If 0 < β ≤ 1, m = 1.

θ̂k+1 = θ̂k − θ̂d (k − 1) + μ
|θ̂k−θ̂k−1|1−γ

Γ (2−γ )
ϕ̄ke(k).

(34)

(ii) If 1 < β ≤ 2, m = 2.

θ̂k+1 =2θ̂k − θ̂k−1 − θ̂d (k − 1)

+ μ
|θ̂k − θ̂k−1|1−γ

Γ (2 − γ )
ϕ̄ke(k).

(35)

Remark 2 As can be seen from formula (34) where is
a θ̂d(k − 1), opposite to integer-order update, it is the
weighted sum of historical information of θ̂ from θ̂1
to θ̂k−1, which is equivalent to making a smooth to
parameter. Thus, it can be concluded that fractional-
order update law has superiority compared with the
integer one. To reduce repetitive work, only the case of
0 < β ≤ 1 is considered hereinafter.

The whole process proposed above can be described
as follows:

The algorithmofFOUGMfor fractional-order systemswith
outliers

Step 1: Solve the convex problem (22). Then eliminate the
detected outliers and estimated noise from the
output signal, obtaining recovered output ȳ(k)

Step 2: Pre-filter the input and recovered output data through
PMF method described by (15), achieving (24)

Step 3: Set initial value of θ̂ , just not as zero. Set suitable
update order β, differential order γ and step size μ

Step 4: Compute θ̂ by calculating (25) and (34) iteratively

3.4 Analysis of convergence

As mentioned above θ̃k = (θ − θ̂k), combine (30)
and (31). Under Caputo fractional-order calculus defi-
nition, ∇βθ = 0; therefore,

∇β θ̃k = − ∇β θ̂k

=μ
θ̂k−1

D
γ

θ̂k
J (θ̂)

= − μ
|θ̂k − θ̂k−1|1−γ

Γ (2 − γ )
ϕ̄ke(k)

= − ρk ϕ̄k[ϕ̄T
k θ̃k + ε(k)],

(36)

where ρk = μ
|θ̂k−θ̂k−1|1−γ

Γ (2−γ )
> 0, which is equivalent to

variable step size and related to differential order γ .
Since the PMF filter is a linear transformation and

ε(k) is Gauss white noise with zero mean, E[ε(k)] =∑n
i=0 ai Pgl (k)E[D iαε̄(k)] = 0 and ϕ̄k is not related to

ε(k) [6]. Take the expectation of (36) and diagonalize
E[ϕ̄k ϕ̄

T
k ] with unitary matrix Q, following

∇βE[θ̃k] = −ρk Q
−1ΛQE[θ̃k], (37)

or equivalently,

∇βE[ϑ̃k] = −ρkΛE[ϑ̃k], (38)

where E[ϑ̃k] = QE[θ̃k], andΛ = diag{λ1, λ2, λ3, . . . ,
λn+m−1}, λ j > 0, j = 1, 2, . . . , n + m − 1.

Considering (10), the solution to each component of
the matrix Eq. (38) is given by

E[ϑ̃ j (k)] = q jFβ,1
(−ρkλ j , k

)

∼ q j

ρkλ j (k − 1)β Γ (1 − β)
,

(39)

where q j = E[ϑ̃ j (0)] is the initial condition for the
j th estimated parameter.
According to Lemma 1, E[ϑ̃ j (k)] converges to 0

when k → ∞. Thus, E[θ̂k] converges to θ when k is
large enough. Besides, as can be seen from (39), it is
easy to get the conclusion that E[ϑ̃ j (k)] gets to 0 faster
for bigger update orderβ and step sizeρk . Equivalently,
E[θ̂k] converges to θ faster with bigger β and ρk .

Remark 3 The adoption of variable initial value mech-
anism reduces the effect of non-locality of frac-
tional calculus, which enables the FOGM to converge.
Thanks to fractional-order parameter update law, the
convergence performance of the proposed algorithm is
improved significantly. Besides, it can also be applied
to filter and other applications.

123



An innovative parameter estimation for fractional-order systems… 459

4 Illustrative examples and analysis

In this section, the effectiveness and superiority of the
proposed parameter estimation method are verified by
numerical examples. In order to reduce the complexity
of calculation, the infinite impulse response is used to
approximate the fractional-order sum operator in these
examples [33].

4.1 Detect outliers and estimate noise simultaneously

Consider the FOS

Dαx(t) + ax(t) = bu(t), (40)

y (t) = x (t) + ε (t) + z (t) , (41)

where ε (t) is Gauss white noise with noise level 20 dB
and z(t) consists of zeros and outliers. PRBS signal
is chosen as the input with sampling time T = 0.02 s.
Selectα = 0.9,a = 0.5,b = 0.2.The initial conditions
of the FOS are chosen as x(t) = x(0) = 0,−∞ ≤
t < 0. Because the input signal and Gauss white noise
are stochastic, a Monte Carlo experiment is carried out
about 20 times. y(k) are the sampling values of y(t).
An input signal and corresponding output signal are
presented in Fig. 1.

Remark 4 The Grünwald–Letnikov definition is cho-
sen for the numerical implement of this fractional-order
system. Besides, other methods could also be accept-
able [34].

Case 1 The output signal is polluted only by outliers
The optimization problem (22) is solved by CVX-

Toolbox of MATLAB and simulated on a 3.0GHz pro-
cessor with 4 GB of memory. Let p = 10, q = 280
and r = 0.55. In order to decrease the complex-
ity and repeatability of computation, data segments of
0 ≤ t ≤ 5.6 s, that is to say the number of samples is
280, are chosen. For the sake of comparing our method
with that presented in [17] and Hampel filter, the corre-
sponding output signal and detection results are shown
in Fig. 2 and Table1.

As shown in Fig. 2, three methods all can detect
outliers accurately when measurement noise does not
exist. However, the detection accuracy obtained by the
proposedmethod is prior to that of [17], which is shown
in Table1.

On the other hand, the computation time of Hampel
filter, the proposed method and [17] are 1.25, 33.29
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Fig. 1 a Input, noise-free output. bMeasured output with white
noise and outliers
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Table 1 Comparison of outliers detected by [17] and ourmethod

z(1) z(2) z(3) z(4) z(5)

Real 3 −1 5 −4 −2

[17] 2.9586 −1 4.9237 −4.0011 −1.9301

Ours 2.9952 −1 4.9984 −4.0001 −2.0001

and 138.14 s, respectively. It is not difficult to inter-
pret why the computation time of [17] is longer than
ours. Because its p = q = ND+1

2 , which denote the
dimension of matrix D, here we select p = 10, q =
ND + 1 − q, making the size of D smaller. Thus, the
complexity of calculation of the proposed method is
between that of other methods. That is to say, the pro-
posed method achieves a trade-off between detection
accuracy and computation cost.

Case 2 The output signal is polluted by Gauss white
noise and outliers

Since the observation y(t) is often corrupted bymea-
surement noise in practice as well, it is worthwhile to
study the problem of outliers detection when ε(t) �= 0,
which is shown in Fig. 1. Note that the total number
of sampling N = 4800. The output data are divided
into ten gropes sequentially, and p = 10, q = 480 and
r = 0.55. Considering the big computation cost of
approach presented in [17] and it needs to filter noise
firstly, only theHampel filter is utilized to comparewith
our method in following simulations.

In Fig. 3a, the number of outliers detected by Ham-
pel filter is 235, while the real number is 90. In other
words, some noises are mistakenly determined as out-
liers by Hampel filter. As shown in Fig. 3b, all the
outliers can be detected accurately by the proposed
method.Meanwhile, themeasurement noise can also be
estimated though the estimated values are a bit smaller
than the real values. Then the noise level is reduced,
which is validated in Fig. 4. Compared with single out-
liers detection method or filter means, such as RPCA,
Hampel filter and LAD, the proposed approach based
on nuclear norm and infinite norm possesses effective-
ness and superiority, which further enlarges the range
of practical application. After eliminating the detected
outliers and estimated noise from the output signal, we
obtain the recovered output signal.

4.2 Estimate parameters using recovered output data

In following simulations, the recovered output signal is
used to estimate parameters of the fractional-order sys-
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Fig. 5 The effect of γ

tem described by Eq. (40). The Poisson filter is selected

as Gl(s) =
(

0.5
s+0.5

)2
, in which η = ξ = 0.5, l = 2,

conforming to the conditions of bandwidth and order.
The relative error of parameters estimation is used

as the evaluation criterion of the algorithm which is
defined as

δx = ‖ x − xt ‖
‖ x ‖ , (42)

where xt is estimation value of the real value x . In the
following simulations, data segments of t ≥ 30 s are
selected as steady state that are used to calculate the
relative error δ.

Firstly, we consider the effect of differential order
γ on estimation performance. In view of the fair-
ness of comparison, let step size μ = 0.02 when
β = 1, γ = 1 to achieve the best estimation results
of conventional gradient method, achieving the rela-
tive error δa = 1.029%, δb = 5.740%. Set μ = 0.25
when the modified fractional-order gradient method is
adopted. Simulation results are shown in Fig. 5.

Note that the convergence speed becomes faster as
the differential order γ increases. When γ = 0.7, the
relative error δa = 0.723%, δb = 3.609%. Comparing
cases of γ = 0.7 and γ = 1, the estimation accu-
racy obtained by the modified FOGM is better than
that achieved by conventional gradient method.

Secondly, we study the influence of update order β

on estimation performance. Set the step size μ = 0.04.
As can be seen from simulation results presented in
Fig. 6, the bigger the β is, the faster the convergence
speed is. When β = 0.9, γ = 1, the relative error δa =
0.367%, δb = 2.314%.
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Fig. 7 Simulation results by FOUGM

Comparing Fig. 5with Fig. 6, themodified FOGM is
able to achieve faster convergence, while a fractional-
order parameter update law could obtain superior esti-
mation accuracy. Then a natural idea is to combine
them, getting FOUGM, for more satisfactory perfor-
mance, which is illustrated by a sample simulation
example shown in Fig. 7. Here γ = 0.7, β = 0.9,
μ = 0.04.

The relative error δa = 0.481%, δb = 2.743%.
Clearly, faster convergence speed and superior estima-
tion accuracy are gained at the same time. Thus, the
contradiction between convergence speed and estima-
tion accuracy is coordinated successfully by the pro-
posed FOUGM.
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5 Conclusions

In this paper, the FOUGM is proposed for FOSs when
measured output is corrupted by Gauss white noise
and outliers. Unlike general filter and outliers detec-
tion methods, a novel outliers detection approach is
developed via nuclear norm and infinite norm. To our
best knowledge, it is the first time to exactly detect
outliers and estimate noise simultaneously. Then the
FOUGM is designed based on a modified FOGM with
variable initial value mechanism and fractional-order
parameter update law, which can not only obtain faster
convergence speed, but also achieve satisfactory esti-
mation accuracy as can be seen from simulation results.
Note that the outliers detection method and FOUGM
can also be used for other applications and general sys-
tems identification, not just for FOSs.
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