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Abstract The Bäcklund transformations and the
superposition formulas of the Riccati equation with
constant coefficients are constructed. Two fractional
type solutions of the Riccati equation are obtained from
its Bäcklund transformations. The equivalence rela-
tions between fractional solutions and previous known
solutions are proved. A so-called unified Riccati equa-
tion expansion method for generating infinite number
of exact traveling wave solutions for nonlinear evolu-
tion equations is then developed on the basis of the
fractional solutions. With the method, infinitely many
exact traveling wave solutions of two new classes of
Benjamin–Bona–Mahony equations are presented.

Keywords Riccati equation · Fractional solution ·
Traveling wave solution · Periodic solution

1 Introduction

In recent years, many effective direct methods [1–18]
have been developed to solve nonlinear evolution equa-
tions (NLEEs) which describes the wave propagation
in fluid, plasma, optical fibers, elastic media, and so
on. In general, most of the direct methods are related to
an auxiliary ordinary differential equation (ODE) and
some known special solutions of the auxiliary equation.
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For example, the generalized Riccati equationmapping
method (GREMM) is an effective directmethod to con-
struct the exact solitary wave solutions, the periodic
solutions and the rational solutions for NLEEs. This
method used the constant coefficients Riccati equation

F ′(ξ) = c0 + c1F(ξ) + c2F
2(ξ), (1)

as the auxiliary equation and took its special solutions
as the following [19]

F(ξ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
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coth
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�
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− c1
2c2

− 1
c2ξ+c , � = 0,

− c1
2c2

+
√−�
2c2

tan
(√−�

2 ξ
)

, � < 0,

− c1
2c2

−
√−�
2c2

cot
(√−�

2 ξ
)

, � < 0,

(2)

where � = c21 − 4c0c2 and c is an arbitrary constant.
Although twenty-seven solutions of Eq. (1) were cited
in many studies [20–23], these solutions are equivalent
to the solutions (2) in the sense of wave translation or
just their forms are different in expressions. However,
nowork is done to dealwith the classification and prove
the equivalence relations for those solutions. On the
contrary, more and more repeated solutions for NLEEs
which induced by the solutions of Eq. (1) appear in
the recent works [24–28]. It is clear that the classifica-
tion of the solutions of Eq. (1) is very important to avoid
those repeated solutions and establish a systematic the-
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ory of GREMM. Therefore, it remains open problems
as how to prove the equivalence relations and look for
the independent solutions for Eq. (1) and how to give
an essential generalization of the GREMM. Obviously,
this problem cannot be solved by the usual detection
method and have to seek another systematic way. The
aim of this work is to give a method for solving these
problems. To serve the purpose, we shall first construct
new fractional type solutions of the Riccati Eq. (1)
through use of the technique named Bäcklund transfor-
mation and superposition formula. And then we shall
prove the equivalence relations between new fractional
solutions and previous known solutions. Third,we shall
propose a novel generalization of the GREMM using
our obtained fractional type solutions. Finally, the pre-
sented unified Riccati equation expansion method will
be performed to construct infinite number of exact trav-
eling wave solutions of two new classes of Benjamin–
Bona–Mahony (BBM) equation. These two examples
will show that the previously known solutions can be
recovered by our method, and the GREMM is only a
special case of our method.

2 Bäcklund transformations and superposition
formulas

2.1 Bäcklund transformations

Let Fn(ξ) and Fn−1(ξ) be two solutions of the Riccati
Eq. (1), that is

F ′
n(ξ) = c0 + c1Fn(ξ) + c2F

2
n (ξ), (3)

F ′
n−1(ξ) = c0 + c1Fn−1(ξ) + c2F

2
n−1(ξ). (4)

From (3) and (4), we can obtain

dFn
c0 + c1Fn + c2F2

n
= dFn−1

c0 + c1Fn−1 + c2F2
n−1

. (5)

Integrating (5) with respect to ξ yields

artanh
2c2Fn + c1√

�
− artanh

2c2Fn−1 + c1√
�

= artanh(A), � > 0, (6)

arctan
2c2Fn + c1√−�

− arctan
2c2Fn−1 + c1√−�

= arctan(B), � < 0, (7)

where A and B are integration constants.

To solve (6) and (7) for Fn and setting A = α−1 and
B = β−1, we obtain the Bäcklund transformations of
the Riccati Eq. (1) as

Fn(ξ) =
(
α
√

� − c1
)
Fn−1(ξ) − 2c0

2c2Fn−1(ξ) + α
√

� + c1
, � > 0, (8)

Fn(ξ) =
(
β
√−� + c1

)
Fn−1(ξ) + 2c0

β
√−� − c1 − 2c2Fn−1(ξ)

, � < 0.

(9)

2.2 Superposition formulas

2.2.1 The case � > 0

Take four solutions F0 = F0(ξ), F1 = F1(ξ ;α1),

F2=F2(ξ ;α2), F3 = F12(ξ ;α1, α2) = F21(ξ ;α2, α1)

of the Riccati Eq. (1) and insert them into the Bäcklund
transformation (8), we have

F1 =
(
α1

√
� − c1

)
F0 − 2c0

2c2F0 + α1
√

� + c1
, (10)

F2 =
(
α2

√
� − c1

)
F0 − 2c0

2c2F0 + α2
√

� + c1
, (11)

F3 =
(
α2

√
� − c1

)
F1 − 2c0

2c2F1 + α2
√

� + c1
, (12)

F3 =
(
α1

√
� − c1

)
F2 − 2c0

2c2F2 + α1
√

� + c1
, (13)

or equivalently

(
α1

√
� + c1

)
F1 + 2c2F0F1

=
(
α1

√
� − c1

)
F0 − 2c0, (14)

(
α2

√
� + c1

)
F2 + 2c2F0F2

=
(
α2

√
� − c1

)
F0 − 2c0, (15)

(
α2

√
� + c1

)
F3 + 2c2F1F3

=
(
α2

√
� − c1

)
F1 − 2c0, (16)

(
α1

√
� + c1

)
F3 + 2c2F2F3

=
(
α1

√
� − c1

)
F2 − 2c0. (17)
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Multiplying (14) by F2, (15) by F1 and subtracting
yields

√
�(α1 − α2) F1F2 = √

�(α1F2 − α2F1)

+ c1 (F1 − F2) F0 + 2c0 (F1 − F2) . (18)

Following the same procedure, multiplying (16) by F2,
(17) by F1 and subtracting leads

√
�(α2F2 − α1F1) F3 = √

� (α2 − α1) F1F2

+ 2c0 (F1 − F2) . (19)

Solving F3 from (18) and (19) yields the superposition
formula

F3 = α1F2 − α2F1
α1F1 − α2F2

F0− c1√
�

(F2 − F1) F0, � > 0.

(20)

2.2.2 The case � < 0

In this case, taking the four solutions of the Ric-
cati Eq. (1) as F0 = F0(ξ), F1 = F1(ξ ;β1), F2 =
F2(ξ ;β2), F3 = F12(ξ ;β1, β2) = F21(ξ ;β2, β1) and
insert them into the Bäcklund transformation (9), we
obtain

F1 =
(
β1

√−� + c1
)
F0 + 2c0

β1
√−� − c1 − 2c2F0

, (21)

F2 =
(
β2

√−� + c1
)
F0 + 2c0

β2
√−� − c1 − 2c2F0

, (22)

F3 =
(
β2

√−� + c1
)
F1 + 2c0

β2
√−� − c1 − 2c2F1

, (23)

F3 =
(
β1

√−� + c1
)
F2 + 2c0

β1
√−� − c1 − 2c2F2

, (24)

or equivalently

(
β1

√−� − c1
)
F1 − 2c2F0F1

=
(
β1

√−� + c1
)
F0 + 2c0, (25)

(
β2

√−� − c1
)
F2 − 2c2F0F2

=
(
β2

√−� + c1
)
F0 + 2c0, (26)

(
β2

√−� − c1
)
F3 − 2c2F1F3

=
(
β2

√−� + c1
)
F1 + 2c0, (27)

(
β1

√−� − c1
)
F3 − 2c2F2F3

=
(
β1

√−� + c1
)
F2 + 2c0. (28)

Proceeding as in the case of � > 0, we obtain the
following two expressions

√−�(β1 − β2) F1F2 = √−� (β1F2 − β2F1) F0

+ c1 (F2 − F1) F0 + 2c0 (F2 − F1) , (29)√−�(β2F2 − β1F1) F3 = √−� (β2 − β1) F1F2

+ 2c0 (F2 − F1) . (30)

To solve this pair of equations for F3 gives the super-
position formula, that is

F3= β1F2 − β2F1
β1F1 − β2F2

F0− c1√−�
(F2 − F1) F0, �<0.

(31)

3 Fractional solutions

Choosing the initial solution as the first solution in (2)
and taking it into the Bäcklund transformation (8), we
get

F(ξ) =
√

� − αc1 −
(
α
√

� − c1
)
tanh

(√
�
2 ξ

)

2c2
(
α − tanh

(√
�
2 ξ

)) ,

= − c1
2c2

−
√

�
(
α tanh

(√
�
2 ξ

)
− 1

)

2c2
(
α − tanh

(√
�
2 ξ

)) . (32)

If we set r1 = α, r2 = −1, then the expression (32)
can be rewritten as:

F+(ξ) = − c1
2c2

−
√

�
(
r1 tanh

(√
�
2 ξ

)
+ r2

)

2c2
(
r1 + r2 tanh

(√
�
2 ξ

)) , (33)

where � > 0 and which is non-trivial and non-
degenerate if and only if

r2 �= ±r1, r
2
1 + r22 �= 0. (34)
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Under condition (34), we can check that (33) is just
the solution of the Riccati Eq. (1). Therefore, (33)
expresses a two parametric fractional solutions of the
Riccati Eq. (1). We also can see that when r2 = 0 and
r1 = 0 the solution (33) is reduced to the first solution
and the second solution in (2), respectively.
If we choose the third solution in (2) as the initial solu-
tion and take it into the Bäcklund transformation (9),
then we obtain

F(ξ) =
√−� − βc1 + (

β
√−� + c1

)
tan

(√−�
2 ξ

)

2c2
(
β − tan

(√−�
2 ξ

)) ,

= − c1
2c2

+
√−�

(
β tan

(√−�
2 ξ

)
+ 1

)

2c2
(
β − tan

(√−�
2 ξ

)) . (35)

By setting r3 = β, r4 = −1 we can obtain another two
parametric fractional solutions of the Riccati Eq. (1)

F−(ξ) = − c1
2c2

+
√−�

(
r3 tan

(√−�
2 ξ

)
− r4

)

2c2
(
r3 + r4 tan

(√−�
2 ξ

)) ,

(36)

where � < 0 and which is non-trivial and non-
degenerate if and only if

r23 + r24 �= 0. (37)

It is also easy to see that when r4 = 0 and r3 = 0, the
solution (36) is reduced to the third solution and the
fourth solution in (2), respectively.

4 Equivalence relations for solutions

Let us now turn to consider the equivalence relations
between our new fractional type solutions and the
twenty-seven previously known solutions of the Ric-
cati Eq. (1). For the sake of simplicity, we shall now
set the first, second, fourth and fifth solutions in (2) as
F1(ξ), F2(ξ), F4(ξ) and F5(ξ). Following the notation
in [24], the twenty-seven previously known solutions
will be put as Gi (ξ) (i = 1, 2, . . . , 27) in which the
coefficients w, u, v, η will be replaced by c0, c1, c2, ξ .
Under this assumption, we can see that

G1(ξ) = − 1

2c2

(

c1 + √
� tanh

(√
�

2
ξ

))

,

= F1(ξ) = F+(ξ)|r2=0,

G2(ξ) = − 1

2c2

(

c1 + √
� coth

(√
�

2
ξ

))

,

= F2(ξ) = F+(ξ)|r1=0,

G13(ξ) = 1

2c2

(

−c1 + √−� tan

(√−�

2
ξ

))

,

= F4(ξ) = F−(ξ)|r4=0,

G14(ξ) = − 1

2c2

(

c1 + √−� cot

(√−�

2
ξ

))

,

= F5(ξ) = F−(ξ)|r3=0,

Two waves are called equivalence in the sense of wave
translation if they have same waveform but their phase
difference is equal to a constant. In ourwork, this equiv-
alence relation will be expressed by the notation “�”.
Based on this definition and the following easily proved
identities

tanh η + isechη = tanh
( η
2 + π i

4

)
,

tanh η − isechη = coth
( η
2 + π i

4

)
,

tanh η + coth η = 2 coth(2η),

coth η + cschη = coth
( η
2

)
,

coth η − cschη = tanh
( η
2

)

(38)

and

tan η + sec η = tan
( η
2 + π

4

)
,

tan η − sec η = − cot
( η
2 + π

4

)
,

tan η − cot η = −2 cot(2η),

cot η + csc η = cot
( η
2

)
,

cot η − csc η = − tan
( η
2

)
,

(39)

we can derive that

G3(ξ) = − 1

2c2

(
c1 + √

�
(
tanh

(√
�ξ

)

± isech
(√

�ξ
)))

,

=
⎧
⎨

⎩

− c1
2c2

−
√

�
2c2

(
tanh

(√
�ξ

)
+ isech

(√
�ξ

))
,

− c1
2c2

−
√

�
2c2

(
tanh

(√
�ξ

)
− isech

(√
�ξ

))
,

=
⎧
⎨

⎩

− c1
2c2

−
√

�
2c2

tanh
(√

�
2 ξ + π i

4

)
� F+(ξ)|r2=0,

− c1
2c2

−
√

�
2c2

coth
(√

�
2 ξ + π i

4

)
� F+(ξ)|r1=0.
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G4(ξ) = − 1

2c2

(
c1 + √

�
(
coth

(√
�ξ

)

± csch
(√

�ξ
)))

,

=
⎧
⎨

⎩

− c1
2c2

−
√

�
2c2

(
coth

(√
�ξ

)
+ csch

(√
�ξ

))
,

− c1
2c2

−
√

�
2c2

(
coth

(√
�ξ

)
− csch

(√
�ξ

))
,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− c1
2c2

−
√

�

2c2
coth

(√
�

2
ξ

)

= F+(ξ)|r1=0,

− c1
2c2

−
√

�

2c2
tanh

(√
�

2
ξ

)

= F+(ξ)|r2=0.

G5(ξ) = − 1

4c2

(

2c1 + √
�

(

tanh

(√
�

4
ξ

)

+ coth

(√
�

4
ξ

)))

,

= − c1
2c2

−
√

�

2c2
coth

(√
�

2
ξ

)

= F+(ξ)|r1=0.

G15(ξ) = 1

2c2

(
−c1 + √−�

(
tan

(√−�ξ
)

± sec
(√−�ξ

)))
,

=
⎧
⎨

⎩

− c1
2c2

+
√−�
2c2

(
tan

(√−�ξ
) + sec

(√−�ξ
))

,

− c1
2c2

+
√−�
2c2

(
tan

(√−�ξ
) − sec

(√−�ξ
))

,

=
⎧
⎨

⎩

− c1
2c2

+
√−�
2c2

tan
(√−�

2 ξ + π
4

)
� F−(ξ)|r4=0,

− c1
2c2

−
√−�
2c2

cot
(√−�

2 ξ + π
4

)
� F−(ξ)|r3=0.

G16(ξ) = − 1

2c2

(
c1 + √−�

(
cot

(√−�ξ
)

± csc
(√−�ξ

)))
,

=
⎧
⎨

⎩

− c1
2c2

−
√−�
2c2

(
cot

(√−�ξ
) + csc

(√−�ξ
))

,

− c1
2c2

−
√−�
2c2

(
cot

(√−�ξ
) − csc

(√−�ξ
))

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− c1
2c2

−
√−�

2
cot

(√−�

2
ξ

)

= F−(ξ)|r3=0,

− c1
2c2

+
√−�

2
tan

(√−�

2
ξ

)

= F−(ξ)|r4=0.

G17(ξ) = 1
4c2

(
−2c1 + √−�

(
tan

(√−�
4 ξ

)

− cot

(√−�

4
ξ

)))

,

= − c1
2c2

−
√−�

2c2
cot

(√−�

2
ξ

)

= F−(ξ)|r3=0.

It follows from the definitions of the hyperbolic func-
tions and trigonometric functions that

G8(ξ) =
2c0 cosh

(√
�
2 ξ

)

√
� sinh

(√
�
2 ξ

)
− c1 cosh

(√
�
2 ξ

) ,

= 2c0√
� tanh

(√
�
2 ξ

)
− c1

,

= F+(ξ)|{
r1=− c1

2c2
,r2=

√
�

2c2

}.

G9(ξ) =
−2c0 sinh

(√
�
2 ξ

)

c1 sinh
(√

�
2 ξ

)
− √

� cosh
(√

�
2 ξ

) ,

= 2c0√
� coth

(√
�
2 ξ

)
− c1

,

= F+(ξ)|{
r1=

√
�

2c2
,r2=− c1

2c2

}.

G20(ξ) =
−2c0 cos

(√−�
2 ξ

)

√−� sin
(√−�

2 ξ
)

+ c1 cos
(√−�

2 ξ
) ,

= −2c0√−� tan
(√−�

2 ξ
)

+ c1
,

= F−(ξ)|{
r3= c1

2c2
,r4=

√−�
2c2

}.

G21(ξ) =
2c0 sin

(√−�
2 ξ

)

−c1 sin
(√−�

2 ξ
)

+ √−� cos
(√−�

2 ξ
) ,

= 2c0√−� cot
(√−�

2 ξ
)

− c1
,

= F−(ξ)|{
r3=

√−�
2c2

,r4=− c1
2c2

}.

Using the definitions of the hyperbolic functions
together with the formulas (38), (39) and the identi-
ties

sinh2
x

2
= 1

2
(cosh x − 1) , (40)

cosh2
x

2
= 1

2
(cosh x + 1) , (41)

sin2
x

2
= 1

2
(1 − cos x) , (42)

cos2
x

2
= 1

2
(1 + cos x) , (43)
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we can derive the following results

G10(ξ) =
2c0 cosh

(√
�ξ

)

√
� sinh

(√
�ξ

)
− c1 cosh

(√
�ξ

)
± i

√
�

,

= 2c0√
�

(
tanh

(√
�ξ

)
± isech

(√
�ξ

))
− c1

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2c0√
�

(
tanh

(√
�ξ

)
+ isech

(√
�ξ

))
− c1

,

2c0√
�

(
tanh

(√
�ξ

)
− isech

(√
�ξ

))
− c1

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2c0√
� tanh

(√
�
2 ξ + π i

4

)
− c1

,

2c0√
� coth

(√
�
2 ξ + π i

4

)
− c1

,

�

⎧
⎨

⎩

F+(ξ)|{
r1=− c1

2c2
,r2=

√
�

2c2

},

F+(ξ)|{
r1=

√
�

2c2
,r2=− c1

2c2

}.

G11(ξ) =
2c0 sinh

(√
�ξ

)

−c1 sinh
(√

�ξ
)

+ √
� cosh

(√
�ξ

)
± √

�
,

= 2c0√
�

(
coth

(√
�ξ

)
± csch

(√
�ξ

))
− c1

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2c0√
�

(
coth

(√
�ξ

)
+ csch

(√
�ξ

))
− c1

,

2c0√
�

(
coth

(√
�ξ

)
− csch

(√
�ξ

))
− c1

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2c0√
� coth

(√
�
2 ξ

)
− c1

,

2c0√
� tanh

(√
�
2 ξ

)
− c1

,

=
⎧
⎨

⎩

F+(ξ)|{
r1=

√
�

2c2
,r2=− c1

2c2

},

F+(ξ)|{
r1=− c1

2c2
,r2=

√
�

2c2

}.

G12 = 4c0 sinh
( √

�
4 ξ

)
cosh

( √
�
4 ξ

)

−2c1 sinh
( √

�
4 ξ

)
cosh

( √
�
4 ξ

)
+2

√
� cosh2

( √
�
4 ξ

)
−√

�
,

=
2c0 sinh

(√
�
2 ξ

)

−c1 sinh
(√

�
2 ξ

)
+ √

� cosh
(√

�
2 ξ

) ,

= 2c0√
� coth

(√
�
2 ξ

)
− c1

= F+(ξ)|{
r1=

√
�

2c2
,r2=− c1

2c2

}.

G22(ξ) = −2c0 cos
(√−�ξ

)

√−� sin
(√−�ξ

) + c1 cos
(√−�ξ

) ± √−�
,

= −2c0√−�
(
tan

(√−�ξ
) ± sec

(√−�ξ
)) + c1

,

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−2c0√−�
(
tan

(√
�ξ

)
+ sec

(√−�ξ
)) + c1

,

−2c0√−�
(
tan

(√−�ξ
) − sec

(√−�ξ
)) + c1

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−2c0√−� tan
(√−�

2 ξ + π
4

)
+ c1

,

2c0√−� cot
(√−�

2 ξ + π
4

)
− c1

,

�

⎧
⎪⎨

⎪⎩

F−(ξ)|{
r3= c1

2c2
,r4=

√−�
2c2

},

F−(ξ)|{
r3=

√−�
2c2

,r4=− c1
2c2

}.

G23 = 2c0 sin
(√−�ξ

)

−c1 sin
(√−�ξ

) + √−� cos
(√−�ξ

) ± √−�
,

= 2c0√−�
(
cot

(√−�ξ
) ± csc

(√−�ξ
)) − c1

,

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2c0√−�
(
cot

(√−�ξ
) + csc

(√−�ξ
)) − c1

,

2c0√
�

(
coth

(√
�ξ

)
− csc

(√
�ξ

))
− c1

,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2c0√−� cot
(√−�

2 ξ
)

− c1
,

−2c0√−� tan
(√−�

2 ξ
)

+ c1
,

=
⎧
⎨

⎩

F−(ξ)|{
r3=

√−�
2c2

,r4=− c1
2c2

},

F−(ξ)|{
r3= c1

2c2
,r4=

√−�
2c2

}.

G24 = 4c0 sin
( √−�

4 ξ
)
cos

( −√
�

4 ξ
)

2
√−� cos2

( √
�
4 ξ

)
−2c1 sin

( −√
�

4 ξ
)
cos

( √−�
4 ξ

)
−√−�

,

=
2c0 sin

(√−�
2 ξ

)

√−� cos
(−√

�
2 ξ

)
− c1 sin

(√−�
2 ξ

) ,

= 2c0√−� cot
(√−�

2 ξ
)

− c1
,

= F−(ξ)|{
r3=

√−�
2c2

,r4=− c1
2c2

}.

From the definitions of the hyperbolic functions and
the identities
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1

1 + ex
= 1

2

(
1 − tanh

x

2

)
,

1

1 − ex
= 1

2

(
1 − coth

x

2

)
,

(44)

we can prove that

G25(ξ) = −c1 f1
c2 ( f1 + cosh (c1ξ) − sinh (c1ξ))

,

= −c1 f1
c2

(
f1 + e−c1ξ

) = −c1

c2
(
1 + f −1

1 e−c1ξ
) ,

=

⎧
⎪⎪⎨

⎪⎪⎩

−c1
c2

(
1 + e−c1ξ−ln( f1)

) , f1 > 0,

−c1
c2

(
1 − e−c1ξ−ln(− f1)

) , f1 < 0,

=

⎧
⎪⎪⎨

⎪⎪⎩

− c1
2c2

(

1 + tanh
1

2
(c1ξ + ln( f1))

)

, f1 > 0,

− c1
2c2

(

1 + coth
1

2
(c1ξ + ln(− f1))

)

, f1 > 0,

�

{
F+(ξ)|{r2=0,c0=0},
F+(ξ)|{r1=0,c0=0}.

G26(ξ) = −c1 (cosh (c1ξ) + sinh (c1ξ))

c2 ( f1 + cosh (c1ξ) + sinh (c1ξ))
,

= −c1ec1ξ

c2
(
f1 + ec1ξ

) = −c1
c2

(
1 + f1e−c1ξ

) ,

=

⎧
⎪⎪⎨

⎪⎪⎩

−c1
c2

(
1 + e−c1ξ+ln( f1)

) , f1 > 0,

−c1
c2

(
1 − e−c1ξ+ln(− f1)

) , f1 < 0,

=

⎧
⎪⎪⎨

⎪⎪⎩

− c1
2c2

(

1 + tanh
1

2
(c1ξ − ln( f1))

)

, f1 > 0,

− c1
2c2

(

1 + coth
1

2
(c1ξ − ln(− f1))

)

, f1 < 0,

�

{
F+(ξ)|{r2=0,c0=0},
F+(ξ)|{r1=0,c0=0}.

Let us now put the third solution in (2) as

F0(ξ) = − c1
2c2

− 1

c2ξ + c
, � = c21 − 4c0c2 = 0,

(45)

then it may easily found that

F0(ξ)|{c1=0,c=l1} = −1

c2ξ + l1
= G27(ξ).

Unfortunately, we failed to derive the solutions

G6 = 1
2c2

(

−c1 + ±
√

(D2+E2)�−D
√

� cosh
(√

�ξ
)

D sinh
(√

�ξ
)
+E

)

,

G7 = 1
2c2

(

−c1 − ±
√

(D2+E2)�+D
√

� cosh
(√

�ξ
)

D sinh
(√

�ξ
)
+E

)

,

G18 = 1
2c2

(

−c1 + ±
√

−(D2−E2)�−D
√−� cos

(√−�ξ
)

D sin
(√−�ξ

)+E

)

,

G19 = 1
2c2

(

−c1 − ±
√

−(D2−E2)�+D
√−� cos

(√−�ξ
)

D sin
(√−�ξ

)+E

)

,

from the fractional solutions F+(ξ) and F−(ξ). In sum-
mary, if i �= 6, 7, 18, 19, then the solutions Gi (ξ) are
equivalent to the solutions F+(ξ), F−(ξ) and F0(ξ).
Therefore, the solutions Gi (ξ) (i �= 6, 7, 18, 19) can
be replaced by F+(ξ), F−(ξ) and F0(ξ).

In addition, if we allow c2 = 0 in (1), then the Ric-
cati equation reduces to the first-order linear equation
which admits the following exponential solution

Fe(ξ) = −c0
c1

+ dec1ξ , c2 = 0, (46)

where d is an integration constant.

5 Method and application

According to the previous discussions and using the
fractional solutions (33) and (36), below we propose a
so-called unified Riccati equation expansion method.
The procedures of the method can be described by fol-
lowing four steps:

Step 1 Suppose that the wave transformation
u(x, t) = u(ξ), ξ = x −ω t can change a given NLEE

H(u, ux , ut , uxx , utt , uxt , . . .) = 0, (47)

into the following ODE

G(u, uξ , uξξ , uξξξ , . . .) = 0. (48)

Step 2 Seek solutions of Eq. (47) in the form

u(ξ) =
N∑

i=0

ai F
i (ξ), (49)

with ai (i = 0, 1, 2, . . . , N ) are constants to be deter-
mined, N is a positive integer which determined by
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balancing the highest order derivative terms with the
highest power nonlinear terms in Eq. (48) and F(ξ)

expresses the solutions of the Riccati Eq. (1) given by

F(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

F+(ξ), � = c21 − 4c0c2 > 0,
F0(ξ), � = c21 − 4c0c2 = 0,
F−(ξ), � = c21 − 4c0c2 < 0,
Fe(ξ), c2 = 0.

(50)

where F+(ξ), F−(ξ), F0(ξ) and Fe(ξ) are defined by
(33), (36), (45) and (46).

Step 3 Substitute (49) along with Eq. (1) into (48)
and equate the coefficients of each power of F(ξ) to
zero yields a set of algebraic equations for unknowns
c0, c1, c2, ai (i = 0, 1, . . . , N ) and ω.

Step 4 Solve the set of algebraic equations with the
aid of a computer algebraic system and substitute the
solutions obtained in this step back into (49) so as to
obtain the exact traveling wave solutions for Eq. (47).

To illustrate our suggested method, we now proceed
to solve a new class of BBM equation which is called
the Ostrovsky–Benjamin–Bona–Mahony (OS–BBM)
equation of the form

(
ut + ux − α(u2)x − βuxxt

)

x
= γ

(
u + u2

)
, (51)

which describes the motion of ocean currents. Com-
pared with the standard BBM equation, this equation
is studied very little. Yang et al. [29] obtained six
types of traveling wave solutions for OS–BBM equa-
tion through the use of the G ′/G-expansion method.
Some exact solitary wave solutions for Eq. (51) are
obtained in [30,31]. Now we make the transformation

u(x, t) = u(ξ), ξ = x − ωt, (52)

so that (51) is changed to the following ODE

(1 − ω)u′′ − 2α
(
(u′)2 + uu′′) + βωu(4)

−γ (u + u2) = 0. (53)

Balancing the highest order derivative term u(4) with
the highest power nonlinear term (u′)2+uu′′, we obtain
N = 2. Therefore, Eq. (53) admits the solution of the
form

u(ξ) = a0 + a1F(ξ) + a2F
2(ξ), (54)

where ai (i = 0, 1, 2) are constants to be determined.
Substituting (54) alongwith (1) into (53) and setting the
coefficients of F(ξ) j ( j = 0, 1, . . . , 6) to zero yield a
set of algebraic equations for ai , ci (i = 0, 1, 2) and ω

as follows:

−12αa0a2c1c0 + 30βωa2c31c0 − 4αa0a1c2c0 − γ a1
+16βωa1c22c

2
0 + 120βωa2c1c2c20 + 22βωa1c2c21c0−12αa1a2c20 − 6ωa2c1c0 − 6αa21c1c0 − 2αa0a1c21+βωa1c41 − 2ωa1c2c0 − 2γ a1a0 + 6a2c1c0 + a1c21+2a1c2c0 − ωa1c21 = 0,

−30αa2a1c1c0 − 16αa0a2c2c0 + 136βωa2c22c
2
0 − γ a21−6αa0a1c2c1 + 15βωa1c2c31 + 232βωa2c2c21c0+60βωa1c22c1c0 − γ a2 − 8αa0a2c21 + 16βωa2c41−8ωa2c2c0 − 8αa21c2c0 − 3ωa1c2c1 − 2γ a2a0

+8a2c2c0 + 3a1c2c1 − 4ωa2c21 − 12αa22c
2
0−4αa21c

2
1 + 4a2c21 = 0,

120a2βc42ω − 20a22αc
2
2 = 0,

24a1βc42ω + 336a2βc1c32ω − 24a1a2αc22−36a22αc1c2 = 0,

60a1βc1c32ω + 240a2βc0c32ω + 330a2βc21c
2
2ω−12a0a2αc22 − 6a21αc

2
2 − 42a1a2αc1c2 − 32a22αc0c2−16a22αc

2
1 − 6a2c22ω − a22γ + 6a2c22 = 0,

8a1βc20c1c2ω + a1βc0c31ω + 16a2βc30c2ω + 14a2βc20c
2
1ω−2a0a1αc0c1 − 4a0a2αc20 − 2a21αc

2
0 − a1c0c1ω

−2a2c20ω − a20γ + a1c0c1 + 2a2c20 − a0γ = 0,
40a1βc0c32ω + 50a1βc21c

2
2ω + 440a2βc0c1c22ω+130a2βc31c2ω − 4a0a1αc22 − 20a0a2αc1c2

−10a21αc1c2 − 36a1a2αc0c2 − 18a1a2αc21−28a22αc0c1 − 2a1c22ω − 10a2c1c2ω − 2a1a2γ
+2a1c22 + 10a2c1c2 = 0.

Solving this set of algebraic equations by use ofMaple,
we obtain

a0 = 3β(α + 1)c21 + βγ + α

2(βγ + α)
, a1 = 6β(α + 1)c1c2

βγ + α
,

a2 = 6β(α + 1)c22
βγ + α

, c0 = β(α + 1)c21 + βγ + α

4β(α + 1)c2
,

ω = α(α + 1)

βγ + α
, � = − βγ + α

β(α + 1)
, (55)

a0 = 3β(α + 1)c21 − 3(βγ + α)

2(βγ + α)
, a1 = 6β(α + 1)c1c2

βγ + α
,

a2 = 6β(α + 1)c22
βγ + α

, c0 = β(α + 1)c21 − βγ − α

4β(α + 1)c2
,

ω = α(α + 1)

βγ + α
, � = βγ + α

β(α + 1)
. (56)

a2 = 0, c0 = ∓ a0γ

2a1α
√

− γ
α

, c1 = ±1

2

√

−γ

α
, c2 = 0,
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ω = 4α(4α + 1)

βγ + 4α
, � = − γ

4α
, (57)

a2 = 0, c0 = ∓ (a0 + 1)γ

2a1α
√

− γ
α

, c1 = ±1

2

√

−γ

α
, c2 = 0,

ω = −4α(2α + 1)

βγ + 4α
, � = − γ

4α
. (58)

Substituting (55) with F+(ξ) and F−(ξ) into (54) and
using (52) gives the exact traveling wave solutions of
the OS–BBM equation as follows:

u1(x, t) = −1

2

{
(3r21 − r22 ) tanh2(η1) + 4r1r2 tanh(η1)

−r21 + 3r22
}

/ (r1 + r2 tanh(η1))
2 ,

η1 = 1

2

√

− βγ + α

β(α + 1)

(

x − α(α + 1)

βγ + α
t

)

, (59)

where β(α + 1)(βγ + α) < 0.

u2(x, t) = 1

2

{
(3r23 + r24 ) tan2(η2) − 4r3r4 tan(η2)

+ r23 + 3r24
}

/ (r3 + r4 tan(η2))
2 ,

η2 = 1

2

√
βγ + α

β(α + 1)

(

x − α(α + 1)

βγ + α
t

)

, (60)

where β(α + 1)(βγ + α) > 0.
In particular, when choosing the free parameters

r2 = 0 and r1 = 0, the solution (59) is reduced to
the solitary wave solutions

u1a(x, t) = −3

2
tanh2

(
1

2

√

− βγ + α

β(α + 1)
ξ

)

+ 1

2
,

= 3

2
sech2

(
1

2

√

− βγ + α

β(α + 1)
ξ

)

− 1, (61)

u1b(x, t) = −3

2
coth2

(
1

2

√

− βγ + α

β(α + 1)
ξ

)

+ 1

2
,

= −3

2
csch2

(
1

2

√

− βγ + α

β(α + 1)
ξ

)

− 1, (62)

where ξ = x − α(α+1)
βγ+α

t .
Taking the parameters r4 = 0 and r3 = 0 and the

solution (60) is reduced to the singular trigonometric
solutions

u2a(x, t) = 3

2
tan2

(
1

2

√
βγ + α

β(α + 1)
ξ

)

+ 1

2
, (63)

u2b(x, t) = 3

2
cot2

(
1

2

√
βγ + α

β(α + 1)
ξ

)

+ 1

2
, (64)

where ξ = x − α(α+1)
βγ+α

t . The solutions (61), (62) and
(64) are just the solutions (17), (18) and (19) in [29].
But the solution (63) is a new because which is not
obtained in [29].

Taking (56) with F+(ξ) and F−(ξ) into (54) and
using (52) yields the exact traveling wave solutions of
the OS–BBM equation as follows:

u3(x, t) = 3

2

(r21 − r22 ) tanh2(η3) + r22 − r21
(r1 + r2 tanh(η3))2

,

η3 = 1

2

√
βγ + α

β(α + 1)

(

x − α(α + 1)

βγ + α
t

)

, (65)

u4(x, t) = −3

2

(r23 + r24 )(1 + tan2(η4))

(r3 + r4 tan(η4))2
,

η4 = 1

2

√

− βγ + α

β(α + 1)

(

x − α(α + 1)

βγ + α
t

)

, (66)

where the parametersα, β and γ in (65) and (66) satisfy
the conditionβ(α+1)(βγ +α) > 0 andβ(α+1)(βγ +
α) < 0, respectively.

Setting r2 = 0 and r1 = 0 in (65), r4 = 0 and
r3 = 0 in (66), then they are reduced to the solitary
wave solutions and the singular trigonometric solutions

u3a(x, t) = −3

2
sech2

(
1

2

√
βγ + α

β(α + 1)
ξ

)

, (67)

u3b(x, t) = 3

2
csch2

(
1

2

√
βγ + α

β(α + 1)
ξ

)

, (68)

u4a(x, t) = −3

2
sec2

(
1

2

√

− βγ + α

β(α + 1)
ξ

)

, (69)

u4b(x, t) = −3

2
cot2

(
1

2

√

− βγ + α

β(α + 1)
ξ

)

− 3

2
, (70)

where ξ = x − α(α+1)
βγ+α

t . The solutions (67), (68) and
(70) are just the solutions (20), (21) and (22) in [29],
but (69) is a new solution which is not obtained in [29].
And (67) is just the bright soliton solution given by
Alquran in [30].
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As shown above, our method can recover all previ-
ously known solutions, which is obtained by using the
GREMM. At the same time, we can also obtain four
sets of infinite number of exact traveling wave solu-
tions from (59), (60), (65) and (66) by choosing differ-
ent values of their free parameters ri (i = 1, 2, 3, 4).
Therefore, the GREMM is only a special case of our
unified Riccati equation expansion method.

Taking (57) and (58) into (54) and using (52), we
obtain the following exponential solutions:

u5(x, t) = Ae
± 1

2

√− γ
α

(
x− 4α(4α+1)

βγ+4α t
)

, (71)

u6(x, t) = Ae
± 1

2

√− γ
α

(
x+ 4α(2α+1)

βγ+4α t
)

− 1, (72)

where A = a1d �= 0 is an arbitrary constant.
Next we consider another new class of Benjamin–

Bona–Mahony equation

ut + aux + buxxt + (
peu + qe−u)

x = 0, (73)

with real constants a, b, p, q satisfying the conditions
ab �= 0 and qp �= 0 which recently reported by Reza
Abazari in [32] andobtained its exact solutions byusing
the G ′/G-expansion method. By the transformation

u(x, t) = ln v(x, t), (74)

Eq. (73) becomes

(vt + avx + bvxxt ) v2 − b (vxxvt + 2vxvxt ) v

+2bv2xvt +
(
pv2 − q

)
vvx = 0. (75)

Inserting wave transformation

v(x, t) = v(ξ), ξ = x − ωt, (76)

into (75), we obtain

(
(a − ω)v′ − bωv′′′) v2 + bω

(
3vv′′ − 2(v′)2

)
v′

+
(
pv2 − q

)
vv′ = 0. (77)

Balancing v2v′′′ term with v3v′ term gives N = 2, and
therefore, the solution of (77) can be taken as

v(ξ) = a0 + a1F(ξ) + a2F
2(ξ), (78)

where ai (i = 0, 1, 2) are constants to be determined.
Substituting (78) along with (1) into (77) and setting
the coefficients of F j (ξ) ( j = 0, 1, . . . , 9) to zero,
we obtain a set of algebraic equations for unknowns
a0, a1, a2, c0, c1, c2 and ω. One can easily check that
this set of algebraic equations has no nonzero solutions
for a2 = 0, and for a2 �= 0, without loss of generality,
we can set a2 = 1, and then, the algebraic equations
solve that

a0 = 0, a1 = 0, c0 = ±
√ −q

2ab
, c1 = 0, c2 = ∓

√
p

2ab
,

ω = a, (79)

a0 = 0, a1 = 0, c0 = ±
√ −q

2ab
, c1 = 0, c2 = ±

√
p

2ab
,

ω = a, (80)

Substituting (79), (80) into (78) and using the relations
(74) and (76), we obtain the exact solutions of Eq. (73)
as follows:

u1(x, t) = ln

⎡

⎢
⎣

√−qp

p

⎛

⎝
r1 tanh

√√−qp
2ab ξ + r2

r1 + r2 tanh
√√−qp

2ab ξ

⎞

⎠

2⎤

⎥
⎦ ,

ξ = x − at, ab > 0, q < 0, p > 0, (81)

u2(x, t) = ln

⎡

⎢
⎣−

√−qp

p

⎛

⎝
r1 tanh

√

−
√−qp
2ab ξ + r2

r1 + r2 tanh
√

−
√−qp
2ab ξ

⎞

⎠

2⎤

⎥
⎦ ,

ξ = x − at, ab < 0, q > 0, p < 0, (82)

u3(x, t) = ln

⎡

⎢
⎣

√−qp

p

⎛

⎝
r3 tan

√√−qp
2ab ξ − r4

r3 + r4 tan
√√−qp

2ab ξ

⎞

⎠

2⎤

⎥
⎦ ,

ξ = x − at, ab > 0, q < 0, p > 0, (83)

u4(x, t) = ln

⎡

⎢
⎣−

√−qp

p

⎛

⎝
r3 tan

√

−
√−qp
2ab ξ − r4

r3 + r4 tan
√

−
√−qp
2ab ξ

⎞

⎠

2⎤

⎥
⎦ ,

ξ = x − at, ab < 0, q > 0, p < 0. (84)

It should be noted that there are another eight sets of
solutions for the algebraic equations, but the solutions
given by them are same as the solutions (81), (82), (83)
and (84), so these solutions are not listed here.

The solutions (81) and (82) with r2 = 0 and with
r1 = 0 will give the solutions (3.9a) and (3.9b) in [32].
The solutions (83) and (84)with r4 = 0 andwith r3 = 0
will recover the solutions (3.11a) and (3.11b) in [32],
respectively. For other parameters ri (i = 1, 2, 3, 4)
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satisfying the conditions (34) and (37), we can obtain
infinite number of new exact traveling wave solutions
of Eq. (73) from (81), (82), (83) and (84).

6 Conclusion and discussion

As proved in Sect. 4, the twenty-two previously known
solutions of the Riccati Eq. (1) are equivalent to our
fractional solutions (33), (36), and the rational solu-
tion G27(ξ) is only a special case of the solution (45).
Therefore, the solution (51) not only can recover all
those twenty-three solutions but also can give infinitely
many new independent solutions with the variation of
their parameter ri (i = 1, 2, 3, 4). Because of this
reason, our suggested method can effectively avoid
those repeated solutions, whichmay be caused by those
twenty-seven solutions previously used. And the com-
putational efficiency is greatly improved by using our
three solutions instead of twenty-three known solu-
tions. At the same time, for a given NLEE, our method
can catch infinite number of exact traveling wave solu-
tions unlike the previous direct methods just capable of
generating finite number of exact solutions.

More importantly, the general theoretical system
of the GREMM established in this work allows one
following the natural way to construct infinite num-
ber of new exact solutions of the Riccati Eq. (1) from
the Bäcklund transformation and the superposition for-
mula. We believe that the familiar theoretical system
can be built for other direct methods, which is under
consideration.

Both the one parametric solutions (32) and (35) have
been changed to the two parametric solutions (33) and
(36), respectively. The advantage of this choice is that
we can get tanh−, coth−, tan- and cot-type solutions
from (33) and (36) compared to the tanh- and tan-type
solutions obtained from (32) and (35). So we have to
construct another two one parametric fractional solu-
tions from the Bäcklund transformation so as to obtain
the coth- and cot-type solutions, and it is, of course,
not worth doing.

In the special case of c0 = b, c1 = 0, c2 = 1,
we find � = −b, and the Riccati Eq. (1) is reduced
to the simple Riccati equation F ′(ξ) = b + F2(ξ),
which is used by Fan [3] in the extended tanh-function
method. Therefore, our method also established a gen-
eralization of the extended tanh-function method. Cor-
respondingly, the superposition formulas (20) and (31)

can be reduced into one expression. And the Bäcklund
transformation (8) and (9) with setting α = 2

μ
√

�
and

β = − 2
μ

√−�
, respectively, can be combined into the

following expression:

Fn(ξ) = Fn−1(ξ) − bμ

1 + μFn−1(ξ)
,

where μ is an arbitrary constant.
As noted in Sect. 4, we failed to derive the solutions

G6(ξ),G7(ξ),G18(ξ) and G19(ξ) from the fractional
solutions. In other words, the relations between these
four solutions and our two fractional solutions are not
clear and should be further study.

Another openproblem is as how to solve discrete and
fractional nonlinear equations by using our suggested
method, andwehope thatmanynew results to be appear
in this area.
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