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Abstract A novel redundantly actuated parallel
manipulator (PM) with multiple actuation modes was
developed recently by the author. In this paper, the fur-
ther research is implemented and a systematic method-
ology is proposed to develop the rigid–flexible coupling
dynamic model (RFDM) of the novel PM based on
the flexible multi-body dynamics theory. Firstly, under
the floating frame of reference, an arbitrary flexible
link of the novel PM is regarded as an Euler–Bernoulli
beam and the finite element approach is employed to
discretize the flexible beam. Then, one kind of planar
beam element with lumped masses and moments of
inertia at both ends is presented and a corresponding
dynamic model is deduced based on the Lagrangian
formulation. On this basis, the RFDM of system is for-
mulated by virtue of the augmented Lagrangian multi-
pliers approach. Given the stiff characteristic of system
dynamic model, the hybrid TR-BDF2 numerical algo-
rithm combinedwithBaumgarte stabilization approach
is employed to address the nonlinear RFDM so as to
balance the solution efficiency and precision. Based on
the RFDM and its degradation model, i.e., the rigid
dynamic model, one dynamic simulation experiment
is designed to investigate the dynamic performance of
the PM. Numerical results indicate that the practical
motion of the PM manifests rigid–flexible coupling
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characteristic, and the redundant actuation modes can
attenuate the effect of link flexibility and improve the
trajectory tracking precision of end-effector in compar-
ison with the non-redundant actuation modes. Finally,
to validate the presented methodology, the obtained
numerical results are comparedwith a virtual prototype
model developed based on SimMechanics. The results
will be helpful for structure optimization and efficient
controller design of the PM with multiple actuation
modes.

Keywords Parallel manipulator · Redundant actu-
ation · FMD theory · Finite element approach ·
Rigid–flexible coupling dynamic model · TR-BDF2
algorithm

List of symbols

O−x−y The global coordinate system
Oj−x̄−ȳ The relative coordinate system
rOj The radius vector of the original point of

body-fixed coordinate system
r0, j The radius vector of arbitrary point P in

the body-fixed coordinate system before
the deformation of flexible body j

δ p The vector of deformation displace-
ments

rp The position vector of point P in the
global coordinate system

R(φ j ) The rotational transformation matrix
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φ j The angular displacement of flexible
body j

u j
fi

The array of flexible generalized coordi-
nates of an arbitrary element i in flexible
body j

v
j
i (x̄i , t) The axial elastic deformation of element

i in flexible body j
w

j
i (x̄i , t) The transverse elastic deformation of

element i in flexible body j
N j

i (x̄i ) The shape function matrix of element i
in flexible body j

l ji The length of element i in flexible body
j

U j
f The array of global deformation dis-

placements of flexible body j
r j0,i The coordinate array of point P j

i of ele-
ment i before the deformation of flexible
body j

B j
i The Boolean indicated matrix

D j The transformation matrix of global
deformation generalized coordinates

q j The vector of generalized coordinates of
flexible body j

m j
di The mass of intermediate continuous

section of element i
ρ The mass density of element material
V j
i The volume of the intermediate contin-

uous section of element i
T j
t,i The kinetic energy of intermediate con-

tinuous section of element i
M j

t,i The mass matrix corresponding to the
intermediate continuous section of ele-
ment i

m j
O1i

,m j
O2i

The lumped masses located at both ends
of element i

J j
O1i

, J j
O2i

The lumped moments of inertia located
at both ends of element i

l jO1i
, l jO2i

The distances from the initial position to
the both ends points of element i in the
undeformed state, respectively

T j
t,c The translational kinetic energy of lum-

ped masses located at both ends of ele-
ment i

M j
O1i

,M j
O2i

Themassmatrices of the lumpedmasses
of element i

θ
j
O1i

, θ
j
O2i

The rotational angles of two end points
of element i

T j
r,c The rotational kinetic energy of lumped

moments of inertia at both ends of ele-
ment i

M j
JO1i

,M j
JO2i

The mass matrices of the lumped mom-
ents of inertia of element i

T j
i The total kinetic energy of element i

M j
i The mass matrix of element i in flexible

body j
U j

p,i The total potential energy of element i
in flexible body j

E The Young’s modulus of beam material
I The area moment of inertia of beam

cross section
A The cross-sectional area of beam
K j
i The stiffness matrix of element i

L
j
i The Lagrangian function of element i

F j
e,i The columnmatrix of generalized exter-

nal forces of element i
C j
i Thecentrifugal andCoriolis forcematrix

of element i in flexible body j
I The identity matrix
M̄ j The mass matrix of flexible body j
C̄ j Thecentrifugal andCoriolis forcematrix

of flexible body j
K̄ j The stiffness matrix of flexible body j
F̄e, j The columnmatrix of generalized exter-

nal forces of flexible body j
n j The number of elements in flexible body

j
q(s) The vector of generalized coordinates of

system

M̄
(s)

The mass matrix of system without con-
straint

C̄
(s)

Thecentrifugal andCoriolis forcematrix
of system without constraint

K̄
(s)

The stiffness matrix of system without
constraint

F̄
(s)
e The columnmatrix of generalized exter-

nal forces of system
Φ(q(s), t) The constraint equations of system
Φc(q(s), t) The constraint Jacobian matrix of sys-

tem
γ The right-hand side of acceleration con-

straint equations
λ The vector of Lagrangian multipliers
γ̄ The modification term of the right-hand

side of acceleration constraint equations
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α, β The stability coefficients of Baumgarte
stabilization method

˜̄M(s)
The equivalent mass matrix of system

˜̄H(s)
The quadratic velocity forces of system

˜̄K (s)
The equivalent stiffness matrix of sys-
tem

˜̄F(s)

e The equivalent column matrix of gener-
alized forces of system

ac The acceleration of end-effector
amax The maximum acceleration of end-

effector
vc The velocity of end-effector
Δ̄error The mean-square deviation error
xdi , ydi The position coordinates of the i th sam-

ple point on the desired trajectory
xi , yi The position coordinates of the i th sam-

ple point on the practical trajectory

Abbreviations

AMM Assumed mode method
ANCF Absolute nodal coordinate formulation
DOF(s) Degree(s) of freedom
FEM Finite element method
FFRF Floating frame of reference formulation
FMD Flexible multi-body dynamics
FSM Finite segment method
KED Kineto-elasto dynamics
ODE(s) Ordinary differential equation(s)
PDE(s) Partial differential equation(s)
PM(s) Parallel manipulator(s)
PSB(s) Parallelogram structure branche(s)
RAParM Redundantly actuated parallel manipulator
RDM Rigid dynamic model
RFDM Rigid–flexible coupling dynamic model
VPM Virtual prototype model

1 Introduction

In comparisonwith serialmanipulators, parallelmanip-
ulators (PMs) have some advantages in terms of higher
stiffness, higher loading capacity, higher precision, less
error accumulation and excellent dynamic performance
[1,2]. Therefore, the application of PMs has increased
in various manufacturing industries, such as motion
simulator, aviation manufacturing, electronic packag-
ing and medical surgery. Nevertheless, owing to the

closed-loop constraints within the topological struc-
ture of a PM, there are some complex singular con-
figurations (mainly Type II singularities [3,4]) inside
the workspace of a PM such that the actually avail-
able workspace is very small and only one subzone
of the whole reachable workspace. Thus, the superior
performance of PMs cannot be exploited adequately.
With respect to this problem, the academia proposed
some approaches [5–14] to conquer Type II singulari-
ties of PMs. These proposed approaches can avoid the
singularities within workspace of PMs in some extent.
Amongst them, the redundancy approach is demon-
strated to be one much more effective strategy dur-
ing the avoidance of singularities. Basically, there are
two types of redundancy strategies included in this
approach, i.e., kinematic redundancy [8,9] and actu-
ation redundancy [10–14]. The topological structure
of the original mechanism is generally modified since
some new components are integrated into a certain
PM by using redundancy approach. Owing to the extra
degrees of freedom (DOFs) introduced by kinematic
redundancy, the complexity of control for the nonlin-
ear dynamic system increases in some extent. In con-
trast, by using actuation redundancy, no extra DOFs are
introduced into the PM, and the manipulability as well
as dynamic performance of system can be enhanced
with the elimination of Type II singularities.

Bearing in mind this issue mentioned above, the
authors have performed some innovative designs with
respect to the traditional planar 2-DOF 5R PM recently
and proposed a novel redundantly actuated PM which
can realize multiple potential actuation modes [14,
15]. This novel PM has some promising application
prospects, such as 3D printing and electronic packag-
ing.

As is well known, with the rapid development of
advanced manufacturing technology, the demand for
the dynamic performance of manipulators in industry
field is higher and higher. Under this circumstance, the
manipulators should possess the capabilities of high
speed and high precision. Fortunately, with the aid of
materials science, more and more novel materials are
applied to design the manipulators so that the weights
of manipulators can be reduced a lot and high speed as
well as high ratio of payload/weight can be achieved
in the meantime. However, in the case of high-speed
motion, the deformations of links for a certain manipu-
lator readily occur owing to the flexibilities of links and
the effect of external actuation forces. The elastic defor-
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mations of links will certainly affect the whole rigid-
bodymotions ofmanipulator and even cause themotion
instability. In other words, under the circumstance of
high-speed motion, the practical movement of manip-
ulator is the outcome of rigid–flexible coupling effect
when the flexibilities of links are considered. Conse-
quently, in practical application, establishing an effec-
tive rigid–flexible coupling dynamic model (RFDM)
is of great significance to investigate the dynamic per-
formance and design effective nonlinear dynamic con-
trollers for the manipulator.

At present, the rigid dynamics of mechanism has
been developed maturely. Many basic formulations
of dynamics can be employed to establish the rigid
multi-body dynamic model of a manipulator, such as
Newton–Euler formulation [16], Kane’s formulation
[17], Lagrangian formulation [18], virtual work princi-
ple [19], Hamilton’s principle [20] and Gibbs–Appell
formulation [21]. However, due to the flexible effects
of links and joints, the modeling complexity of flexible
manipulators is much higher than that of rigid manip-
ulators. The main difficulties depend on whether the
description of deformation field for the flexible body
and the treatment to the rigid–flexible coupling rela-
tionship are reasonable or not.With regard to this issue,
the academia has made much beneficial exploitation
and extensive research.

A flexible manipulator is such a dynamic system
that encompasses one or more flexible components,
and thus can be called as flexible multi-body dynamic
system [22]. The accurate and complete flexible multi-
body dynamic model for a flexible manipulator should
not only involve the influence of rigid-bodymotions on
elastic deformations, but also involve the influence of
elastic deformations on rigid-body motions and elastic
deformations of other flexible links within the flexible
manipulator. With respect to the dynamic modeling for
flexiblemanipulators, a variety ofmodeling approaches
have been proposed by researchers. On thewhole, these
approaches can bemainly classified into two categories
[23]. First, an arbitrary flexible link of a manipulator is
regarded as a continuous body which has infinite DOFs
[24–26]. The equations of motion are developed in the
form of nonlinear partial differential equations (PDEs).
System responses are obtained by solving the system
equations with numerical algorithms for simple con-
figurations and boundary conditions. In research work
using this approach, some important assumptions are
frequently utilized to reduce the complexity of dynamic

model. Generally, this approach is applicable for the
system with uniform beams which are small in num-
ber. Consequently, this approach has some limitations
in practical application. The second approach makes
some discretization with respect to a flexible body and
treats it as a discrete system possessing finite elastic
DOFs. Subsequently, the dynamicmodel of system can
be deduced byvirtue of the fundamental principles used
in the dynamic modeling for rigid bodies. The com-
mon discrete strategies mainly include lumped param-
eter method [27], assumed mode method (AMM) [28–
30], finite element method (FEM) [31–35] and finite
segment method (FSM) [36–38]. Amongst them, the
FEM and AMM are two most commonly used ones in
practice. Theoretically, the FEM can be applied for any
flexible system. If the element number is reasonable, an
accurate dynamic model can be developed to describe
the dynamic performance of system very well by using
FEM. A comparison of the FEM and the AMM used to
model link flexibility is presented in detail in Ref. [39].

In the past several decades, the academia has pro-
posed multiple coordinate frameworks to describe the
rigid–flexible coupling relation of motions. In general,
the widely used methods in practice mainly include
kineto-elasto dynamics (KED) method [40–43], float-
ing frame of reference formulation (FFRF) method
[22,44–46] and absolute nodal coordinate formulation
(ANCF)method [47–51]. First, theKEDmethod devel-
oped earlier and obtained extensive research in the past
few decades. In the early research work using KED
method, the assumption of instantaneous structure is
generally employed. Only the influence of rigid-body
motions (nominal motions) on the elastic deformations
is considered, while the influence of elastic deforma-
tions on the rigid-body motions is neglected during
the modeling process. By using the KED method, a
set of ordinary differential equations (ODEs) with sim-
ple form can be obtained and solved easily. The KED
method is generally applicable to the dynamic model-
ing for the flexible mechanisms in which the flexibili-
ties of links are not significant and the motion speed of
links is not too high. However, in the case of high-speed
motions, or when the flexibilities of links are much
higher, it is difficult for the KED method to describe
accurately the realmotion state of flexiblemechanisms.
Given that, some scholars abandoned the assumption
of instantaneous structure to overcome the roughness
of dynamic model deduced through the KED method
[40]. Second, the FFRF method is such one that dis-
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tinguishes between the rigid-body motion and the elas-
tic motion of a flexible body by introducing a floating
coordinate system into the modeling process. Since the
rigid–flexible coupling effect is considered in the FFRF
method, the derived dynamic model of system contains
the nonlinear rigid–flexible coupling term. Moreover,
the dynamic model of system can be further simplified
easily in future by using the FFRF method. In order
to deal with the large deformation problem of flexi-
ble bodies, Shabana [47] proposed the ANCF method
which no longer distinguished between the rigid-body
motion and the elasticmotion of a flexible body but uni-
formly employed the absolute position coordinates of
element nodes and the material derivatives to describe
the motion of a flexible body. The ANCF method is
very applicable to handling the geometric nonlinear
problem of large deformations of flexible bodies. At
present, this method has been drawn a wide attention
from the academia and obtained some developments
[48,49,51]. It is worth noting that, since the floating
coordinate system is removed from the ANCFmethod,
the obtained mass matrix is constant, while the stiff-
ness matrix is highly nonlinear. That is to say, the cou-
pling relationship between the rigid-body motion and
the elastic motion of the flexible body is not eliminated
but transferred from the mass matrix into the stiffness
matrix. Because the number of generalized coordinates
is extremely high and the computation of elastic forces
is complex in the ANCF method, the computation effi-
ciency for the complex system is lower than the FFRF
method to some extent. Besides, it is not convenient
for the ANCF method to simplify further the dynamic
model of system so as to be suitable for the design of
dynamic controller. Nevertheless, it cannot be denied
that the ANCFmethod will obtain a good development
in future with the progress of theoretical research.

With respect to the research about the flexible mech-
anisms, the academia hasmade great contributions. The
comprehensive review of these works can be found in
Refs. [52–54]. The research subjects mostly concen-
trate on the open-loop serial manipulators with one or
two flexible links [25,26,28–31,55–60] and some four-
bar mechanisms [24,27,32,40–42,50,61–64]. In con-
trast, the researches with respect to complex closed-
loop mechanisms, such as the PMs containing one or
more closed-loop constraints, are rather fewer in num-
ber. Some research contributions are summarized as
follows. Gasparetto et al. [65] developed a dynamic
model of a flexible planar 5R PM using FEM and car-

ried out an experiment to verify the effectiveness of the
model presented. Piras et al. [66] implemented elas-
tic dynamic modeling with respect to a planar 3PRR
PM with flexible links by virtue of KED method and
obtained a set of linear ODEs of motion. Wang et
al. [67] presented a FEM model of the flexible pla-
nar 3PRR PM and made a strain rate feedback con-
trol simulation based on a simplified model. Kang et
al. [68] and Zhang et al. [23] applied the AMM to
establish two different dynamic models of the flexi-
ble planar 3PRR PM based on two different boundary
conditions, respectively. Based on AMM, Zhang et al.
[69] derived a dynamic model of a planar 3PRR PM
with flexible links and performed a trajectory tracking
control simulation. Yu et al. [70] developed an elas-
tic dynamic model of a planar 3RRR PM with flexible
links by virtue ofKEDmethod and implemented exper-
iments to verify the effectiveness of the model pre-
sented. Subsequently, Zhang et al. [71] employed the
Hamilton’s principle and FEM to establish a dynamic
model of the flexible planar 3RRR PM and solved the
dynamic equations based on the assumption of KED.
Liu et al. [72] employed KEDmethod and spatial beam
elements to derive a dynamic model of a flexible 3RRS
PM. However, the number of elements is so small that
the dynamic model of system is not precise enough.
Zhao et al. [73] derived a dynamic model of a spatial
8PSS PM with flexible links using KED method and
FEM. Mukherjee et al. [74] employed Newton–Euler
formulation to derive a dynamic model of the Stewart
platform. However, each supporting leg is merelymod-
eled as a spring–damper system whose axial stiffness
is considered merely in the dynamic model. Song et al.
[75] applied KED method and spatial beam elements
to establish an elastic dynamic model of a PM with
two DOFs of rotation and implemented natural charac-
teristic analysis based on the dynamic model deduced.
Sun et al. [76] implemented the elastic dynamic mod-
eling with respect to a Delta-string manipulator based
on KED method.

From the relevant researches about flexible PMs,
one can discover that the most of researches concen-
trate on the KED method which commonly ignores
the nonlinear rigid–flexible coupling term such that
the dynamic models deduced generally are not pre-
cise enough to some extent. Meanwhile, the number of
researches about flexible PMs is far less than that of the
serial manipulators. Additionally, the dynamic mod-
eling approaches for flexible PMs are not systematic.
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Consequently, in order to satisfy the requirements of
future engineering application and theoretical research,
it is necessary to expand the research scope of flexible
PMs and develop much more systematic and effective
approaches to establish the dynamic models of flexible
PMs.

To overcome the shortcomings of former works
about flexible PMs, we will propose a systematic mod-
eling methodology in this paper to develop the RFDM
of thenovel PMwithmultiple actuationmodes basedon
the FMD theory. The main contributions of this paper
can be drawn as follows:

• Firstly, the general dynamic model for one kind
of planar beam element containing lumped masses
and moments of inertia at both ends is derived,
which can be conveniently assembled to formulate
the RFDM of system with any number of lumped
parameters. Moreover, this kind of element can be
conveniently transformed into the commonelement
only through simple parameters setting.

• Secondly, a strategy of combining the hybrid TR-
BDF2 numerical algorithm with Baumgarte stabi-
lization approach is proposed to address the non-
linear RFDMof system to balance the solution effi-
ciency and precision.

• Thirdly, the dynamic performance of the PM
with multiple actuation modes is comprehensively
investigated via a numerical simulation experiment.
Moreover, the validity of the RFDM is exactly ver-
ified by a FSM-based VPM which is developed for
the first time by virtue of SimMechanics.

• Eventually, owing to the compact form of the
RFDMdeveloped in this study, some dynamic con-
trollers can be efficiently designed in future based
on the RFDM via some strategies, such as modal
synthesis technique.

2 Topology description

Figure1 shows the schematic diagram of the traditional
planar 5R PM [4]. The output point C where the end-
effector can be mounted is connected to the base by
two branches, each of which consists of three revolute
joints and two links. The two branches are connected
to a common point (point C) with the common revo-
lute joint at the end of each branch. In each of the two
branches, the revolute joint connected to the base is
actuated by one servo motor. Thus, such a manipulator
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A2
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1 2

2

l2

l1 l1

1

Active joints

Passive joints

Base

End-effector

e e

C

Fig. 1 The traditional planar 5R PM without redundant actua-
tions [14]

is able to position its output point in a plane. It should
be noted that, in order to obtain a reachable workspace
without holes, the lengths of proximal and distal links
are usually identical to each other [4,14].

However, owing to the singular curves existing
within the reachable workspace of the traditional pla-
nar 5R PM, the usable workspace is very small and
only a subzone of the whole reachable workspace so
that the performance of the manipulator is restricted
a lot. Consequently, how to avoid singularities (espe-
cially the Type II singularities) within the workspace of
a certain PMand improve the dynamic performance is a
continuous hot issue in the research field of PMs. With
respect to the aforementioned issue, we have imple-
mented innovative designs based on the traditional pla-
nar 5R PM and presented some redundant actuation
schemes to conquer the defects of the traditional pla-
nar 5R PM. Considering the theoretical research sig-
nificance and practical engineering requirements, we
have selected one of some available redundant actu-
ation schemes as the optimum one that encompasses
parallelogram structure branches (PSBs) [77] with the
help of some selection criteria [14]. The correspond-
ing mechanism is named as RAParM (derived from
“Redundantly Actuated Parallel Manipulator”) which
possesses two DOFs. Moreover, the optimum redun-
dant actuation scheme determined by us includes two
configurations named, respectively, as RAParM-I and
RAParM-II based on the layout of thePSBs, as depicted
in Fig. 2 [14].

Based upon the two topological configurations, two
preliminary virtual prototypes can be constructed by
means of commercial software Solidworks�, which
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(a) (b)

Fig. 2 The redundantly actuated planar 2DOF PM with parallelogram structure branches [14]: a RAParM-I, b RAParM-II
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Fig. 3 Virtual prototypes (RAParM) [14]: a RAParM-I, b RAParM-II

are shown in Fig. 3 [14], in which some attachments
are not shown in detail.

Considering the similar structure characteristic
between the two configurations of RAParM, in Ref.
[14], we have implemented detailed analysis with
respect to one of the two configurations, i.e., RAParM-
I. Owing to the special structure characteristic, this
novel PM can achieve 9 potential actuation modes,

as illustrated in Table1 [14]. Moreover, we have car-
ried out kinematic analysis about RAParM-I and estab-
lished the uniformly dynamic model at the level of
rigid-body dynamics. Based on rigid dynamic model
(RDM), the dynamic dimensional synthesis has been
implemented to obtain the optimal dimensional param-
eters. The results indicate that the PM can realize
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Table 1 Potential actuation modes of RAParM [14]

RAParM Frame links (⊕ denotes active mode, � denotes
passive mode)

Sum of the
combinations of
actuation modes

Link A1B1 Link D1E1 Link A2B2 Link D2E2

Actuation modes

Non-redundant actuation ⊕ � ⊕ � 4

� ⊕ � ⊕
⊕ � � ⊕
� ⊕ ⊕ �

One redundant actuation ⊕ ⊕ ⊕ � 4

⊕ � ⊕ ⊕
⊕ ⊕ � ⊕
� ⊕ ⊕ ⊕

Two redundant actuations ⊕ ⊕ ⊕ ⊕ 1

Signals “⊕” and “�” denote active and passive modes of each frame link, respectively

high kinematic and rigid dynamic performance after
dynamic dimensional synthesis.

3 Rigid–flexible coupling dynamic modeling

Since the flexible PM is a rigid–flexible couplingmulti-
body dynamic system, it ismuchmore difficult to estab-
lish the dynamicmodel for the flexible dynamic system
compared with the rigid dynamic system, and much
more factors need to be considered in the modeling
process. Especially for the PM with multiple closed-
loops and multiple actuation modes, such as RAParM,
establishing the rigid–flexible coupling dynamicmodel
(RFDM) considering the flexibilities of all links and the
multiple actuation modes has received less attention.
Therefore, it is extremely significant and challenging
to solve this problem.

Considering the modeling complexity, we first cut
virtually all the joints of the mechanism and obtain
each independent flexible body. In subsequence, the
dynamic model for each independent flexible body
is deduced. Finally, we assemble the dynamic equa-
tions of all the flexible bodies and incorporate the con-
straint equations by virtue of Lagrangian multipliers to
achieve the nonlinear RFDM of system.

3.1 Discretization for any flexible body based on
finite element approach

In general, the deformations of links for a lightweight
mechanism readily arise during high-speed motion.

A1

B1

(D1) A2 (D2)

E2

F2F1

E1

C

Base
O

B2

Body-1

Body-2

Body-3

Body-4

Body-5
Body-6

Body-7

Body-8

y

x

2BSP1BSP

Fig. 4 The elastic deformations of links for RAParM-I during
high-speed motion

Manifested in Fig. 4 is the possible situation of defor-
mations for RAParM-I due to the flexibilities of links
during high-speed motion.

In order to conveniently simplify the dynamicmodel
of system in future, in this paper, the floating frame
of reference is employed to describe the deformation
of the flexible link. Because the cross-sectional area
of the flexible link for RAParM-I is small, the Euler–
Bernoulli beam is adaptable to modeling the defor-
mation of the flexible link. Without loss of generality,
shown in Fig. 5 is the deformation description of a cer-
tain flexible body (denoted by j where j = 1, 2, . . ., N
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Oj

xO

jOr Pr

0 jr ,
dx

j

Body j

y

x
y P

'P

pδ
Neutral axis

Fig. 5 The deformation description of an arbitrary flexible body
during the movement

in which N represents the total sum of flexible bod-
ies of manipulator) during the large overall motion. In
order to establish the dynamic equations for an arbi-
trary flexible body conveniently, some assumptions are
made here [56]:

• The material of each flexible body is uniform
and isotropic, and the constitutive relation satisfies
Hooke’s law.

• Each flexible body satisfies the small deformation
assumption, and the cross section of the beam is
vertical to the central axis forever.

• The axial and transverse deformations are taken
into consideration, while the shear and torsion
effects are negligible.

As shown in Fig. 5, O−x−y represents the global
coordinate system, i.e., the inertial coordinate system.
Oj−x̄−ȳ represents the relative coordinate system,
which is fixed to the body and can be called body-fixed
coordinate system. P is an arbitrary point located on the
central axis of the body and P ′ represents the practical
position of point P after the occurrence of deformation.
rOj represents the radius vector of the original point of
body-fixed coordinate system,which is expressed in the
global coordinate system. r0, j = [ x̄ 0 ]T represents the
radius vector of point P in the body-fixed coordinate
system before the occurrence of deformation. δ p rep-
resents the vector of deformation displacements from
point P to point P ′ (see Fig. 5), which is expressed
in the body-fixed coordinate system. rp represents the

position vector of point P in the global coordinate sys-
tem. Based upon the vector relationship depicted in
detail in Fig. 5, one can obtain

rP = rOj + R
(
φ j
) (
r0, j + δ p

)
(1)

where R
(
φ j
)
is the rotational transformation matrix

between the Oj−x̄−ȳ system and the O−x−y system,
and

R
(
φ j
) =

[
cosφ j − sin φ j

sin φ j cosφ j

]
(2)

where φ j is the angular displacement of flexible body
j as shown in Fig. 5.
It should be noted that Eq. (1) represents the position

vector of an arbitrary point P of the uniformly flexible
beam. Herein, the finite element approach is employed
to discretize the flexible beam and the type of element
is determined as the planar beam element. The num-
ber of nodal coordinates of the beam element is 8, as
depicted in Fig. 6. Without loss of generality, the ele-
ment number is marked with i , and the flexible body
number is marked with j .

Let the array of flexible generalized coordinates of
an arbitrary element i (i = 1, 2, · · · , n j ) in flexible
body j be

u j
fi

=
[
u j
1,i u

j
2,i u

j
3,i u

j
4,i u

j
1,i+1 u j

2,i+1 u j
3,i+1 u j

4,i+1

]T

(3)

where u j
1,i and u

j
1,i+1 denote the axial elastic displace-

ments of the two nodes for element i ; u j
2,i and u j

2,i+1
denote the transverse elastic displacements of the two
nodes for element i ; u j

3,i and u j
3,i+1 denote the elastic

angles of the two nodes for element i ; u j
4,i and u j

4,i+1
denote the elastic curvatures of the two nodes for ele-
ment i . Based upon the above assumption, the deforma-
tion displacements of an arbitrary point P j

i of element
i in flexible body j can be expressed as

δ
j
Pi =

[
v
j
i (x̄i , t)

w
j
i (x̄i , t)

]

= N j
i (x̄i )u

j
fi

(4)

where N j
i (x̄i ) represents the shape function matrix of

element i in flexible body j , and
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Fig. 6 The discretization of
an arbitrary flexible body
using finite element
approach
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j
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j
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j
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1
j
iO

2
j
iO

iy

ix

Body j

i

N j
i (x̄i ) =

[
N j

i,1(x̄i )

N j
i,2(x̄i )

]

=
[

f j
i,1 0 0 0 f j

i+1,1 0 0 0

0 f j
i,2 f j

i,3 f j
i,4 0 f j

i+1,2 f j
i+1,3 f j

i+1,4

]

(5)

in which the corresponding shape functions are given
by

f j
i,1 = 1 − ζ

j
i

f j
i,2 = 1 − 10ζ j3

i + 15ζ j4
i − 16ζ j5

i

f j
i,3 = l ji

(
ζ
j
i − 6ζ j3

i + 8ζ j4
i − 3ζ j5

i

)

f j
i,4 = 1

2
l j2i

(
ζ
j2
i − 3ζ j3

i + 3ζ j4
i − ζ

j5
i

)

f j
i+1,1 = ζ

j
i

f j
i+1,2 = 10ζ j3

i − 15ζ j4
i + 6ζ j5

i

f j
i+1,3 = l ji

(
−4ζ j3

i + 7ζ j4
i − 3ζ j5

i

)

f j
i+1,4 = 1

2
l j2i

(
ζ
j3
i − 2ζ j4

i + ζ
j5
i

)

ζ
j
i = x̄i

l ji
,with l ji being the lengthof element i inflexible

body j .
Assume the array of global deformation displace-

ments of flexible body j is

U j
f =

[
u j
1,1 u j

2,1 u j
3,1 u j

4,1 · · · u j
1,n j+1 u j

2,n j+1

u j
3,n j+1 u j

4,n j+1

]T
(6)

After the discretization using finite element approach
for flexible body j , the displacement vector of arbi-
trary point P j

i of element i in flexible body j can be
expressed as

r jPi = rOj + R j (φ j )
(
r j0,i + N j

i (x̄i )B
j
i D

ju j
f

)
(7)

where r j0,i = [∑i−1
k=0 l

j
k + x̄i 0

]T
(l j0 = 0) represents

the coordinate array of point P j
i of element i before

the deformation of flexible body j ; B j
i ∈ R

8×4(n j+1)

represents the Boolean indicated matrix which is deter-
mined by the element number as

No 1 2 · · · i i + 1 · · · n j n j + 1

B j
i =

[
04×4 04×4 · · · I4×4 04×4 · · · 04×4 04×4

04×4 04×4 · · · 04×4 I4×4 · · · 04×4 04×4

]
(8)

where u j
f represents the array of independent global

deformation displacements;D j represents the transfor-
mation matrix of global deformation generalized coor-
dinates. For instance, with respect to a cantilever beam,
based on the boundary conditions, the axial and trans-
verse elastic displacements and elastic angle of the first
node for No. 1 element are null. Meanwhile, the elastic
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curvature of the second node for the last element is null
as well. Therefore, the corresponding transformation
matrix of global deformation generalized coordinates
can be written as

D j =
⎡

⎣
03×4n j

I4n j×4n j

01×4n j

⎤

⎦ (9)

Let q j =
[
rTOj

φ j u
jT
f

]T
be the vector of generalized

coordinates of flexible body j . Differentiating Eq. (7)
with respect to time yields

ṙ jPi = S̄
j
i q̇ j (10)

where

S̄
j
i =

[
I2×2

∂R(φ j )

∂φ j

(
N j

i (x̄i )B
j
i D

ju j
f + r j0,i

)

R(φ j )N
j
i (x̄i )B

j
i D

j
]

2×(3+4n j )
(11)

3.2 Dynamic modeling for element i in flexible body
j

In this paper, the Lagrangian formulation is employed
to derive the dynamic model of element i in flexible
body j . Therefore, the kinetic energy and potential
energy of element i in flexible body j should be first
determined.

3.2.1 Kinetic energy of element i

The flexible bodies of RAParM-I containmany lumped
masses and moments of inertia (see Figs. 2, 3), such
as the masses and moments of inertia of joints. So a
novel dynamic model of element i with lumpedmasses
and moments of inertia at both ends will be deduced
here. Thus, the kinetic energy of element i consists
of two parts, i.e., the kinetic energy corresponding to
the intermediate continuous section and both the trans-
lational and rotational kinetic energies corresponding
to the lumped masses and moments of inertia, respec-
tively. The associated element with lumpedmasses and
moments of inertia is depicted in Fig. 7.

(1) Kinetic energy of intermediate continuous sec-
tion
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Fig. 7 The common element and the present element with
lumped masses and moments of inertia

Assume themass of intermediate continuous section
of element i in flexible body j is m j

di . Based on the
aforementioned kinematic analysis, the kinetic energy
of intermediate continuous section of element i can be
written as

T j
t,i = 1

2

∫

V j
i

ρ ṙ jTPi ṙ
j
PidV

j
i

= 1

2

∫

V j
i

ρq̇Tj S̄
jT
i S̄

j
i q̇ jdV

j
i

= 1

2
q̇TjM

j
t,i q̇ j (12)

where ρ represents the mass density of element mate-
rial, V j

i represents the volume of the intermediate con-

tinuous section of element i , and M j
t,i represents the

mass matrix corresponding to the intermediate contin-
uous section of element i and can be expressed as

M j
t,i =

∫

V j
i

ρS̄
jT
i S̄

j
i dV

j
i

=
⎡

⎢
⎣

M j
t,i,rr M j

t,i,rφ M j
t,i,r f

M j
t,i,φr M j

t,i,φφ M j
t,i,φ f

M j
t,i, f r M j

t,i, f φ M j
t,i, f f

⎤

⎥
⎦ (13)

Owing to the space limitation, the expression of each
component for M j

t,i is not shown in detail here.
(2) Translational kinetic energy and rotational kine-

tic energy of lumped masses and moments of inertia
Assume the lumped masses located at both ends

of element i are denoted by m j
O1i

and m j
O2i

, respec-
tively. The corresponding lumped moments of inertia
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are denoted by J j
O1i

and J j
O2i

, respectively. Based upon
the aforementioned kinematic analysis, after the defor-
mation of flexible body j , the displacement vectors of
both end points of element i can be expressed as

r jO1i
= rOj + R(φ j )

([
l jO1i

0
]T + N j

i (0)B
j
i D

ju j
f

)

(14)

r jO2i
= rOj + R(φ j )

([
l jO2i

0
]T + N j

i

(
l ji

)
B j
i D

ju j
f

)

(15)

whereR(φ j ) is the rotational transformationmatrix and
[
l jO1i

0
]T

and
[
l jO2i

0
]T

are the arrays of coordinates

corresponding to the two end points O j
1i and O j

2i of
element i in the undeformed state, respectively.

Differentiating Eqs. (14) and (15) with respect to
time yields

ṙ jO1i
= ṙOj + ∂R(φ j )

∂φ j([
l jO1i

0
]T + N j

i (0)B
j
i D

ju j
f

)
φ̇ j

+R(φ j )N
j
i (0)B

j
i D

j u̇ j
f (16)

ṙ jO2i
= ṙOj + ∂R(φ j )

∂φ j([
l jO2i

0
]T + N j

i

(
l ji

)
B j
i D

ju j
f

)
φ̇ j

+R(φ j )N
j
i

(
l ji

)
B j
i D

j u̇ j
f (17)

Therefore, the translational kinetic energy of lumped
masses located at both ends of element i canbeobtained
as

T j
t,c = 1

2
m j

O1i
ṙ jTO1i

ṙ jO1i
+ 1

2
m j

O2i
ṙ jTO2i

ṙ jO2i

= 1

2
q̇TjM

j
O1i

q̇ j + 1

2
q̇TjM

j
O2i

q̇ j (18)

whereM j
O1i

andM j
O2i

represent the mass matrices cor-
responding to the lumped masses of element i .

Furthermore, according to kinematic analysis, the
rotational angles of both end points of element i can be
expressed as

θ
j
O1i

= φ j + ∂w
j
i (x̄i , t)

∂ x̄i

∣∣∣∣
∣
x̄i=0

= φ j + ∂N j
i,2(x̄i )

∂ x̄i

∣∣
∣∣∣
x̄i=0

B j
i D

ju j
f (19)

θ
j
O2i

= φ j + ∂w
j
i (x̄i , t)

∂ x̄i

∣∣∣∣∣
x̄i=l ji

= φ j + ∂N j
i,2(x̄i )

∂ x̄i

∣∣∣∣∣
x̄i=l ji

B j
i D

ju j
f (20)

Differentiating Eqs. (19) and (20) with respect to time
yields

θ̇
j
O1i

= φ̇ j + ∂N j
i,2(x̄i )

∂ x̄i

∣∣∣∣∣
x̄i=0

B j
i D

j u̇ j
f (21)

θ̇
j
O2i

= φ̇ j + ∂N j
i,2(x̄i )

∂ x̄i

∣∣∣∣
∣
x̄i=l ji

B j
i D

j u̇ j
f (22)

Therefore, the rotational kinetic energy of lumped
moments of inertia at both ends of element i can be
obtained as

T j
r,c = 1

2
J j
O1i

θ̇
j2
O1i

+ 1

2
J j
O2i

θ̇
j2
O2i

= 1

2
q̇TjM

j
JO1i

q̇ j + 1

2
q̇TjM

j
JO2i

q̇ j (23)

where M j
JO1i

and M j
JO2i

represent the mass matrices
corresponding to the lumpedmoments of inertia of ele-
ment i .

(3) Total kinetic energy of element i
Based upon above analysis, the total kinetic energy

of element i can be expressed as

T j
i = T j

t,i + T j
t,c + T j

r,c

= 1

2
q̇Tj
(
M j

t,i + M j
O1i

+ M j
O2i

+ M j
JO1i

+ M j
JO2i

)
q̇ j

= 1

2
q̇TjM

j
i q̇ j (24)

where M j
i represents the mass matrix of element i in

flexible body j , which is a symmetric positive definite
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matrix, and is written as

M j
i =

⎡

⎢
⎣

M j
i,rr M j

i,rφ M j
i,r f

M j
i,φr M j

i,φφ M j
i,φ f

M j
i, f r M j

i, f φ M j
i, f f

⎤

⎥
⎦ (25)

in which

M j
i,rr =

(
m j

di + m j
O1i

+ m j
O2i

)
I2×2

M j
i,rφ = ∂R(φ j )

∂φ j
(
N̄

j
i,1 + N̄

j
i,2u

j
f + m j

O1i

([
l jO1i
0

]
+ N j

i (0)B
j
i D

ju j
f

)

+m j
O2i

([
l jO2i
0

]
+ N j

i

(
l ji

)
B j
i D

ju j
f

))

M j
i,r f = R(φ j )
(
N̄

j
i,2 + m j

O1i
N j

i (0)B
j
i D

j + m j
O2i

N j
i

(
l ji

)
B j
i D

j
)

M j
i,φr = M jT

i,rφ

M j
i,φφ = N̄

j
i,3 + 2N̄

j
i,4u

j
f + u jT

f N̄
j
i,5u

j
f + m j

O1i([
l jO1i
0

]T
+ u jT

f D jTB jT
i N jT

i (0)

)

([
l jO1i
0

]
+ N j

i (0)B
j
i D

ju j
f

)

+m j
O2i

([
l jO2i
0

]T
+ u jT

f D jTB jT
i N jT

i

(
l ji

)
)

([
l jO2i
0

]
+ N j

i

(
l ji

)
B j
i D

ju j
f

)
+ J j

O1i
+ J j

O2i

M j
i,φ f = N̄

j
i,6 + u jT

f N̄
j
i,7

+m j
O1i

([
l jO1i
0

]T
+ u jT

f D jTB jT
i N jT

i (0)

)

K̃N j
i (0)B

j
i D

j

+m j
O2i

([
l jO2i
0

]T
+ u jT

f D jTB jT
i N jT

i

(
l ji

))

K̃N j
i

(
l ji

)
B j
i D

j + J j
O1i

∂N j
i,2(x̄i )

∂ x̄i

∣∣∣∣
∣
x̄i=0

B j
i D

j

+ J j
O2i

∂N j
i,2(x̄i )

∂ x̄i

∣
∣∣∣∣
x̄i=l ji

B j
i D

j

M j
i, f r = M jT

i,r f

M j
i, f φ = M jT

i,φ f

M j
i, f f = N̄

j
i,5 + m j

O1i
D jTB jT

i N jT
i (0)N j

i (0)B
j
i D

j

+m j
O2i

D jTB jT
i N jT

i

(
l ji

)
N j

i

(
l ji

)
B j
i D

j

+ J j
O1i

D jTB jT
i

∂N jT
i,2(x̄i )

∂ x̄i

∣∣
∣∣∣
x̄i=0

∂N j
i,2(x̄i )

∂ x̄i

∣∣
∣∣∣
x̄i=0

B j
i D

j

+ J j
O2i

D jTB jT
i

∂N jT
i,2(x̄i )

∂ x̄i

∣∣∣
∣∣
x̄i=l ji

∂N j
i,2(x̄i )

∂ x̄i

∣∣∣
∣∣
x̄i=l ji

B j
i D

j

The integration constants in the mass matrix M j
i of

element i are given by

N̄
j
i,1 =

∫

V j
i

ρr j0,idV
j
i

N̄
j
i,2 =

∫

V j
i

ρN j
i (x̄i )B

j
i D

jdV j
i

N̄ j
i,3 =

∫

V j
i

ρr jT0,i r
j
0,idV

j
i

N̄
j
i,4 =

∫

V j
i

ρr jT0,iN
j
i (x̄i )B

j
i D

jdV j
i

N̄
j
i,5 =

∫

V j
i

ρD jTB jT
i N jT

i (x̄i )N
j
i (x̄i )B

j
i D

jdV j
i

N̄
j
i,6 =

∫

V j
i

ρr jT0,i K̃N
j
i (x̄i )B

j
i D

jdV j
i

N̄
j
i,7 =

∫

V j
i

ρD jTB jT
i N jT

i (x̄i )K̃N
j
i (x̄i )B

j
i D

jdV j
i

where K̃ =
[
0 1
−1 0

]
is a 2 × 2 unit skew matrix.

3.2.2 Potential energy of element i

Since the structure of the manipulator is horizon-
tal overall layout and the working plane is O−x−y
plane, the gravitational potential energy of RAParM-I
can be not taken into consideration [14]. Herein, the
tensional strain energy and bending strain energy are
taken into consideration, while the shear and torsion
strain energies are negligible in this paper. Therefore,
the total potential energy of element i in flexible body
j can be expressed as
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U j
p,i = 1

2

∫ l ji

0
EI

(
∂2w

j
i (x̄i , t)

∂ x̄2i

)2

dx̄i

+ 1

2

∫ l ji

0
EA

(
∂v

j
i (x̄i , t)

∂ x̄i

)2

dx̄i

= 1

2
qTjK

j
i q j (26)

where E represents theYoung’smodulus of beammate-
rial; I represents the area moment of inertia of beam
cross section; A represents the cross-sectional area. K j

i
represents the stiffness matrix of element i and can be
written as

K j
i =

⎡

⎢
⎣

02×2 02×1 02×4n j

01×2 0 01×4n j

04n j×2 04n j×1 K j
i, f f

⎤

⎥
⎦ (27)

where

K j
i, f f =

∫ l ji

0
EID jTB jT

i

∂2N jT
i,2(x̄i )

∂ x̄2i

∂2N j
i,2(x̄i )

∂ x̄2i
B j
i D

jdx̄i

+
∫ l ji

0
EAD jTB jT

i

∂N jT
i,1(x̄i )

∂ x̄i

∂N j
i,1(x̄i )

∂ x̄i
B j
i D

jdx̄i

(28)

3.2.3 Dynamic model of element i

Substituting the kinetic energy and potential energy of
element i into the Lagrangian formulation yields

d

dt

(
∂L

j
i

∂ q̇ j

)

− ∂L
j
i

∂q j
= F j

e,i (29)

where L
j
i = T j

i − U j
p,i represents the Lagrangian

function of element i and F j
e,i represents the column

matrix of generalized external forces of element i .
Through a series of mathematical derivation, the

dynamic model of element i in flexible body j can
be expressed in a compact form as

M j
i q̈ j + C j

i q̇ j + K j
i q j = F j

e,i (30)

where M j
i and K j

i are the mass and stiffness matrices,
respectively, which are displayed in the Sects. 3.2.1 and

3.2.2 of this paper. C j
i is the centrifugal and Coriolis

force matrix of element i in flexible body j . In order to
obtain the detailed expression of C j

i , let

Ĉ
j
i1 = ∂M j

i

∂qTj

(
q̇ j ⊗ I

)
(31)

Ĉ
j
i2 = 1

2

(
I ⊗ q̇ j

)T ∂M j
i

∂q j
(32)

where I represents a identity matrix and signal “⊗”
represents the Kronecker product. Through a series of
derivation, one can obtain

Ĉ
j
i1 =

⎡

⎢
⎣

C j
i1,rr C j

i1,rφ C j
i1,r f

C j
i1,φr C j

i1,φφ C j
i1,φ f

C j
i1, f r C j

i1, f φ C j
i1, f f

⎤

⎥
⎦ (33)

where

C j
i1,rr = 02×2

C j
i1,rφ = φ̇ j

∂2R(φ j )

∂φ2
j

N̄
j
i,1 + φ̇ j

∂2R(φ j )

∂φ2
j

N̄
j
i,2u

j
f

+ ∂R(φ j )

∂φ j
N̄

j
i,2u̇

j
f + m j

O1i
φ̇ j

∂2R(φ j )

∂φ2
j

×
([

l jO1i

0

]

+ N j
i (0)B

j
i D

ju j
f

)

+m j
O1i

∂R(φ j )

∂φ j
N j

i (0)B
j
i D

j u̇ j
f

+m j
O2i

φ̇ j
∂2R(φ j )

∂φ2
j

([
l jO2i

0

]

+ N j
i

(
l ji

)
B j
i D

ju j
f

)

+m j
O2i

∂R(φ j )

∂φ j
N j

i

(
l ji

)
B j
i D

j u̇ j
f

C j
i1,r f = φ̇ j

∂R(φ j )

∂φ j
N̄

j
i,2

+ ∂R(φ j )

∂φ j
φ̇ j

(
m j

O1i
N j

i (0) + m j
O2i

N j
i

(
l ji

))
B j
i D

j

C j
i1,φr = C jT

i1,rφ

C j
i1,φφ = 2N̄

j
i,4u̇

j
f + 2u̇ jT

f N̄
j
i,5u

j
f

+ 2m j
O1i

u̇ jT
f D jTB jT

i N jT
i (0)

([
l jO1i

0

]

+ N j
i (0)B

j
i D

ju j
f

)
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+ 2m j
O2i

u̇ jT
f D jTB jT

i N jT
i

(
l ji

)

([
l jO2i

0

]

+ N j
i

(
l ji

)
B j
i D

ju j
f

)

C j
i1,φ f = u̇ jT

f N̄
j
i,7 + m j

O1i
u̇ jT
f D jTB jT

i N jT
i (0)

K̃N j
i (0)B

j
i D

j

+m j
O2i

u̇ jT
f D jTB jT

i N jT
i

(
l ji

)
K̃N j

i

(
l ji

)
B j
i D

j

C j
i1, f r = C jT

i1,r f

C j
i1, f φ = C jT

i1,φ f

C j
i1, f f = 04n j×4n j

Ĉ
j
i2 =

⎡

⎢
⎣

C j
i2,rr C j

i2,rφ C j
i2,r f

C j
i2,φr C j

i2,φφ C j
i2,φ f

C j
i2, f r C j

i2, f φ C j
i2, f f

⎤

⎥
⎦ (34)

where

C j
i2,rr = 02×2

C j
i2,rφ = 02×1

C j
i2,r f = 02×4n j

C j
i2,φr = 1

2
φ̇ j

⎛

⎜⎜
⎜⎜⎜
⎝

N̄ jT
i,1 + u jT

f N̄ jT
i,2 + m j

O1i

⎛

⎝
[
l jO1i
0

]T
+ u jT

f D jT
i B jT

i N jT
i (0)

⎞

⎠

+m j
O2i

⎛

⎝
[
l jO2i
0

]T
+ u jT

f D jT
i B jT

i N jT
i

(
l ji

)
⎞

⎠

⎞

⎟⎟
⎟⎟⎟
⎠

∂2RT(φ j )

∂φ2
j

+ 1

2
u̇ jT
f

(
N̄ jT
i,2 + m j

O1i
D jT
i B jT

i N jT
i (0) + m j

O2i
D jT
i B jT

i N jT
i

(
l ji

))

∂RT(φ j )

∂φ j

C j
i2,φφ

= 1

2
ṙTO j

∂2R(φ j )

∂φ2
j

⎛

⎜
⎜⎜⎜
⎝

N̄ j
i,1 + N̄ j

i,2u
j
f + m j

O1i

([
l jO1i
0

]

+ N j
i (0)B j

i D
j
i u

j
f

)

+m j
O2i

([
l jO2i
0

]

+ N j
i

(
l ji

)
B j
i D

j
i u

j
f

)

⎞

⎟
⎟⎟⎟
⎠

C j
i2,φ f = 1

2
ṙTO j

∂R(φ j )

∂φ j
(
N̄ j
i,2 + m j

O1i
N j
i (0)B j

i D
j
i + m j

O2i
Ni

(
l ji

)
B j
i D

j
i

)

C j
i2, f r = 1

2
φ̇ j

(
N̄

jT
i,2 + m j

O1i
D jT
i B jT

i N jT
i (0)

+m j
O2i

D jT
i B jT

i N jT
i

(
l ji

)) ∂RT(φ j )

∂φ j

C j
i2, f φ = 1

2

(
N̄

jT
i,2 + m j

O1i
D jT
i B jT

i N jT
i (0)

+m j
O2i

D jT
i B jT

i N jT
i

(
l ji

)) ∂RT(φ j )

∂φ j
ṙOj

+

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎝

N̄
jT
i,4 + N̄

j
i,5u f + m j

O1i
D jT
i B jT

i N jT
i (0)

[
l jO1i
0

]

+m j
O1i

D jT
i B jT

i N jT
i (0)N j

i (0)B
j
i D

j
i u

j
f

+m j
O2i

D jT
i B jT

i N jT
i

(
l ji

)
[
l jO2i

0

]

+m j
O2i

D jT
i B jT

i N jT
i

(
l ji

)
Ni

(
l ji

)
B j
i D

j
i u

j
f

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎠

φ̇ j

+ 1

2

(
N̄

j
i,7 + m j

O1i
D jT
i B jT

i N jT
i (0)K̃N j

i (0)B
j
i D

j
i

+m j
O2i

D jT
i B jT

i N jT
i

(
l ji

)
K̃Ni

(
l ji

)
B j
i D

j
i

)
u̇ j
f

C j
i2, f f = 1

2

(
N̄

j
i,7 + m j

O1i
D jT
i B jT

i N jT
i (0)K̃N j

i (0)B
j
i D

j
i

+m j
O2i

D jT
i B jT

i N jT
i

(
l ji

)
K̃N j

i

(
l ji

)
B j
i D

j
i

)
φ̇ j

Therefore, the centrifugal and Coriolis force matrix of
element i in flexible body j can be obtained as

C j
i = ∂M j

i

∂qTj

(
q̇ j ⊗ I

)− 1

2

(
I ⊗ q̇ j

)T ∂M j
i

∂q j

= Ĉ
j
i1 − Ĉ

j
i2 =

⎡

⎢
⎣

C j
i,rr C j

i,rφ C j
i,r f

C j
i,φr C j

i,φφ C j
i,φ f

C j
i, f r C j

i, f φ C j
i, f f

⎤

⎥
⎦ (35)

where

C j
i,rr = C j

i1,rr − C j
i2,rr , C

j
i,rφ

= C j
i1,rφ − C j

i2,rφ, C j
i,r f = C j

i1,r f − C j
i2,r f

C j
i,φr = C j

i1,φr − C j
i2,φr , C

j
i,φφ

= C j
i1,φφ − C j

i2,φφ, C j
i,φ f = C j

i1,φ f − C j
i2,φ f

C j
i, f r = C j

i1, f r − C j
i2, f r , C

j
i, f φ

= C j
i1, f φ − C j

i2, f φ, C j
i, f f = C j

i1, f f − C j
i2, f f .

Remark 1 The dynamic model of an arbitrary element
i with lumped masses and moments of inertia in flex-
ible body j can be transformed conveniently into the
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dynamicmodel of common element only throughmod-
ifying the parameters of lumped masses and moments
of inertia of element i presented in this paper to null
(see Fig. 7). Consequently, the dynamic model of ele-
ment i deduced here can be conveniently assembled
into the dynamic model of a certain flexible body with
any number of lumped masses and moments of inertia.

3.3 Dynamic model of flexible body j

The total generalized coordinates of arbitrary flexible
body j are selected as the generalized coordinates of
the dynamic model of element i within flexible body j .
To obtain the dynamic model of arbitrary flexible body
j , we need only to add all the dynamic equations of
elements within flexible body j together. Thus, assem-
bling the dynamic model of an arbitrary element i , one
can further obtain the dynamic model of flexible body
j as

M̄ j q̈ j + C̄ j q̇ j+K̄ jq j = F̄e, j (36)

where M̄ j = ∑n j
i=1M

j
i : mass matrix of flexible body

j ; C̄ j = ∑n j
i=1 C

j
i : centrifugal and Coriolis force

matrix of flexible body j ; K̄ j = ∑n j
i=1 K

j
i : stiffness

matrix of flexible body j ; F̄e, j = ∑n j
i=1 F

j
e,i : column

matrix of generalized external forces of flexible body j ;
n j represents the number of elements in flexible body
j .

Remark 2 It should be mentioned that the dynamic
model of flexible body j derived here is generally appli-
cable for planar PMs with flexible links. That is to say,
the dynamicmodel of flexible body j can be assembled
modularly to achieve the RFDM of a certain flexible
planar PM and can be realized conveniently by pro-
gramming as well. In the following section, the estab-
lishment of complete dynamic model of system will be
elaborated in detail.

3.4 Dynamic model of system

3.4.1 Dynamic model of system without constraints

In our study, RAParM-I encompasses totally 8
flexible bodies. Therefore, the vector of general-
ized coordinates of system is denoted as q(s) =

[ rTO1
φ1 u1Tf · · · rTO1

φ8 u8Tf ]T. Based upon the above
analysis, assembling the dynamic equations of all the
flexible bodies of system, one can obtain the flexi-
ble multi-body dynamic model of system without con-
straint as

M̄
(s)
q̈(s) + C̄

(s)
q̇(s) + K̄

(s)
q(s) = F̄

(s)
e (37)

where M̄
(s)

is the mass matrix of system; C̄
(s)

is the

centrifugal and Coriolis force matrix of system; K̄
(s)

is the stiffness matrix of system; F̄
(s)
e is the column

matrix of generalized external forces of system. These
four matrices are expressed as follows:

M̄
(s) =

⎡

⎢⎢⎢
⎣

M̄1

M̄2
. . .

M̄8

⎤

⎥⎥⎥
⎦

,

C̄
(s) =

⎡

⎢⎢⎢
⎣

C̄1

C̄2
. . .

C̄8

⎤

⎥⎥⎥
⎦

,

K̄
(s) =

⎡

⎢⎢⎢
⎣

K̄ 1

K̄ 2
. . .

K̄ 8

⎤

⎥⎥⎥
⎦

F̄
(s)
e =

[
F̄
T
e,1 F̄

T
e,2 · · · F̄

T
e,8

]T
(38)

3.4.2 Constraint equations of system

It should be mentioned that the dynamic model of sys-
tem manifested in Eq. (37) is achieved through assem-
bling the dynamic model of arbitrary flexible body
j obtained via cutting virtually the joints of mecha-
nism,which contains no constraints. In otherwords, the
dynamic model shown in Eq. (37) is open-loop. Con-
sequently, in order to establish the complete dynamic
model of system, some constraint equations of sys-
tem should be introduced into the open-loop dynamic
model. The schematic diagramand topological graphof
RAParM-I are shown in Fig. 8, fromwhich one can dis-
cover that there are three independent closed-loop con-
straints, i.e., loop I, II and III, respectively. In addition,
since the joint position coordinates of flexible body j
are introduced in the dynamicmodel, some related joint
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constraint equations of flexible body j should be con-
structed to restrain the redundant degrees of freedom
caused by the joint position coordinates. Therefore, 8
set of joint constraint equations need to be constructed
here. The 8 joints are joints A1, B1, D1, E1, A2, B2,
D2 and E2, respectively.

Based upon above analysis, there are totally 22 con-
straint equations, which can be expressed as follows:
(1) Constraint equations for joint A1

rA1 =
[−e
0

]
(39)

(2) Constraint equations for joint B1

rB1 =
[−e

0

]
+ R(φ1)

[
l1 + uend1,x̄
uend1,ȳ

]
(40)

(3) Constraint equations for joint D1

rD1 =
[−e

0

]
(41)

(4) Constraint equations for joint E1

rE1 =
[−e

0

]
+ R(φ2)

[
la + uend2,x̄

uend2,ȳ

]
(42)

(5) Constraint equations for joint A2

rA2 =
[
e
0

]
(43)

(6) Constraint equations for joint B2

rB2 =
[
e
0

]
+ R(φ5)

[
l1 + uend5,x̄
uend5,ȳ

]

(44)

(7) Constraint equations for joint D2

rD2 =
[
e
0

]
(45)

(8) Constraint equations for joint E2

rE2 =
[
e
0

]
+ R(φ6)

[
la + uend6,x̄

uend6,ȳ

]
(46)

(9) Constraint equations for closed-loop I

rB1 + R(φ4)

[
la + umid

4,x̄
umid
4,ȳ

]
=rE1 + R(φ3)

[
l1 + uend3,x̄
uend3,ȳ

]

(47)

(10) Constraint equations for closed-loop II

rB2 + R(φ8)

[
la + umid

8,x̄
umid
8,ȳ

]
= rE2 + R(φ7)

[
l1 + uend7,x̄
uend7,ȳ

]

(48)

(11) Constraint equations for closed-loop III

rB1 + R(φ4)

[
l2 + uend4,x̄
uend4,ȳ

]
= rB2 + R(φ8)

[
l2 + uend8,x̄
uend8,ȳ

]

(49)

where rjointi represents the position vector of a certain
joint; umid

j,x̄ and umid
j,ȳ represent, respectively, the axial

and transverse elastic displacements of element node at
the position ofmiddle joint (see Fig. 8) for flexible body
j ( j = 4, 8); uendj,x̄ and uendj,ȳ represent, respectively, the
axial and transverse elastic displacements of element
node at the position of end joint for flexible body j ( j =
1, 2, · · · , 8). These above constraint equations can be
uniformly expressed in a compact form as

Φ
(
q(s), t

)
= 0 (50)

where Φ
(
q(s), t

) ∈ R
22. Taking first-order differentia-

tion for Eq. (50) with respect to time yields

Φc

(
q(s), t

)
q̇(s) + Φ t = 0 (51)

whereΦc
(
q(s), t

) = ∂Φ
(
q(s),t

)

∂q(s)T represents the constraint
Jacobian matrix of system, which is a sparse matrix,

Φ t = ∂Φ
(
q(s),t

)

∂t and q̇(s) =[ṙTO1
φ̇1 u̇1Tf · · · ṙTO8

φ̇8 u̇8Tf ]T.
Furthermore, taking second-order differentiation for
Eq. (50) with respect to time yields

Φc

(
q(s), t

)
q̈(s) = γ (52)

where q̈(s) = [ r̈TO1
φ̈1 ü1Tf · · · r̈TO1

φ̈8 ü8Tf ]T, and γ ∈
R
22×1 represents the right-hand side of acceleration

constraint equations and is given by
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Fig. 8 The schematic diagram and topological graph of RAParM-I

γ = − ∂

∂q(s)T

(
∂Φ
(
q(s), t

)

∂q(s)T
q̇(s)

)

q̇(s)

−2
∂

∂t

(
∂Φ
(
q(s), t

)

∂q(s)T

)

q̇(s) − ∂2Φ
(
q(s), t

)

∂t2
(53)

3.4.3 Complete dynamic model of system

By assembling the open-loop dynamic model of sys-
tem shown in Eq. (37) and the constraint equations
of system shown in Eq. (50), and incorporating the
Lagrangian multipliers, one can obtain the complete
dynamic model of system as

{
M̄

(s)
q̈(s) + C̄

(s)
q̇(s)+K̄

(s)
q(s) + ΦT

c

(
q(s), t

)
λ = F̄

(s)
e

Φ
(
q(s), t

) = 022×1

(54)

where λ ∈ R
22 is the vector of Lagrangian multipliers

which denotes the magnitude of the generalized con-

straint reactions; F̄
(s)
e is the column matrix of general-

ized external forces of system, which can be expressed
as

F̄
(s)
e =

[
01×2 τ1 01×4n1︸ ︷︷ ︸

body-1

01×2 τ2 01×4n2︸ ︷︷ ︸
body-2

01×(4n3+3)︸ ︷︷ ︸
body-3

01×(4n4+3)︸ ︷︷ ︸
body-4

01×2 τ5 01×4n5︸ ︷︷ ︸
body-5

01×2 τ6 01×4n6︸ ︷︷ ︸
body-6

01×(4n7+3)︸ ︷︷ ︸
body-7

01×(4n8+3)︸ ︷︷ ︸
body-8

]T

(55)

where τ1, τ2, τ5 and τ6 represent, respectively, the driv-
ing torques offered by the servo motors mounted at
the base of RAParM-I (see Fig. 3). It is worth noting
that different actuation modes can be achieved here via
selecting different driving torques as the practical driv-
ing ones, for instance,

• when τ1 �= 0, τ2 ≡ 0, τ5 �= 0, τ6 ≡ 0, the actuation
mode is “⊕ � ⊕�”;

• when τ1 �= 0, τ2 �= 0, τ5 �= 0, τ6 ≡ 0, the actuation
mode is “⊕ ⊕ ⊕�”;

• when τ1 �= 0, τ2 �= 0, τ5 �= 0, τ6 �= 0, the actuation
mode is “⊕ ⊕ ⊕⊕.”

Likewise, the other actuation modes can also be
obtained easily by using analogous method, and the
relevant actuation modes are illustrated in Ref. [14].

Equation (55) is also called index-3 dynamic model,
which is a group of differential and algebraic equations
(DAEs).

This type of dynamic equations can be solved
by virtue of the direct integration methods, such as
Newmark-β method [78],Wilson-θ method [79], HHT
method [80] and generalize α method [81].

Furthermore, combined with Eqs. (52), (54) can be
transformed into

⎧
⎪⎨

⎪⎩

M̄(s)q̈(s) + C̄(s)q̇(s) + K̄ (s)q(s) + ΦT
c

(
q(s), t

)
λ = F̄(s)

e

Φc

(
q(s), t

)
q̈(s) = γ 22×1

(56)
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Equation (56) is also called index-1 dynamic model,
whose constraint equations are described at the level
of acceleration.

Remark 3 If the flexibilities of links are not consid-
ered, namely the values of flexible generalized coor-
dinates are null, the rigid–flexible coupling dynamic
model (RFDM) of system shown in Eqs. (54) or (56)
will degrade into the rigid dynamic model (RDM) of
system (refer to Ref. [14]).

4 Solution strategy for the RFDM of system

Since the constraint equations of system are expressed
at the level of acceleration, and there are many depen-
dent generalized coordinates in the index-1 dynamic
model of system, the violations of position and veloc-
ity constraint equations may occur during the integra-
tion with respect to the index-1 dynamic model of sys-
tem. Under this circumstance, based on the method of
Baumgarte stabilization [82] and the idea of feedback
control, the right-hand side of acceleration constraint
equations can be modified as

γ̄ = γ − 2α
(
Φc

(
q(s), t

)
q̇(s) + Φ t

)
− β2Φ

(
q(s), t

)

(57)

whereα andβ are the stability coefficients,whose value
range generally holds 0 ≤ α, β ≤ 50. Therefore, the
dynamic model shown in Eq. (56) can be transformed
as
[
M̄

(s)
ΦT

c
Φc 0

][
q̈(s)

λ

]
=
[
F̄

(s)
e − C̄

(s)
q̇(s) − K̄

(s)
q(s)

γ̄ 22×1

]

(58)

Thus, one can further utilize the elimination method
to remove the Lagrangian multipliers, and change the
dynamic model of system from the DAEs to the ODEs.

From Eq. (58), one can obtain the expression of
Lagrangian multipliers as

λ =
(

Φc

(
M̄

(s)
)−1

ΦT
c

)−1

(
Φc

(
M̄

(s)
)−1 (

F̄
(s)
e − C̄

(s)
q̇(s) − K̄

(s)
q(s)
)

− γ̄

)

(59)

Since
(
Φc
(
M̄

(s))−1
ΦT

c

)−1 may be ill-conditioned dur-
ing computation by programming, the pseudoinverse

of
(
Φc
(
M̄

(s))−1
ΦT

c

)
, i.e.,

(
Φc
(
M̄

(s))−1
ΦT

c

)+, can take
place of

(
Φc
(
M̄

(s))−1
ΦT

c

)−1 during computation. Sub-
stituting Eq. (59) into Eq. (58) results in the simplified
dynamic model of system as

˜̄M(s)
q̈(s) + ˜̄H(s) + ˜̄K (s)

q(s) = ˜̄F(s)

e (60)

where ˜̄M(s)
represents the equivalent mass matrix of

system; ˜̄H(s)
represents the quadratic velocity forces of

system; ˜̄K (s)
represents the equivalent stiffness matrix

of system; ˜̄F(s)

e represents the equivalent columnmatrix
of generalized forces of system; and they are given
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˜̄M(s) = M̄
(s)

˜̄H(s) = Φ̃cC̄
(s)
q̇(s) − ΦT

c

(
Φc

(
M̄

(s)
)−1

ΦT
c

)−1

γ̄

˜̄K (s) = Φ̃c K̄
(s)

˜̄F(s)

e = Φ̃c F̄
(s)
e

Φ̃c = I − ΦT
c

(
Φc

(
M̄

(s)
)−1

ΦT
c

)−1

Φc

(
M̄

(s)
)−1

(61)

The dynamic model shown in Eq. (60) is a group
of rigid–flexible coupling and nonlinear time-varying
ODEs, which can be solved by virtue of the numeri-
cal algorithms. There are many numerical algorithms
to deal with this issue, mainly including two types,
i.e., direct integration algorithms and reduced-order
algorithms. The reduced-order algorithms commonly
used include the classical four/five order Runge–Kutta
algorithm, trapezoidal algorithm, Adams algorithm,
BDFs algorithm (Gear algorithm) [83], NDFs algo-
rithm [84] and hybrid TR-BDF2 algorithm [85]. The
adaptively variable step size can be applied in these
algorithms to balance the precision and efficiency in
the meantime. In general, these reduced-order meth-
ods can guarantee good precision and stability during
computation.

The RFDM of system contains slow-varying com-
ponents of rigid displacements and fast-varying com-
ponents of elastic displacements simultaneously. Con-
sequently, the dynamic equations of system display
strongly the “stiff” characteristic. In this case, the clas-
sical Runge–Kutta algorithm is not adaptable to solve
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this type of equations, and the solution efficiency is
also slow. Within the reduced-order algorithms men-
tioned above, Gear algorithm, NDFs algorithm and
hybrid TR-BDF2 algorithm are relatively adaptable to
solve the “stiff” differential equations. To balance effi-
ciency andprecision, in this paper, the hybridTR-BDF2
algorithm, which is L-stable [85], is employed to solve
the rigid–flexible coupling dynamic equations of sys-
tem; namely, the trapezoidal algorithm and the BDFs
algorithm are utilized, respectively, in the first and sec-
ond stages within the implicit Runge–Kutta formula-
tion [85].

5 Dynamic simulation experiment

In order to investigate the dynamic performance under
different actuationmodes ofRAParM-Iwhere the flexi-
bilities of all the links are considered during high-speed
motion, this section will employ numerical algorithm
to implement dynamic simulation analysis based on the
RFDM established in this paper.

5.1 Degrees of freedom of the RFDM of system

The dynamic model of arbitrary flexible body j
deduced in above sections encompasses n j elements
and is a general model. Theoretically, the more the
number of elements is, the higher the accuracy is. How-
ever, during the practical computation, the complexity
of system dynamic model should be taken into consid-
eration. Thus, the number of elements for each flexible
body of system should be set reasonably to guarantee
the solution efficiency and precision simultaneously.
In this paper, RAParM-I encompasses totally 8 flexible
bodies. Herein, the total number of elements is set as
20, and the detailed discretization using finite element
approach is depicted in Fig. 9.

After discretization using finite element approach,
the number of flexible generalized coordinates is 80, the
number of rigid generalized coordinates is 24 (includ-
ing 8 rotational angle coordinates of body-fixed coor-
dinate systems and 16 position coordinates of original
points of body-fixed coordinate systems), and the total
number of generalized coordinates of system is 104.
The associated physical parameters of RAParM-I are
listed in Table2.

A1

B1

(D1) A2 (D2)
E2

F2
F1

E1

C

Base

x

y

O

Body-2

Body-1

Body-3

Body-4

Body-5

Body-6

Body-7

Body-8

B2
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1-E1

1-E2

1-E3

2-E1

3-E1

3-E2

3-E3

4-E1

4-E2

4-E3

5-E1

5-E2

5-E3

6-E1

7-E1

7-E2

7-E3

8-E1

8-E2

8-E3

PSB 1 PSB 2

Fig. 9 The detailed discretization of RAParM-I using finite ele-
ment approach. Notice that j-Ei represent element i in flexible
body j

5.2 Design of simulation flow

As is mentioned in Remark 3, once the flexibilities
of links are not considered, the RFDM derived in
this paper will degrade into the rigid dynamic model
(RDM), which can be referred to in Ref. [14]. There-
fore, the mechanism will move rigorously according to
the desired trajectorywhen the driving torques obtained
through inverse solutions ofRDMareutilized to actuate
the “rigid” mechanism (the flexibilities of links are not
considered). However, once the flexibilities of links are
considered, the elastic deformations of links of mecha-
nism may arise under the actuations of driving torques
during high-speed motion. As a consequence of the
rigid–flexible coupling effect, the practical trajectory of
mechanism may deviate from the desired trajectory so
that the tracking precision of trajectorymay be affected
in some extent. In the following content, we will inves-
tigate the rigid–flexible coupling dynamic performance
of RAParM-I and elaborate the tracking precisions of
trajectory for the manipulator under different actuation
modes through numerical simulation so as to lay a good
foundation for the design of nonlinear controller based
on the RFDM in future.

On the basis of above statements, the simulation
flow chart is designed and shown in Fig. 10. There
are mainly three modules in the simulation flow chart.
Firstly, according to the trajectory planning for the end-
effector, the desired motion rules of all the joints of
mechanism are obtained through inverse kinematics
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Table 2 The associated
physical parameters of
RAParM-I

l ji represents the length of
element i(i = 1, 2, . . ., n j )

in flexible body
j ( j = 1, 2, . . ., 8); m j

O1i

and m j
O2i

represent the
lumped masses placed at
both ends of element i ; J j

O1i

and J j
O2i

represent
correspondingly the lumped
moments of inertia placed at
both ends of element i .
There are totally 18 lumped
masses and 18 lumped
moments of inertia in
RAParM-I, and the related
parameters can be obtained
by virtue of
three-dimensional modeling
software, such as
Solidworks�

Parameters Values Parameters Values

ρ (kgm−3) 2.7 × 103 l1, l2 (mm) 243

E (Pa) 7.0 × 1010 la (mm) 100

I (m4) 2.6042 × 10−10 e (mm) 110

A (m2) 1.2500 × 10−4

Parameters Values

l11/ l
1
2/ l

1
3 (mm) 81/81/81

l21 (mm) 100

l31/ l
3
2/ l

2
3 (mm) 81/81/81

l41/ l
4
2/ l

4
3 (mm) 100/71.5/71.5

l51/ l
5
2/ l

5
3 (mm) 81/81/81

l61 (mm) 100

l71/ l
7
2/ l

7
3 (mm) 81/81/81

l81/ l
8
2/ l

8
3 (mm) 100/71.5/71.5

m1
O11

/m1
O21

,m1
O12

/m1
O22

,m1
O13

/m1
O23

(g) 354/0, 0/0, 0/111

m2
O11

/m2
O21

(g) 354/130

m3
O11

/m3
O21

,m3
O12

/m3
O22

,m3
O13

/m3
O23

(g) 111/0, 0/0, 0/111

m4
O11

/m4
O21

,m4
O12

/m4
O22

,m4
O13

/m4
O23

(g) 130/130, 0/0, 0/177.5

m5
O11

/m5
O21

,m5
O12

/m5
O22

,m5
O13

/m5
O23

(g) 354/0, 0/0, 0/111

m6
O11

/m6
O21

(g) 354/130

m7
O11

/m7
O21

,m7
O12

/m7
O22

,m7
O13

/m7
O23

(g) 111/0, 0/0, 0/111

m8
O11

/m8
O21

,m8
O12

/m8
O22

,m8
O13

/m8
O23

(g) 130/130, 0/0, 0/169.5

J 1O11
/J 1O21

, J 1O12
/J 1O22

, J 1O13
/J 1O23

(gmm2) 43,933/0, 0/0, 0/14,508

J 2O11
/J 2O21

(gmm2) 43,933/15,871

J 3O11
/J 3O21

, J 3O12
/J 3O22

, J 3O13
/J 3O23

(gmm2) 14,508/0, 0/0, 0/14,508

J 4O11
/J 4O21

, J 4O12
/J 4O22

, J 4O13
/J 4O23

(gmm2) 15,871/15,871, 0/0, 0/14,508

J 5O11
/J 5O21

, J 5O12
/J 5O22

, J 5O13
/J 5O23

(gmm2) 43,933/0, 0/0, 0/14,508

J 6O11
/J 6O21

(gmm2) 43,933/15,871

J 7O11
/J 7O21

, J 7O12
/J 7O22

, J 7O13
/J 7O23

(gmm2) 14,508/0, 0/0, 0/14,508

J 8O11
/J 8O21

, J 8O12
/J 8O22

, J 8O13
/J 8O23

(gmm2) 15,871/15,871, 0/0, 0/11,269

[14] of RAParM-I. Secondly, the driving torques asso-
ciatedwith the “rigid”mechanism are obtained through
the inverse solutions of RDM and taken as the feed-
forward input of the third module. It should be noted
that the driving torques under redundant actuation
modes are obtained through the method of minimizing
the Euclidian 2-norm [14], such that the practical con-
trol can be realized conveniently by using this method.
Finally, the dynamic responses of system are obtained
through solving forwardly the RFDM by virtue of the
aforementioned hybrid TR-BDF2 algorithm.

5.3 Numerical simulation example

In Ref. [14], we have demonstrated that there are
many complex singularities within the workspace of
RAParM-I when non-redundant actuation modes are
considered. In this paper, in order to make a compar-
ative analysis conveniently about the trajectory track-
ing precisions of end-effector under different actuation
modes (including non-redundant actuation modes), the
desired trajectory of end-effector is planned without
crossing the singular zones (corresponding to the non-
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Trajectory planning for end-effector

Inverse kinematics [14]

Read the input data
(The physical 

parameters shown in 
Table 2)

Non-redunadnt actuation modes [14]

Redunadnt actuation modes [14]
T 1

rigid ( ) ( )e e e e
−= +τ S S S M q C q

T 1
rigid ( ) ( )e e e e

−= +τ S M q C q

,  ,  e e eq q q

rigid rigid,  q q,  e eq q

rigidτ

Rigid-flexible coupling dynamic 
model of system

(s) (s) (s) (s) (s) (s)
e+ + =M q H K q F

Solve forwardly the dynamic model by 
the hybrid TR-BDF2 algorithm

,  ,  q q q

Save simulation data

Fig. 10 The simulation flow chart

redundant actuation modes) inside the task workspace
of RAParM-I.

5.3.1 Trajectory planning

In this simulation example, the desired trajectory of
end-effector of RAParM-I is planned as a complex
square trajectory that is marked with blue color, as
shown in Fig. 11. The position coordinates of four
end points of the square trajectory within the task

-100 0 100
100

150

200

250

300

350

400
/(mm)

/(mm)

Boundary of task workspace

B A

C D

R=150
Q

Fig. 11 The desired trajectory of end-effector planned within
task workspace of RAParM-I

workspace are set as: A (50, 314) mm, B (−50, 314)
mm,C (−50, 214) mm, D (50, 214) mm. The center of
task workspace for RAParM-I is denoted by Q (0, 264)
mm. The motion direction of the desired trajectory is
A → B → C → D → A, as depicted in Fig. 11.

In order to avoid the impact caused by sudden
change of acceleration for end-effector whenRAParM-
I is started or stopped, a kind of trapezoidal modified
velocity planning strategy is employedwithin each sec-
tion of the desired square trajectory. Taking the first
section of trajectory as an example, the correspond-
ing motion rules of acceleration and velocity of end-
effector are described as follows:

⎧
⎨

⎩

ac = amax sin
( 2π
T t
)
, t0 ≤ t < t1

ac = 0, t1 ≤ t < t2
ac = −amax sin

( 2π
T t
)
, t2 ≤ t ≤ t3

(62)

⎧
⎨

⎩

vc = −amax
T
2π cos

( 2π
T t
)+ amax

T
2π , t0 ≤ t < t1

vc = amax
T
π , t1 ≤ t < t2

vc = amax
T
2π cos

( 2π
T t
)+ amax

T
2π , t2 ≤ t ≤ t3

(63)

where T =
√

πs
amax

, s represents the length of each sec-

tion of the desired square trajectory; amax represents
the maximum acceleration of end-effector; t0 = 0,
t1 = T/2, t2 = T and t3 = 3T/2. In this simula-
tion case, the maximum acceleration of end-effector is
set as amax = 40 m/s2. The total simulation time is
0.7 s, in which the practical motion time of square tra-

jectory is 6
√

πs
amax

≈ 0.532 s and the dwelling time is
(
0.7 − 6

√
πs
amax

)
≈ 0.168 s.
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Fig. 12 The driving torques of RAParM-I under different actuation modes: a non-redundant actuation modes; b redundant actuation
modes

By taking into account multiple actuation modes
depicted in Ref. [14], one can obtain the dynamic
responses of RAParM-I under different actuation
modes. As amatter of fact, since some actuationmodes
are symmetric, we can merely analyze 6 actuation
modes (see Table1), which are “⊕�⊕�,” “�⊕�⊕,”
“⊕ � �⊕,” “⊕ ⊕ ⊕�,” “⊕ ⊕ �⊕” and “⊕ ⊕ ⊕⊕,”
respectively. Amongst the 6 actuation modes men-
tioned above, the first three ones are non-redundant
actuation ones and the latter three ones are redundant
actuation ones.

5.4 Simulation experiment results and discussions

The numerical simulation experiment is implemented
in the environment of the commercial software
MATLAB� because various application scenarios
[86–90] have been successfully simulated by using this
software. Thus, according to the simulation flow chart
shown in Fig. 10, the numerical simulations are per-
formed in MATLAB� 2013b on the computer with
Intel (R) Pentium (R) G2020 processor (2.90 GHz),
6.00 G system memory and Windows 7 operating sys-
tem.

First, the driving torques of RAParM-I under differ-
ent actuation modes are obtained based on the RDM
resulting from the degradation of RFDM, as shown
in Fig. 12. From Fig. 12, one can discover that the
driving torques show significant differences amongst
different actuation modes. Since the method of mini-
mizing the Euclidian 2-norm is applied to obtain the
optimal driving torques, the peak values of driving
torques for the redundant actuation modes are much
smaller in comparison with the non-redundant actua-
tionmodes.Moreover, the peak value of driving torques
for “⊕ ⊕ ⊕⊕” mode is the smallest, and about 7 Nm,
and the distributions of driving torques under this actu-
ation mode are balanced as well. That is to say, this
actuation mode may be helpful to prolong the lifetime
of servo motor and may further improve the perfor-
mance of manipulator.

Based upon the third module of simulation flow
chart, we solve forwardly the RFDMof system and can
obtain the dynamic responses of RAParM-I under dif-
ferent actuation modes. Figure13 illustrates the time-
varying curves of axial and transverse elastic displace-
ments, and the elastic angles of end points for links 1
and 4 under the “⊕ ⊕ ⊕⊕” actuation mode. Owing
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Fig. 13 The axial (1) and transverse (2) elastic displacements, and elastic angles (3) of end points for links 1 and 4: a link 1, b link 4

to the space limitation, the simulation results under the
other actuationmodes are not manifested in detail here.
The relevant simulation results can be obtained through
implementing similar procedure based on the simula-
tion flow chart shown in Fig. 10. From Fig. 13, one can
discover that the links of theRAParM-I display obvious
deformations because of the flexibilities of links dur-
ing the high-speed motions. Moreover, the values of
transverse elastic displacements of links are much big-
ger than those of axial elastic displacements, and the
ratio of magnitude order between them is up to 103.
This result coincides with the structural characteristic
of link, i.e., the axial tensional stiffness aremuch bigger
than the transverse bending stiffness. Consequently, in
future research of simplifying the dynamic model of
system, only the transverse elastic deformation of flex-
ible link can be considered, whereas the effect of axial
elastic deformation can be ignored. In addition, since
the effects of external and structural damping are not
considered, when the tracking to the desired square tra-
jectory is completed and from the beginning of 0.532 s,
the links display residual vibrationswith approximately
equal amplitudes and the residual vibrations will hold
all the time, as shown in Fig. 13.

Figure14 manifests the motion curves of angular
displacements, velocities and accelerations of all the
links for RAParM-I under the “⊕ ⊕ ⊕⊕” actuation
mode. Herein, the blue lines represent the practical
motion rules of all the flexible links, and the red lines
represent the desired motion rules of the “rigid” links
whose flexibilities are not considered.

It can be observed from Fig. 14 that the rigid-body
motions of all the links are affected strongly by the
flexible effects of links, and the practical motions of
links display rigid–flexible coupling characteristics,
which are different from the results obtained by the
method of KED because the nominal motions (rigid-
body motions) are not affected by the elastic deforma-
tions in the assumption ofKEDmethod. From the simu-
lation results, one can further discover that,with respect
to each flexible link, there exists deviation between the
practical angular displacement and the desired angu-
lar displacement. Moreover, the motion rules of veloc-
ity and acceleration of each flexible link display high-
frequency oscillations relative to the desired motion
rules, especially for the motion rule of acceleration.
In addition, it is worth mentioning that, after the com-
pletion of tracking to the desired square trajectory and
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Fig. 14 The motion rules of angular displacements, velocities and accelerations of all the links for RAParM-I under the “⊕ ⊕ ⊕⊕”
actuation mode: a link 1; b link 2; c link 3; d link 4; e link 5; f link 6; g link 7; h link 8
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Fig. 14 continued

from the beginning of 0.532 s, the motion rule of angu-
lar displacement of each link displays small oscilla-
tion with approximately equal magnitude. This phe-
nomenon can be explained as follows. Since the effects
of external and structural damping are not considered
in this study, when the driving torques are removed
(t ≥ 0.532 s), the inertia effect and the residual vibra-
tions of flexible links will excite the oscillations of
rigid-body motion rules.

Based on the analysis with respect to the simulation
results shown in Figs. 13 and 14, it is concluded that
the elastic deformations and the rigid-body motions
of links are coupled mutually, and the coupling effect
between them will result in the practical trajectory of

end-effector for RAParM-I. Owing to the space limi-
tation, we display only the practical trajectory of end-
effector for RAParM-I under the “⊕ ⊕ ⊕⊕” actua-
tion mode, as depicted in Fig. 15, in which the blue
line represents the practical trajectory and the red line
represents the desired trajectory. Correspondingly, the
motion curves of displacements, velocities and accel-
erations in the directions of x and y are illustrated in
Fig. 16, in which the blue lines represent the practi-
cal motion rules and the red lines represent the desired
motion rules. From the results shown in Figs. 15 and 16,
one can discover that the practical trajectory of end-
effector deviates from the desired trajectory in some
extent. Moreover, the motion curves of velocities and
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Fig. 15 The trajectory of the end-effector of RAParM-I under
the “⊕ ⊕ ⊕⊕” actuation mode

accelerations in the directions of x and ymanifest high-
frequency oscillations relative to the desired motion
rules, especially for themotion rules of accelerations in
the two directions. In addition to these, it is manifested
that the motion rules of displacements in the directions

of x and y display small residual oscillations relative to
the static values after the tracking to the desired square
trajectory is completed (t ≥ 0.532 s). It is not diffi-
cult to infer this phenomenon based on the simulation
results illustrated in Figs. 13 and 14 as well.

Furthermore, one can obtain the Poincare phase dia-
grams ofmotion rules (the displacement/velocity phase
diagram and the velocity/acceleration phase diagram)
in the directions of x and y for end-effector, which are
shown in Fig. 17, in which the blue lines represent the
Poincare phase diagrams of practical motions and the
red lines represent the ones of desired motions. From
the Poincare phase diagrams shown in Fig. 17, one can
easily discover that, as a result of the rigid–flexible
coupling effect, the practical motion rules deviate from
the desired motion rules in some extent, especially for
the motion rules of velocities and accelerations in the
directions of x and y. The results manifested in Fig. 17
coincide well with the results shown in Fig. 16.

In order to make comparative analysis about the
dynamic performance of RAParM-I under different
actuation modes, the trajectory tracking errors of end-
effector under different actuationmodes aremanifested
in Fig. 18, in which the blue lines represent trajectory
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Fig. 16 The motion curves of displacements, velocities and accelerations of end-effector: a x direction, b y direction
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Fig. 17 The Poincare phase diagrams ofmotions of end-effector
for RAParM-I under the “⊕⊕⊕⊕” actuation mode. a The phase
diagrams of displacement/velocity: 1 x direction; 2 y direction.

b The phase diagrams of velocity/acceleration: 1 x direction; 2
y direction

tracking errors in the direction of x and the red lines
represent the ones in the direction of y. It is observed
that the trajectory tracking precisions of end-effector
under redundant actuation modes are superior to the
ones under non-redundant actuation modes. That is to
say, the redundant actuation modes can restrain the
flexible effects of links in some extent. Meanwhile,
the redundant actuation modes are not affected by the
Type II singularities within the workspace of RAParM-
I, and themotion stabilities ofmanipulator are also very
well so that the trajectory tracking precision of end-
effector can be improved. From the results shown in
Fig. 18a, one can further discover that, from the begin-
ning of about 0.25 s, the trajectory tracking error in the
direction of y increases rapidly. This phenomenon can
be explained as follows. From the beginning of about

0.25 s, the end-effector approaches gradually the sin-
gular curve (but not crosses it) inside the workspace of
RAParM-I under the traditional non-redundant actua-
tion mode “⊕ � ⊕�” such that the stiffness perfor-
mance of the manipulator will be decreased. There-
fore, the dynamic performance of system will be fur-
ther degraded under “⊕ � ⊕�” actuation mode such
that the trajectory tracking errors of end-effector will
increase, and even the desired trajectory of end-effector
cannot be tracked under this circumstance. In addition,
one can also discover that, under the two redundant
actuation modes of “⊕ ⊕ ⊕�” and “⊕ ⊕ ⊕⊕,” the
end-effector of RAParM-I can obtain relatively higher
trajectory tracking precisions.

Considering that the trajectory tracking errors vary
with time, to evaluate quantitatively the trajectory
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Fig. 18 The trajectory
tracking errors of
end-effector for RAParM-I
under different actuation
modes. a “⊕ � ⊕�” mode.
b “� ⊕ �⊕” mode. c
“⊕ � �⊕” mode. d
“⊕ ⊕ ⊕�” mode. e
“⊕ ⊕ �⊕” mode. f
“⊕ ⊕ ⊕⊕” mode
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tracking precisions of end-effector forRAParM-I under
different actuation modes, the mean-square deviation
error (Δ̄error) is employed as the performance index,
which is defined as follows:

Δ̄error =
√√√√ 1

nsample

nsample∑

i=1

((
xi − xdi

)2 + (yi − ydi
)2)

(64)

where nsample represents the number of sample points
on the trajectory; xdi , ydi represent the position coordi-
nates of the i th sample point on the desired trajectory;
xi , yi represent the position coordinates of the i th sam-
ple point on the practical trajectory. Table3 manifests
Δ̄error of RAParM-I under different actuation modes.

From the data manifested in Table3, one can
discover that the trajectory tracking precisions of
end-effector under redundant actuation modes are

123



420 D. Liang et al.

Table 3 Δ̄error under different actuation modes for RAParM-I

Actuation modes Δ̄error (m)

⊕ � ⊕� 0.0575

� ⊕ �⊕ 0.0075

⊕ � �⊕ 0.0118

⊕ ⊕ ⊕� 3.3624 × 10−4

⊕ ⊕ �⊕ 7.9297 × 10−4

⊕ ⊕ ⊕⊕ 6.0885 × 10−4

much higher than those under non-redundant actua-
tion modes. This coincides with the simulation results
shown in Fig. 18. With respect to the tracking effect
for the square trajectory planned in this experiment,
the difference of trajectory tracking precisions amongst
the three redundant actuation modes (“⊕ ⊕ ⊕�,”
“⊕ ⊕ �⊕,” “⊕ ⊕ ⊕⊕”) is not significant. Taking into
account both the kinematic and rigid dynamic perfor-
mance, the redundant actuation mode “⊕ ⊕ ⊕⊕” has
significant advantage over the other redundant actua-
tion modes in practical application. That is, under this
redundant actuationmode, not only nice kinematic per-
formanceof themanipulator canbeguaranteed, but also
nice dynamic performance can be realized. In addition,
we also have implemented simulation experiments of
trajectory tracking with respect to some other trajecto-
ries, including linear path and circular path. The cor-
responding simulation results indicate that the redun-
dant actuationmodes can improve obviously the trajec-
tory tracking precision of end-effector for RAParM-I.
Moreover, the redundant actuation mode “⊕ ⊕ ⊕⊕”
can always ensure good tracking effect in all kinds of
simulation experiments of trajectory tracking. Conse-
quently, from the two levels of rigidmulti-body dynam-
ics and flexible multi-body dynamics, the redundant
actuationmode “⊕⊕⊕⊕” is a superior actuationmode
and will be further researched in future.

6 Model verification

In order to validate the RFDM presented in this paper,
a virtual prototype model (VPM) of RAParM-I will be
established by virtue of SimMechanis�. In the VPM,
the same trajectory for the end-effector is planned.
Meanwhile, a similar simulation flow (designed in
Sect. 5.2) is applied in the VPM.
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nQ

1nQ +
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kt

Rigid-body segment

Torsional spring

Flexible link

Fig. 19 Theflexible linkmodeledwithmultiple successive equal
rigid-body segments and massless torsional springs (with spring
constants kt). Notice that θ1, θ2, …, θn represent the absolute
rotational angles of rigid-body segments and ϕ2, ϕ2, …, ϕn rep-
resent the relative rotational angles

6.1 Virtual prototype model (VPM) in SimMechanics

Reference [38] proposed a FSM-based approach to
model link flexibility, i.e., a certain flexible link is dis-
cretized into multiple successive equal rigid-body seg-
ments which are connected to one another by massless
torsional springs. Without loss of generality, Fig. 19
illustrates the discretization of a certain flexible link
using the aforementionedmethod. For themodel shown
in Fig. 19, each one of the rigid-body segments (1, 2,
…, n) has the same massm, moment of inertia of beam
cross section I and length l. The total length of the
flexible link is L = nl when it is in the undeformed
state. The spring constants are denoted by kt , which
can be computed by kt = nEI/L , where E is Young’s
modulus of flexible link. Thus, one can utilize some
modeling methods, such as Lagrangian formulation or
Newton–Euler formulation, to establish the equivalent
dynamic model of system.

Since the aforementioned method can be realized
through rigid-body dynamic analysis, somemulti-body
simulation software, such as SimMechanics�, can be
employed to establish an equivalent dynamic model
of system without deducing the dynamic equations.
Herein, we will employ this method to develop a VPM
for RAParM-I in SimMechanics� for the first time.
In accordance with the aforementioned idea, a VPM
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Fig. 20 The virtual prototype model (VPM) of RAParM-I established in SimMechanics

Fig. 21 The configuration
of VPM at some point
during the dynamic
simulation
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can be constructed by virtue of some modules within
SimMechanics�, as shown in Fig. 20. It should be
emphasized that eachflexible link ofRAParM-I ismod-

eled with multiple rigid-body segments. These seg-
ments are connected with each other by the massless
spring–damper modules in SimMechanics�, and the
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Fig. 22 The angle and angular curves of all flexible links calculated by the RFDM and the VPM under the “⊕ ⊕ ⊕⊕” actuation mode:
a link 1; b link 2; c link 3; d link 4; e link 5; f link 6; g link 7; h link 8
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Fig. 22 continued
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Fig. 22 continued

flexible links are connected by the revolute joint mod-
ules (see Fig. 20). Meanwhile, the lumped masses and
moments of inertia are also considered in the VPM,
which are fixed at the associated positions of links via
some welding joint modules in SimMechanics�. The
driving torques obtained through the inverse solutions
of RDM(see Fig. 12) are taken as the feed-forward con-
trol input which is emphasized with a green rectangle,
as shown in Fig. 20.

6.2 Comparison of results

The same trajectory planning strategy (used in the
above numerical example) is applied in theVPM.Thus,
the simulation time is 0.7 s. The gravity field is set to

null in the VPM. Figure21 displays the configuration
of VPM at some point. In the VPM, the manipula-
tor is totally discretized into 56 rigid-body segments.
Amongst them, links 1, 3, 4, 5, 7 and 8 are, respectively,
discretized into 8 rigid-body segments, while links 2
and 6 are, respectively, discretized into 4 rigid-body
segments.

Without loss of generality, let us take the “⊕⊕⊕⊕”
actuation mode as an example. The angle and angu-
lar velocity curves of all flexible links calculated by
the RFDM and the VPM are illustrated in Fig. 22.
Comparisons manifest that the results calculated from
the two approaches are consistent. Especially for the
angle curves, the two approachesmatch verywell.With
respect to the angular velocity curves, there exists small
difference between the two approaches. The reason can
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Fig. 23 The practical trajectories for end-effector achieved
through the RFDM and the VPM under the “⊕ ⊕ ⊕⊕” actu-
ation mode

be explained as follows.On theonehand, the discretiza-
tion methodologies used in the two approaches are dif-
ferent. The FSM is utilized in the VPM, while the FEM
is utilized in the presented RFDM. On the other hand,
the numbers of generalized coordinates of elements in
the two approaches are also different. Within the VPM,
for an arbitrary element, only one generalized coordi-
nate, i.e., the rotational angle of the rigid-body segment,
is encompassed. However, within the RFDM, the nodal
coordinates of an arbitrary element contain multiple
flexible generalized coordinates, such as axial elastic
displacement, transverse elastic displacement, elastic
angle and curvature. Consequently, the small differ-
ence of the results derived from the two approaches
may exist.

The trajectories of end-effector calculated by the
RFDM and the VPM are illustrated in Fig. 23. By
comparison, one can discover that the trajectory track-
ing effects of end-effector achieved through the two
approaches are consistent.

The above comparative results indicate that the
RFDM of RAParM-I with multiple actuation modes
presented in this paper is valid. In future research work,
combining with the analyzed results of this paper, we
will further simplify the dynamic model of system by
using somemethods, such asmodal truncationmethod.
On this basis, the nonlinear dynamic control strategy
will be further developed to restrain elastic vibrations

and improve the trajectory tracking precision of end-
effector for RAParM-I.

7 Conclusions

In this paper, we have established the rigid–flexible
coupling dynamic model (RFDM) and implemented
performance analysis with respect to a novel PM, i.e.,
RAParM-I, with multiple actuation modes.

Firstly, the flexibilities of all the links of RAParM-
I are considered, and the finite element approach
is employed to discretize the flexible link. Since
RAParM-I containsmany lumpedmasses andmoments
of inertia, one kind of element is presented in this
paper to accommodate the dynamic modeling. On this
basis, the RFDM of arbitrary element i within flexible
body j is deduced by virtue of Lagrangian formulation.
This kind of dynamic model of element can be trans-
formed into the dynamic model of common element
only through some simple changes. In other words,
this kind of dynamic model of element can be suit-
able very well for the establishment of dynamic model
for a certain flexible beam with any number of lumped
parameters. Because the total generalized coordinates
of arbitrary flexible body j are selected as the gener-
alized coordinates of the dynamic model of element i
within flexible body j , the dynamic model of arbitrary
flexible body j can be easily obtained merely through
summing all the dynamic equations of elements within
flexible body j together. In subsequence, the open-loop
dynamicmodel of system can be achieved conveniently
by assembling all the dynamic equations of flexible
bodies. By virtue of the augmented Lagrangian mul-
tipliers method, the completely RFDM of system is
established.

Secondly, the dynamicmodel of system is expressed
in the form of index-1. Based upon the Baumgarte sta-
bilization approach, and drawing on the elimination
method, the Lagrangian multipliers are removed and
the simplified dynamic model of system is developed,
which is a group of rigid–flexible coupling and nonlin-
ear time-varying ODEs. Owing to the “stiff” charac-
teristic of dynamic equations of system, a hybrid TR-
BDF2 algorithm is employed to solve the “stiff” differ-
ential equations so as to balance the solution efficiency
and precision well.

Finally, based on the RFDM of system and the
degraded rigid dynamic model (RDM) of system, a
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simulation experiment of trajectory tracking is imple-
mented with respect to RAParM-I when the flexibili-
ties of links are considered during high-speed motion.
Numerical results indicate that the practical motion
of RAParM-I displays a rigid–flexible coupling char-
acteristic. Through comparative analysis, the redun-
dant actuation modes can realize significantly higher
trajectory tracking precisions in comparison with the
non-redundant actuation modes. A virtual prototype
model (VPM) is further established in SimMechanics�

to verify the presented RFDM. The conformities of
results show exact evidences to support the validity
of the RFDM. The simulation experiment provides a
scientific basis for the selection of redundant actuation
modes in practical application.

It is worth mentioning that, in the simulation exper-
iment, the input of RFDM is the torques obtained
through the inverse solutions of RDM, whereas the
feedback is not included. Consequently, in future work,
wewill further simplify theRFDMof systemviamodal
synthesis approach and develop efficient dynamic con-
trollers to restrain the elastic vibrations and improve the
trajectory tracking precision with the help of superior
redundant actuationmode, such as “⊕⊕⊕⊕” actuation
mode. In addition, it is noted that the damping effects
of joints are not considered in this study. These fac-
tors can be regarded as the uncertainties of model and
can be identified and compensated via artificial neural
network or fuzzy algorithm in the adaptive controller.
Last but not least, the systematic modeling methodol-
ogy developed in this paper can provide somebeneficial
reference for the analysis of other flexible planar PMs,
especially the emerging ones with multiple actuation
modes.

Acknowledgements This research work was supported by the
National Natural Science Foundation of China (NSFC) under
Grant No. 51475321 and Tianjin Research Program of Appli-
cation Foundation and Advanced Technology under Grant No.
15JCZDJC38900. These supports are sincerely acknowledged.
The authors would also like to express the genuine thanks to the
editors and reviewers for their contributions to the publications
of high-quality papers.

References

1. Merlet, J.-P.: Parallel Robots, 2nd edn. Springer, Dordrecht
(2006)

2. Stefan, S., Liu, X.J., Wang, J.S.: Inverse dynamics of the
HALF parallel manipulator with revolute actuators. Nonlin-
ear. Dyn 50(1–2), 1–12 (2007)

3. Gosselin, C., Angeles, J.: Singularity analysis of closed-loop
kinematic chains. IEEE. Trans. Robot. Autom. 6(3), 281–
290 (1990)

4. Liu, X.J., Wang, J.S., Pritschow, G.: Kinematics, singularity
and workspace of planar 5R symmetrical parallel mecha-
nisms. Mech. Mach. Theory 41(2), 145–169 (2006)

5. Arsenault, M., Bourdeau, R.: The synthesis of three-degree-
of-freedom planar parallel mechanisms with revolute joints
(3-RRR) for an optimal singularity-free workspace. J.
Robot. Syst. 21(5), 259–274 (2004)

6. Dash, A.K., Chen, I.M., Yeo, S.H., Yang, G.: Workspace
generation and planning singularity-free path for parallel
manipulators. Mech. Mach. Theory 40(7), 776–805 (2005)

7. Macho, E., Altuzarra, O., Pinto, C., Hernandez, A.:
Workspace associated to assembly modes of the 5R planar
parallel manipulator. Robotica 26(3), 395–403 (2008)

8. Ebrahimi, I., Carretero, J.A., Boudreau, R.: Kinematic anal-
ysis and path planning of a new kinematically redundant pla-
nar parallel manipulator. Robotica 26(3), 405–413 (2008)

9. Cha, S.-H., Lasky, T.A., Velinsky, S.A.: Determination of
the kinematically redundant active prismatic joint variable
ranges of a planar parallel mechanism for singularity-free
trajectories. Mech. Mach. Theory 44(5), 1032–1044 (2009)

10. Wang, L.P., Wu, J., Wang, J.S.: Dynamic formulation of a
planar 3-DOF parallel manipulator with actuation redun-
dancy. Robot. Comput. Integr. Manuf. 26(1), 67–73 (2010)

11. Müller, A.: Motion equations in redundant coordinates with
application to inverse dynamics of constrained mechanical
systems. Nonlinear Dyn. 67(4), 2527–2541 (2012)

12. Wu, J., Chen, X.L., Wang, L.P., Liu, X.J.: Dynamic load-
carrying capacity of a novel redundantly actuated parallel
conveyor. Nonlinear Dyn. 78(1), 241–250 (2014)

13. Cheng, C., Xu, Wl, Shang, J.Z.: Optimal distribution of
the actuating torques for a redundantly actuated mastica-
tory robot with two higher kinematic pairs. Nonlinear Dyn.
79(2), 1235–1255 (2015)

14. Liang, D., Song, Y., Sun, T., Dong, G.: Optimum design
of a novel redundantly actuated parallel manipulator with
multiple actuation modes for high kinematic and dynamic
performance. Nonlinear Dyn. 83(1–2), 631–658 (2016)

15. Song, Y., Liang, D., Sun, T., Dong, G.: A redundantly actu-
ated 2-DOF planar parallel manipulator with parallelogram
structure branches. CN patent 104526685 (2016) (in chi-
nese)

16. Dasgupta, B., Mruthyunjaya, T.S.: A Newton–Euler for-
mulation for the inverse dynamics of the Stewart platform
manipulator.Mech.Mach. Theory 33(8), 1135–1152 (1998)

17. Cheng, G., Shan, X.: Dynamics analysis of a parallel hip
joint simulator with four degree of freedoms (3R1T). Non-
linear Dyn. 70(4), 2475–2486 (2012)

18. Geng, Z., Haynes, L.S., Lee, J.D., Carroll, R.L.: On the
dynamic model and kinematic analysis of a class of Stewart
platforms. Robot. Auton. Syst. 9(4), 237–254 (1992)

19. Staicu, S.: Power requirement comparison in the 3-RPR pla-
nar parallel robot dynamics. Mech. Mach. Theory 44(5),
1045–1057 (2009)

20. Miller, K.: Optimal design and modeling of spatial parallel
manipulators. Int. J. Robot. Res. 23(2), 127–140 (2004)

21. Desoyer, K., Lugner, P.: Recursive formulation for the ana-
lytical or numerical application of theGibbs–Appell method
to the dynamics of robots. Robotica 7(4), 343–347 (1989)

123



Nonlinear dynamic modeling and performance analysis 427

22. Shabana, A.: Dynamics of Multibody Systems. Cambridge
University Press, New York (2005)

23. Zhang, X., Mills, J.K., Cleghorn, W.L.: Coupling charac-
teristics of rigid body motion and elastic deformation of a
3-PRR parallel manipulator with flexible links. Multibody
Syst. Dyn. 21(2), 167–192 (2009)

24. Badlani, M., Midha, A.: Member initial curvature effects
on the elastic slider–crank mechanism response. ASME J.
Mech. Des. 104(1), 159–167 (1982)

25. Zohoor, H., Khorsandijou, S.M.: Dynamic model of a fly-
ing manipulator with two highly flexible links. Appl. Math.
Model. 32(10), 2117–2132 (2008)

26. Zhang, L., Liu, J.: Observer-based partial differential equa-
tion boundary control for a flexible two-link manipulator
in task space. IET Control Theory A 6(13), 2120–2133
(2012)

27. Sandor, G.N., Zhuang, X.: A lineared lumped parameter
approach to vibration and stress analysis of elastic linkages.
Mech. Mach. Theory 20(5), 427–437 (1985)

28. Chen, W.: Dynamic modeling of multi-link flexible robotic
manipulators. Comput. Struct. 79(2), 183–195 (2001)

29. Tso, S.K., Yang, T.W., Xu, W.L., Sun, Z.Q.: Vibration con-
trol for a flexible-link robot arm with deflection feedback.
Int. J. Non-linear Mech. 38(1), 51–62 (2003)

30. Mirzaee, E., Eghtesad,M., Fazelzadeh, S.A.:Maneuver con-
trol and active vibration suppression of a two-link flexi-
ble arm using a hybrid variable structure/Lyapunov control
design. Acta Astronaut. 67(9), 1218–1232 (2010)

31. Bricout, J.N., Debus, J.C., Micheau, P.: A finite element
model for the dynamics of flexible manipulator. Mech.
Mach. Theory 25(1), 119–128 (1990)

32. Yang, Z., Sadler, J.P.: A one-pass approach to dynamics of
high-speedmachinery through three-node Lagrangian beam
elements. Mech. Mach. Theory 34(7), 995–1007 (1999)

33. Chung, J., Yoo, H.H.: Dynamic analysis of a rotating can-
tilever beam by using the finite element method. J. Sound
Vib. 249(1), 147–164 (2002)

34. Korayem, M.H., Heidari, A., Nikoobin, A.: Maximum
allowable dynamic load of flexible mobile manipulators
using finite element approach. Int. J. Manuf. Technol. 36(5–
6), 606–617 (2008)

35. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact
beam finite element formulated on the special Euclidean
group SE(3). Comput.MethodsAppl.Mech. Eng. 268, 451–
474 (2014)

36. Huston, R.L.: Multi-body dynamics including the effects of
flexibility and compliance. Comput. Struct. 14(5–6), 443–
451 (1981)

37. Wittbrodt, E., Wojciech, S.: Application of rigid finite ele-
mentmethod to dynamic analysis of spatial systems. J. Guid.
Control Dyn. 18(4), 891–898 (1995)

38. Rubinstein, D.: Dynamics of a flexible beam and a system
of rigid rods, with fully inverse (one-sided) boundary condi-
tions. Comput. Methods Appl. Mech. 175(1), 87–97 (1999)

39. Theodore, R.J., Ghosal, A.: Comparison of the assumed
modes and finite element models for flexible multi-link
manipulators. Int. J. Robot. Res. 14(2), 91–111 (1995)

40. Erdman, A.G., Sandor, G.N.: Kineto-elastodynamics—a
review of the state of the art and trends.Mech.Mach. Theory
7(1), 19–33 (1972)

41. Turcic, D.A., Midha, A.: Generalized equations of motion
for the dynamic analysis of elastic mechanism systems. J.
Dyn. Syst. T ASME 106(4), 243–248 (1984)

42. Masurekar, V., Gupta, K.N.: Theoretical and experimental
kineto elastodynamic analysis of high speed linkage. Mech.
Mach. Theory 24(5), 325–334 (1989)

43. Liou, F.W., Peng, K.C.: Experimental frequency response
analysis of flexiblemechanisms.Mech.Mach.Theory 28(1),
73–81 (1993)

44. Likins, P.W.: Dynamic analysis of a system of hinge-
connected rigid bodies with nonrigid appendages. Int. J.
Solids Struct. 9(12), 1473–1487 (1973)

45. Singh, R.P., VanderVoort, R.J., Likins, P.W.: Dynamics
of flexible bodies in tree topology—a computer-oriented
approach. J. Guid. Control Dyn. 8(5), 584–590 (1985)

46. Meirovitch, L.: Hybrid state equations of motion for flexible
bodies in terms of quasi-coordinates. J. Guid. Control Dyn.
14(5), 1008–1013 (1991)

47. Shabana, A.A.: An absolute nodal coordinate formulation
for the large rotation and deformation analysis of flexi-
ble bodies. Technical Report MBS96-1-UIC, Department of
Mechanical Engineering, University of Illinois at Chicago
(1996)

48. Iwai, R., Kobayashi, N.: A new flexible multibody beam
element based on the absolute nodal coordinate formula-
tion using the global shape function and the analytical mode
shape function. Nonlinear Dyn. 34(1–2), 207–232 (2003)

49. Liu, C., Tian, Q., Hu, H., García-Vallejo, D.: Simple formu-
lations of imposing moments and evaluating joint reaction
forces for rigid-flexible multibody systems. Nonlinear Dyn.
69(1–2), 127–147 (2012)

50. Rong, B.: Efficient dynamics analysis of large-deformation
flexible beams by using the absolute nodal coordinate trans-
fer matrix method. Multibody Syst. Dyn. 32(4), 535–549
(2014)

51. Jia, S.S., Song, Y.M.: Elastic dynamic analysis of syn-
chronous belt drive system using absolute nodal coordinate
formulation. Nonlinear Dyn. 81(3), 1393–1410 (2015)

52. Shabana, A.A.: Flexiblemultibody dynamics: review of past
and recent developments. Multibody Syst. Dyn. 1(2), 189–
222 (1997)

53. Wasfy, T.M., Noor, A.K.: Computational strategies for flex-
ible multibody systems. Appl. Mech. Rev. 56(6), 553–615
(2003)

54. Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexi-
ble manipulators, a literature review. Mech. Mach. Theory
41(7), 749–777 (2006)

55. Jonker, J.B., Aarts, R.G.K.M.: A perturbation method for
dynamic analysis and simulation of flexible manipulators.
Multibody Syst. Dyn. 6(3), 245–266 (2001)

56. Martins, J., Botto, M.A., da Costa, J.S.: Modeling flexible
beams for robotic manipulators. Multibody Syst. Dyn. 7(1),
79–100 (2002)

57. Martins, J.M., Mohamed, Z., Tokhi, M.O., Da Costa, J.S.,
Botto, M.A.: Approaches for dynamic modelling of flexible
manipulator systems. IET Control Theory A 150(4), 401–
411 (2003)

58. Cai, G.P., Lim, C.W.: Active control of a flexible hub–beam
system using optimal tracking control method. Int. J. Mech.
Sci. 48(10), 1150–1162 (2006)

123



428 D. Liang et al.

59. Bian, Y., Gao, Z., Yun, C.: Motion control of the flexible
manipulator via controllable local degrees of freedom. Non-
linear Dyn. 55(4), 373–384 (2009)

60. Boscariol, P., Gasparetto, A.: Model-based trajectory plan-
ning for flexible-linkmechanismswith bounded jerk. Robot.
Comput. Integr. Manuf. 29(4), 90–99 (2013)

61. Gofron, M., Shabana, A.A.: Effect of the deformation in
the inertia forces on the inverse dynamics of planar flexible
mechanical systems. Nonlinear Dyn. 6(1), 1–20 (1994)

62. Yu, S.D., Xi, F.: Free vibration analysis of planar flexible
mechanisms. J. Mech. Des. 125(4), 764–772 (2003)

63. Pennestrì, E., Valentini, P.P., de Falco, D.: An application of
the Udwadia–Kalaba dynamic formulation to flexible multi-
body systems. J. Frankl. Inst. 347(1), 173–194 (2010)

64. Kuo, Y.L., Cleghorn, W.L.: Curvature- and displacement-
based finite element analyses of flexible slider crank mech-
anisms. Int. J. Numer.Methods Biomed. Eng. 26(10), 1228–
1245 (2010)

65. Gasparetto, A.: On the modeling of flexible-link pla-
nar mechanisms: experimental validation of an accurate
dynamic model. J. Dyn. Syst.-T ASME 126(2), 365–375
(2004)

66. Piras, G., Cleghorn, W.L., Mills, J.K.: Dynamic finite-
element analysis of a planar high-speed, high-precision par-
allel manipulator with flexible links. Mech. Mach. Theory
40(7), 849–862 (2005)

67. Wang, X., Mills, J.K.: FEM dynamic model for active vibra-
tion control of flexible linkages and its application to a pla-
nar parallel manipulator. Appl. Acoust. 66(10), 1151–1161
(2005)

68. Kang, B., Mills, J.K.: Dynamic modeling of structurally-
flexible planar parallel manipulator. Robotica 20(3), 329–
339 (2002)

69. Zhang, Q.,Mills, J.K., Cleghorn,W.L., Jin, J., Zhao, C.: Tra-
jectory tracking and vibration suppression of a 3-PRR par-
allel manipulator with flexible links. Multibody Syst. Dyn.
33(1), 27–60 (2015)

70. Yu, Y.Q., Du, Z.C., Yang, J.X., Li, Y.: An experimental study
on the dynamics of a 3-RRR flexible parallel robot. IEEE
Trans. Robot. 27(5), 992–997 (2011)

71. Zhang, Q., Zhang, X.: Dynamic analysis of planar 3- RRR
flexible parallel robots under uniform temperature change.
J. Vib. Control 21(1), 81–104 (2013)

72. Liu, S.Z., Yu, Y.Q., Zhu, Z.C., Su, L.Y., Liu, Q.B.: Dynamic
modeling and analysis of 3-RRS parallel manipulator with
flexible links. J. Cent. South Univ. 17, 323–331 (2010)

73. Zhao, Y., Gao, F., Dong, X., Zhao, X.: Dynamics analysis
and characteristics of the 8-PSS flexible redundant parallel
manipulator. Robot. Comput. Integr.Manuf. 27(5), 918–928
(2011)

74. Mukherjee, P., Dasgupta, B., Mallik, A.K.: Dynamic stabil-
ity index and vibration analysis of a flexible Stewart plat-
form. J. Sound Vib. 307(3), 495–512 (2007)

75. Song, Y., Dong, G., Sun, T., Lian, B.: Elasto-dynamic anal-
ysis of a novel 2-DoF rotational parallel mechanism with
an articulated travelling platform. Meccanica 51(7), 1547–
1557 (2015)

76. Sun, T., Song, Y., Yan, K., Dong, G.: Elasto-dynamic mod-
eling of a novel high-speed parallel manipulator with string-
parallelogram Mechanism. 13th World Congress in Mecha-
nism and Machine Science, Guanajuato, México (2011)

77. Liu, X.J., Wang, J.S.: Some new parallel mechanisms con-
taining the planar four-bar parallelogram. Int. J. Robot. Res.
22(9), 717–732 (2003)

78. Zienkiewicz,O.C.:Anew look at theNewmark,Houbolt and
other time stepping formulas. Aweighted residual approach.
Int. J Earthq. Eng. Struct. Dyn. 5(4), 413–418 (1977)

79. Bathe, K.J., Wilson, E.L.: Stability and accuracy analysis of
direct integration methods. Int. J. Earthq. Eng. Struct. Dyn.
1(3), 283–291 (1972)

80. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an
implementation of the Hiber-Hughes-Taylor method in the
context of index 3 differential-algebraic equations of multi-
body dynamics. J. Comput. Nonlinear Dyn. 2(1), 73–85
(2007)

81. Chung, J., Hulbert, G.M.: A time integration algorithm for
structural dynamics with improved numerical dissipation:
the generalized-α method. J. Appl. Mech. 60(2), 371–375
(1993)

82. Baumgarte, J.: Stabilization of constraints and integrals
of motion in dynamical systems. Comput. Methods Appl.
Mech. 1(1), 1–16 (1972)

83. Shampine, L.F., Gear, C.W.: A user’s view of solving stiff
ordinary differential equations. SIAM Rev. 21(1), 1–17
(1979)

84. Shampine, L.F., Reichelt, M.W.: The matlab ode suite.
SIAM J. Sci. Comput. 18(1), 1–22 (1997)

85. Hosea, M.E., Shampine, L.F.: Analysis and implementation
of TR-BDF2. Appl. Numer. Math. 20(1), 21–37 (1996)

86. Valipour, M.: Optimization of neural networks for precipi-
tation analysis in a humid region to detect drought and wet
year alarms. Meteorol. Appl. 23(1), 91–100 (2016)

87. Valipour, M., Banihabib, M.E., Behbahani, S.M.R.: Com-
parison of theARMA,ARIMA, and the autoregressive artifi-
cial neural networkmodels in forecasting themonthly inflow
of Dez dam reservoir. J. Hydrol. 476, 433–441 (2013)

88. Valipour,M., Sefidkouhi,M.A.G., Eslamian, S.: Surface irri-
gation simulationmodels: a review. Int. J. Hydrol. Sci. Tech-
nol. 5(1), 51–70 (2015)

89. Valipour, M.: Sprinkle and trickle irrigation system design
using tapered pipes for pressure loss adjusting. J. Agric. Sci.
4(12), 125–133 (2012)

90. Khasraghi, M.M., Sefidkouhi, M.A.G., Valipour, M.: Sim-
ulation of open- and closed-end border irrigation systems
using SIRMOD. Arch. Agron. Soil Sci. 61(7), 929–941
(2015)

123


	Nonlinear dynamic modeling and performance analysis of a redundantly actuated parallel manipulator with multiple actuation modes based on FMD theory
	Abstract
	1 Introduction
	2 Topology description
	3 Rigid–flexible coupling dynamic modeling
	3.1 Discretization for any flexible body based on finite element approach
	3.2 Dynamic modeling for element i in flexible body j
	3.2.1 Kinetic energy of element i
	3.2.2 Potential energy of element i
	3.2.3 Dynamic model of element i

	3.3 Dynamic model of flexible body j
	3.4 Dynamic model of system
	3.4.1 Dynamic model of system without constraints
	3.4.2 Constraint equations of system
	3.4.3 Complete dynamic model of system


	4 Solution strategy for the RFDM of system
	5 Dynamic simulation experiment
	5.1 Degrees of freedom of the RFDM of system
	5.2 Design of simulation flow
	5.3 Numerical simulation example
	5.3.1 Trajectory planning

	5.4 Simulation experiment results and discussions

	6 Model verification
	6.1 Virtual prototype model (VPM) in SimMechanics
	6.2 Comparison of results

	7 Conclusions
	Acknowledgements
	References




