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Abstract In order to investigate the effect of pass-
ing upon traffic flow on curved road, in this paper, an
extended one-dimensional lattice hydrodynamicmodel
for traffic flowon curved roadwith passing is proposed.
The stability condition is obtained by the use of linear
stability analysis. The result of stability analysis shows
that passing behavior plays an important role in influ-
encing the stability of traffic flow as well as radian of
curved road. The nonlinear wave equations including
Burgers, Korteweg-de Vries and modified Korteweg-
deVries equations are derived to describe the nonlinear
traffic behavior in different regions, respectively. The
analytical results show that reducing the coefficient of
passing may enhance the stability of traffic flow. Jam-
ming transition occurs between uniform flow and kink
jam when the coefficient of passing is less than the
critical value. When the coefficient of passing is larger
than the critical value, jamming transition occurs from
uniform flow to irregular wave through chaotic phase
with decreasing sensitivity parameter. In addition, com-
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pared with other segments of curved road, traffic flow
with passing easily becomes unstable and complicated
at the entrance and exit of curved road, especially at the
entrance of curved road. The numerical simulations are
given to illustrate and clarify the analytical results.

Keywords Traffic flow · Nonlinear analysis · Chaotic
jam · Curved road

1 Introduction

Because of the highly correlated with human life, traf-
fic flow and its related problem, which can been seen as
physical phenomena [1–5], have been widely investi-
gated by using differentmethodologies [6–62].A series
of experiments had been done for investigating the
mechanism of traffic flow and identifying the influenc-
ing factors [14–17]. Many interesting non-equilibrium
phenomena such as phase transition, density waves,
stop-and-go flows, local clusters and ghost jams had
been observed. In order to make a better understand-
ing and give a well explanation for traffic flow, there
is a demand for realistic and quantitative models that
can duplicate the phenomena observed in a real situ-
ation and explain the evolution mechanism of phase
transition. To achieve this goal, various traffic flow
models including the continuum models [6–13], car-
following models [20–30], and lattice hydrodynamic
models [31–62] were proposed by many scholars with
different backgrounds.
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Lattice hydrodynamic model, which was deduced
based on the car-following models and the continuum
models, was firstly proposed by Nagatani in Ref. [33].
By using the linear stability theory and nonlinear anal-
ysis method, Nagatani found the neutral stability line
and the modified Korteweg-de Vries (MKdV) equa-
tion successfully, and derived the solutions of kink den-
sity wave in the MKdV. Based on the model proposed
by Nagatani, many researchers had proposed many
extended versions with the consideration of differ-
ent factors like anticipation effect [42,48,49], driver’s
characteristics [40,50,53,54], forward and backward
looking effect [44,57], traffic interruption probabil-
ity [41,51], and (multiply) density difference effect
[47,55,56]. Passing behavior, as one of the inevitable
but dangerous driving behaviors, had been investigated
by some scholars. In Ref. [37], Nagatani proposed an
extended lattice model considering the effect of pass-
ing and found that passing has an important effect on
traffic flow. Gupta and Redhu [38] proposed an new
lattice model considering driver’s anticipation behav-
ior with passing effect and found that traffic jam can
be suppressed efficiently by considering the anticipa-
tion effect. The result revealed that the negative effect
of passing upon traffic flow can be alleviated by taking
anticipation effect into account. Furthermore, Gupta
et al. [39] proposed a lattice model to investigate the
effect of multi-phase optimal velocity function upon
traffic flow with passing and concluded that the pro-
posed model can significantly enhance the stability of
traffic flow for any value of passing constant even in
the case of multi-phase optimal velocity model. In Ref.
[40], the effect of driver’s characteristics on traffic flow
with passing had been investigated. However, to our
knowledge, the effect of road condition upon traffic
flow with passing has not been discussed until now.

In general, traffic is a combination of people, vehi-
cles, and roads. As the implementation of traffic infras-
tructure, road is an important influence factor on traffic
flow. Considering road situation, Tang et al. [24] pro-
posed a car-following model to investigate the effect
of road conditions on traffic flow. Zhu and Zhang [60]
proposed a latticemodel considering the effect of gradi-
ent. In Ref. [62], Zhou and Shi investigated the effects
of radian and angle going into curved road on traf-
fic flow by using an extended lattice hydrodynamic
model; the results showed that these two factors had
an important influence on the stability of traffic flow.
From the results, we can see traffic flow on curved road

is more complicated than the one on straight highway.
And it deserves further study by considering other fac-
tors. Passing, as we know, is a significant factor which
greatly affect the stability and safety of traffic flow on
curved road. Considering traffic safety, passing is pro-
hibited when vehicles running on curved road espe-
cially sharp turn. But with the development of road
construction, there exists multi-lane traffic system in
modern traffic. In addition, aggressive drivers tend to
overtake when passing conditions are satisfied even on
curved road. Hence, we propose an extended lattice
model to study the effect of passing on traffic flow on
curved road.

The paper is organized as follows. In Sect. 2, the
model is formulated by considering passing behavior
for traffic flow on curved road. The stability analysis is
obtained by using linear stability analysis in Sect. 3.We
can see the stability condition varies with the parame-
ter of passing γ . In Sect. 4, the Burgers, Korteweg-de
Vries (KdV), andMKdV equations are derived in three
types of traffic flow regions by using nonlinear analy-
sis. The simulations are given in Sect. 5. Section 6 is
the summary.

2 Model

In Ref. [62], Zhou and Shi proposed a lattice hydrody-
namic model to investigate traffic flow on curved road.
The model is

∂tρ( j, t) + ρ0

sin θ j
∂ jρ( j, t)v( j, t) = 0, (1)

with the following evolution equation of traffic flux ρv

at site j

ρ( j, t + τ)v( j, t + τ) = ρ0

sin θ j
V (ρ( j + 1, t)), (2)

where θ j represents the radian at site j of the curved
road. ρ0 is the total average density. ρ( j, t), v( j, t)
denote thedensity andvelocity at site j at time t , respec-
tively. V (ρ( j, t)) is the optimal velocity function. Here
we select V (ρ( j, t)) as follows [62]

V (ρ( j, t)) = k

√
μgR

2

{
tanh

[
2

ρ0
− ρ( j, t)

ρ2
0

− 1

ρc

]

+ tanh

(
1

ρc

) }
, (3)

where ρc is the critical density and it is equal to the
inverse of the safety distance [50]. R is the radius of
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curved road, g is gravity acceleration. k is the control
parameter of vmax. Because when running on curved
road, drivers always slow down with the consideration
of safety, the velocity is far less than themaximal veloc-
ity.

In terms of Nagatani’s idea [37], passing occurs
when the traffic current on site j is larger than the one
on site j + 1. It is assumed that the traffic quantity
of the passing on site j is proportional to the differ-
ence between the optimal traffic currents on sites j and
j+1. Hence, wemodify the evolution Eq. (2) by taking
passing effect into account, that is

ρ( j, t + τ)v( j, t + τ)

= ρ0

sin θ j
V (ρ( j + 1, t)) + γρ0

sin θ j

× [V (ρ( j + 1, t)) − V (ρ( j + 2, t))].
(4)

Here γ is the parameter of passing.
By inserting Eq. (4) into Eq. (1), and when site j is

sufficiently close to site j − 1, then θ j ≈ θ j−1. The
total density equation is obtained as

ρ( j, t + 2τ) − ρ( j, t + τ)

+ τρ2
0

sin2 θ j
[V (ρ( j + 1, t)) − V (ρ( j, t))]

− γ τρ2
0

sin2 θ j
[V (ρ( j + 2, t)) − 2V (ρ( j + 1, t))

+ V (ρ( j, t))] = 0.

(5)

3 Linear stability analysis

Weapply the linear stability theory to analyze the traffic
flow model described by Eq. (5). Supposing the vehi-
cles running on curved road with the uniform density
ρ0 and optimal velocity V (ρ0), then we get the uniform
steady state solution ρ( j, t) for Eq. (5)

ρ( j, t) = ρ0, v( j, t) = V (ρ0). (6)

Assuming y( j, t) be a small deviation from the uniform
steady solution, that is

ρ( j, t) = ρ0 + y( j, t). (7)

Inserting it and Eq. (6) into Eq. (5), then the linearized
equation for y( j, t) is obtained from Eq. (5)

y( j, t + 2τ) − y( j, t + τ)

+ τρ2
0

sin2 θ j
V ′(ρ0)[y( j + 1, t) − y( j, t)]

− γ τρ2
0

sin2 θ j
V ′(ρ0)[y( j + 2, t)

− 2y( j + 1, t) + y( j, t)] = 0,

(8)

where V ′(ρ0) is the derivative of optimal velocity
function V (ρ) at point ρ = ρ0. Expand y( j, t) ∝
exp[ik j + zt] resulting in the following equation of
z

e2zτ − ezτ + τρ2
0

sin2 θ j
V ′(ρ0)(eik − 1)

+ γ τρ2
0

sin2 θ j
V ′(ρ0)(2eik − e2ik − 1) = 0,

(9)

where z = z1(ik) + z2(ik)2 + · · · , and inserts it into
Eq. (9), the first- and second-order terms of ik are
obtained

z1 = − ρ2
0

sin2 θ j
V ′(ρ0), (10)

z2 = −3τρ4
0V

′2(ρ0)
2 sin4 θ j

− (1 − 2γ )ρ2
0V

′(ρ0)
2 sin2 θ j

. (11)

If z2 > 0, the uniform steady state becomes stable,
while the uniform steady state becomes unstable if z2 <

0. Then the stable condition for traffic flow is

τ <
−(1 − 2γ ) sin2 θ j

3ρ2
0V

′(ρ0)
. (12)

Moreover, for small disturbances of long wave length,
the neutral stability condition is given by

τs = −(1 − 2γ ) sin2 θ j

3ρ2
0V

′(ρ0)
. (13)

When θ j = π/2, the results are agreed with the ones
in Ref. [37]. When γ = 0, the results are agreed with
the ones in Ref. [62].

The neutral stability lines (solid lines) in the space
(ρ, a) (a = 1/τ ) for different values of γ with ρ0 =
ρc = 0.2, θ j = π/4, μ = 0.3, R = 20, k = 0.14
are shown in Fig. 1. The region, which is within the
neutral stability line, is the unstable region. The apex of
each curve represents the critical point (ρc, ac). From
Fig. 1, it is shown that the unstable region enlarges
with increasing γ , which means traffic flow becomes
unstable with the increasing of γ .
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Fig. 1 Phase diagram in the (ρ, a) space with ρ0 = ρc =
0.2, μ = 0.3, R = 20, k = 0.14 for different γ

4 Nonlinear analysis

In this section, we study the nonlinear behavior of traf-
fic flow described by Eq. (5). Note that the Eq. (5) is
a nonlinear partial differential equation, and it is diffi-
cult to get the exact and analytical solution for Eq. (5).
To overcome this difficulty, we apply the reductive
perturbation method introduced in Ref. [38] to solve
Eq. (5). We introduce slow scales for space variable j
and time variable t and define slow variables X and T
for 0 < ε � 1 [57]

X = ε( j + bt), T = εs t (14)

where b is a constant to be determined. Assuming

ρ( j, t) = ρ0 + εl R(X, T ). (15)

By substituting Eqs. (14)–(15) into Eq. (5) and
expanding to the s + l + 1 order of ε, we obtain the
following nonlinear partial differential equation

εl+1
[
b + ρ2

0V
′(ρ0)

sin2 θ j

]
∂X R

+ εl+2
[3b2τ

2
+ (1 − 2γ )ρ2

0V
′(ρ0)

2 sin2 θ j

]
∂2X R

+ εl+3
[7b3τ 2

6
+ (1 − 6γ )ρ2

0V
′(ρ0)

6 sin2 θ j

]
∂3X R

+ εl+4
[5b4τ 3

8
+ (1 − 14γ )ρ2

0V
′(ρ0)

24 sin2 θ j

]
∂4X R (16)

+ ε2l+1 ρ2
0V

′′(ρ0)
2 sin2 θ j

∂X R
2 + ε2l+2 (1 − 2γ )ρ2

0V
′′(ρ0)

4 sin2 θ j
∂2X R

2

+ ε3l+1 ρ2
0V

′′′(ρ0)
6 sin2 θ j

∂X R
3

+ ε3l+2 (1 − 2γ )ρ2
0V

′′′(ρ0)
12 sin2 θ j

∂2X R
3

+ εs+l∂T R + εs+l+13bτ∂X∂T R = 0.

Assuming s = 3, l = 1, the following nonlinear
partial differential equation is obtained from Eq.(16),

ε2
[
b + ρ2

c V
′(ρc)

sin2 θ j

]
∂X R

+ ε3
[3b2τ

2
+ (1 − 2γ )ρ2

c V
′(ρc)

2 sin2 θ j

]
∂2X R

+ ε4
{[ (1 − 6γ )ρ2

c V
′(ρc)

6 sin2 θ j
+ 7b3τ 2

6

]
∂3X R

+ ρ2
c V

′′′(ρc)
6 sin2 θ j

∂X R
3 + ∂T R

}

+ ε5
{[5b4τ 3

8
+ (1 − 14γ )ρ2

c V
′(ρc)

24 sin2 θ j

]
∂4X R

+ (1 − 2γ )ρ2
c V

′′′(ρc)
12 sin2 θ j

∂2X R
3 + 3bτ∂X∂T R

}
= 0.

(17)

Supposing
τ

τc
= 1 + ε2 (18)

for τ near the critical point (hc, 1/τc), where τc =
−(1−2γ ) sin2 θ j

3ρ2
c V

′(ρc) . Let b = −ρ2
c V

′(ρc)
sin2 θ j

, the second- and

third-order terms of ε can be eliminated from Eq. (17).
Then Eq. (17) can be rewritten as

ε4
[
∂T R − g1∂

3
X R + g2∂X R

3
]

+ ε5
[
g3∂

2
X R + g4∂

2
X R

3 + g5∂
4
X R

]
= 0

(19)

where

g1 = − (1 − 13γ − 14γ 2)ρ2
c V

′(ρc)
27 sin2 θ j

,

g2 = ρ2
c V

′′′(ρc)
6 sin2 θ j

,

g3 = − (1 − 2γ )ρ2
c V

′(ρc)
2 sin2 θ j

,

g4 = − (1 − 2γ )ρ2
c V

′′′(ρc)
12 sin2 θ j

,

g5 = − (1 − 6γ + 39γ 2 + 46γ 3)ρ2
c V

′(ρc)
54 sin2 θ j

.

In order to derive the standard MKdV equation with
higher-order correction, we make the following trans-
formation in Eq. (19)

123



Lattice hydrodynamic model for traffic flow 111

Tm = − (1 − 13γ − 14γ 2)ρ2
c V

′(ρc)
27 sin2 θ j

T,

Rm = 3

√
V ′′′(ρc)

(28γ 2 + 26γ − 2)V ′(ρc)
R,

(20)

with an assumption that

1 − 13γ − 14γ 2 > 0. (21)

Then, we obtain the standard MKdV equation with
higher-order correction term

∂Tm Rm − ∂3X Rm + ∂X R
3
m

+ ε

g1

[
g3∂

2
X Rm

+g1g4
g2

∂2X R
3
m + g5∂

4
X Rm

]
= 0.

(22)

If we ignore the O(ε) term in Eq. (22), it is just the
MKdV equation with the kink-antikink solution

Rm0(X, Tm) = √
B tanh

√
B

2
(X − BTm). (23)

In order to obtain the value of propagation velocity B
for the kink-antikink solution, the solvability condition
[58–60]

(Rm0, M[Rm0]) ≡
∫ ∞

−∞
dXk Rm0M[Rm0] = 0 (24)

must be satisfied, here M[Rm0] is the O(ε) term in
Eq. (22).

B = 5g2g3
2g2g5 − 3g1g4

. (25)

Inserting Eq. (20) into Eq. (23), we get the solution of
the MKdV equation

R(X, T ) =
√
g1B

g2
tanh

√
B

2
(X − Bg1T ). (26)

Then, we gain the kink-antikink solution of the den-
sity

ρ( j, t) = ρc +
√
g1B

g2

(
τ

τc
− 1

)
tanh

[√
B

2

(
τ

τc
− 1

)
(
j − ρ2

c V
′(ρc)

sin2 θ j
t − Bg1

(
τ

τc
− 1

)
t

)]
.

(27)

And the amplitude C of the kink-antikink solution
Eq. (27) is given by

C =
√
g1B

g2

(
τ

τc
− 1

)
.

From the above process, we can find that the kink
solution exists only if condition (21) is hold. Hence,
the existence condition for kink solution is γ < 1

14 .
Otherwise, we can not deduce the MKdV Eq. (22).
That means the MkdV equation only exists when
−6 sin2 θ j

21ρ2
c V

′(ρc) < a < ac.

The kink solution represents the coexisting phase,
which consists of the freely moving phase with low
density and the congested phase with high density. The
coexisting curve can be described by ρ = ρc ± C .
Therefore, we get the coexisting curve in the (ρ, a)

plane for γ < 1
14 .

In Fig. 1, when γ = 0, the dash line is the coex-
isting curve. The coexisting curve and the neutral sta-
bility line are similar to the conventional gas–liquid
phase transition. Three regions in traffic flow are distin-
guished: the unstable region which is within the neutral
stability line, the metastable region which is between
the neutral stability line and the coexisting curve and
the stable region which is out of the coexisting curve.
When γ = 0.1, 0.2, 0.3, the condition (22) is not satis-
fied. Hence, coexisting curves do not exist and are not
shown in Fig. 1.

In Fig. 2, the solid lines show the plots of ac against
γ for different θ j with ρ0 = ρc = 0.2, μ = 0.3, k =
0.14, R = 20. From Fig. 2, the critical sensitivity ac
increases with the increase in γ , which means traf-
fic flow becomes unstable with the increasing of γ .
Moreover, the curves ac represent the phase boundaries
between no jam and kink jam for γ < 1/14 and no jam
with chaotic jam for γ ≥ 1/14. For γ ≥ 1/14, the
unstable region is further divided into two subregions:
kink jam and chaotic jam. The boundary between kink

and chaotic jam is the line a = 7k
√

μgR
4 sin2 θ j

(dash lines).

Next, we study the nonlinear behavior in the stable
andmetastable regions, respectively. Firstly,we discuss
the triangular shock waves of traffic flow in the stable
region. The nonlinear partial differential equation is
obtained from Eq. (16) for s = 2, l = 1.

ε2
[
b + ρ2

0V
′(ρ0)

sin2 θ j

]
∂X R

+ ε3

{
∂T R + ρ2

0V
′′(ρ0)

2 sin2 θ j
∂X R

2

+
[
3b2τ

2
+ (1 − 2γ )ρ2

0V
′(ρ0)

2 sin2 θ j

]
∂2X R

}
= 0.

(28)
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Fig. 2 Phase diagram in the (γ, a) space with ρ0 = ρc =
0.2, R = 20, μ = 0.3, k = 0.14 for different θ j

Taking b = −ρ2
0V

′(ρ0)
sin2 θ j

, the second-order term of ε is

eliminated in Eq. (28). We obtain the following partial
differential equation

∂T R + ρ2
0V

′′(ρ0)
sin2 θ j

R∂X R

= −(1 − 2γ ) sin2 θ j − 3ρ2
0V

′(ρ0)τ
2 sin4 θ j

ρ2
0V

′(ρ0)∂2X R.

(29)

In accordance with criterion Eq. (13), the coefficient
of the second derivative of Eq. (29) is positive in the
stable region. Therefore, in the stable region, Eq. (29)
is just the Burgers equation. If R(X, 0) is of compact
support, then the solution R(X, T ) of Eq. (29) is

R(X, T ) = sin2 θ j

|ρ2
0V

′′(ρ0)|T
[
X − ηn+1 + ηn

2

]

− sin2 θ j (ηn+1 − ηn)

2|ρ2
0V

′′(ρ0)|T

tanh

[−(1 − 2γ ) sin2 θ j − 3ρ2
0V

′(ρ0)τ
2 sin2 θ j

× V ′
0(ρ0)

(ηn+1 − ηn)(X − ξn)

4|V ′′(ρ0)|T
]
.

(30)

where ξn are the coordinates of the shock fronts and
ηn are the coordinates of the intersections of the slopes
with the x-axis (n = 1, 2, ..., N ). As O( 1

T ), R(X, T )

decays to 0 when T → +∞. That means any shock
wave expressed by Eq. (30) in stable traffic flow region
will evolve to a uniform flow when time is sufficient
large.

Secondly,wediscuss the solitonwaves of trafficflow
in the metastable region for γ < 1/14. The nonlinear
partial differential equation is obtained from Eq. (16)
for s = 3, l = 2.

ε3
[
b + ρ2

0V
′(ρ0)

sin2 θ j

]
∂X R

+ ε4
[3b2τ

2
+ (1 − 2γ )ρ2

0V
′(ρ0)

2 sin2 θ j

]
∂2X R

+ ε5
{
∂T R + ρ2

0V
′′(ρ0)

2 sin2 θ j
∂X R

2

+
[7b3τ 2

6
+ (1 − 6γ )ρ2

0V
′(ρ0)

6 sin2 θ j

]
∂3X R

}

+ ε6
{ (1 − 2γ )ρ2

0V
′′(ρ0)

4 sin2 θ j
∂2X R

2 + 3bτ∂X∂T R

+
[5b4τ 3

8
+ (1 − 14γ )ρ2

0V
′(ρ0)

24 sin2 θ j

]
∂4X R

}
= 0.

(31)

Near the neutral stability line in the unstable region,
let
τ

τs
= 1 − ε2. (32)

By taking b = −ρ2
0V

′(ρ0)
sin2 θ j

, the third- and fourth-order

terms of ε are eliminated from Eq. (31), and Eq. (31)
can be rewritten as

ε5
[
∂T R − f1∂

3
X R − f2R∂X R

]
+ ε6

[
− f3∂

2
X R + f4∂

2
X R

2 + f5∂
4
X R

]
= 0

(33)

where

f1 = − (1 − 13γ − 14γ 2)ρ2
0V

′(ρ0)
27 sin2 θ j

,

f2 = −ρ2
0V

′′(ρ0)
2 sin2 θ j

,

f3 = − (1 − 2γ )ρ2
0V

′(ρ0)
2 sin2 θ j

,

f4 = − (1 − 2γ )ρ2
0V

′′(ρ0)
4 sin2 θ j

,

f5 = − (1 − 6γ + 39γ 2 + 46γ 3)ρ2
0V

′(ρ0)
54 sin2 θ j

.

In order to derive the standard KdV equation with
higher-order correction, we make the following trans-
formation in Eq. (33)

T = √
f1Tk,
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Lattice hydrodynamic model for traffic flow 113

X = −√
f1Xk,

R = 1

f2
Rk . (34)

ByusingEq. (34),we obtain the standardKdVequation
with higher-order correction term

∂Tk Rk + ∂3Xk
Rk + Rk∂Xk Rk

+ ε√
f1

[
− f3∂

2
Xk

Rk

+ f4
f2

∂2Xk
R2
k + f5

f1
∂4Xk

Rk

]
= 0.

(35)

Next, we assume that Rk(Xk, Tk) = R0(Xk, Tk) +
εR1(Xk, Tk) to consider theO(ε) correction inEq. (35).
If we ignore the O(ε) term in Eq. (35), it is just theKdV
equation with soliton solutions

R0(Xk, Tk) = A sech2
[√

A

12

(
Xk − A

3
Tk

)]
. (36)

Similar to the process of deriving the value of propa-
gation velocity B for MKdV equation, we obtain the
amplitude A for the soliton solution as follows

A = 21 f1 f2 f3
24 f1 f4 − 5 f2 f5

. (37)

Substituting the values of f1 − f5 into Eq. (37), we
get the value of A. Substituting each variable by the
original one, we obtain soliton solutions of the density

ρ( j, t) = ρ0 + A

f2

(
τ

τs
− 1

)

sech2
[√

A

12 f1

(
τ

τs
− 1

)
(
j − ρ2

0V
′(ρ0)

sin2 θ j
t + A

3

(
τ

τs
− 1

)
t

)]
.

(38)

Now,wehavederived the solitondensitywavedescribed
by the KdV equation near the neutral stability line.

5 Simulation

In order to check the theoretical results, we carry out
numerical simulations in this Section. The initial condi-
tions of the numerical simulation are as follows: There
are N = 100 lattices in the system, and the periodical
boundary condition is applied. The initial perturbations
are adopted as follows: ρ( j, 0) = ρ0 = ρc = 0.2. The
local densities ρ(N/2, 1) and ρ(N/2 − 1, 1) at sites

N/2 and N/2 − 1 at time t = 1 are set as 0.15 and
0.25, k = 0.14, R = 20, μ = 0.3. The radian of the
curved road is from θ0 = π/4 to θN = π/3, where θ0
and θN represent the angle going into and leaving out
curved road, respectively.

Figure 3 shows the traffic patterns after a sufficiently
long time t = 100, 000 for different γ with a = 2.8.
In Fig. 3, the patterns (a)–(d) exhibit the time evolution
of the density ρ( j, t) for γ = 0, 0.06, 0.2, 0.4, respec-
tively. The initial disturbance leads to the kink density
waves as shown in patterns (b)–(d). The small ampli-
tude disturbance grows into congested flow since the
stability condition is not satisfied. When the stability
condition is satisfied, the small amplitude disturbance
will dissipate, and traffic flow becomes uniform which
is shown in pattern (a). The results show that with the
increasing of γ , traffic flow will become unstable and
traffic congestion occur. Figure 4 shows the density
profile obtained at t = 90, 000 corresponding to Fig. 3.
And it makes us see the evolution of the density with
the small disturbances more clearly.

Figure 5 represents the phase space plot of den-
sity difference ρ( j, t) − ρ( j, t − 1) against ρ(t) for
t = 60, 000s−70, 000s at site j = 1 corresponding to
Fig. 3. For pattern (a) in Fig. 5, the limit cycle leads to
a single point which represents the uniform flow in the
stable region. The patterns (b)–(d) exhibit the charac-
teristic of periodicity in the form of limit cycle, and the
nodes on the right sides as well as on the left sides are
corresponding to the traffic states within and out of the
kink traffic jam. When a = 2.8, the jamming transi-
tion occurs among freely moving phase, the coexisting
phase with kink density wave and the uniformly con-
gested phase with an increase in the value of γ .

Figures 6, 7 and 8 represent the phase space plot of
density difference ρ( j, t) − ρ( j, t − 1) against ρ(t) at
site j = 20, 60, 100 for t = 60, 000s−70, 000s corre-
sponding to Fig. 3, respectively. From Figs. 5c, 6c, 7c
and 8c, we can see that compared with other segments
of curved road, traffic flowwith passing easily becomes
unstable and complicated at the entrance and exit of
curved road.

Figures 9 and 10 show the hysteresis loop of the
flux and velocity for different γ at site j = 60 for
t = 60, 000s − 70, 000s corresponding to Fig. 3,
respectively. FromFig. 9, it shows thatwith the decreas-
ing of the value of γ , the size of loopswill shrink.When
γ = 0 in Fig. 9a, the stability condition is held, traffic
flow is stable, the hysteresis loop will not be gener-
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Fig. 3 Traffic patterns from time t = 99, 000 to t = 100, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 = π/4, θN = π/3
for γ =a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 4 Density profiles ρ( j, t) at time t = 90, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 = π/4, θN = π/3 for γ =a 0,
b 0.06, c 0.2, d 0.4, respectively
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Fig. 5 Phase space plot at site j = 1 from time t = 60, 000 to t = 70, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ =a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 6 Phase space plot at site j = 20 from time t = 60, 000 to t = 70, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ =a 0, b 0.06, c 0.2, d 0.4, respectively
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Fig. 7 Phase space plot at site j = 60 from time t = 60, 000 to t = 70, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ =a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 8 Phase space plot at site j = 100 from time t = 60, 000 to t = 70, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ =a 0, b 0.06, c 0.2, d 0.4, respectively
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Fig. 9 Hysteresis loop of flux at site j = 60 from time t = 60, 000 to t = 70, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k =
0.14, θ0 = π/4, θN = π/3 for γ =a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 10 Hysteresis loop of velocity at site j = 60 from time t = 60, 000 to t = 70, 000 with a = 2.8, ρ0 = ρc = 0.2, μ = 0.3, k =
0.14, θ0 = π/4, θN = π/3 for γ =a 0, b 0.06, c 0.2, d 0.4, respectively
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ated, and in phase space, there will be only a point
on the optimal current curve instead. From Fig. 10, it
shows that with the increasing of the value of γ , the
size of loops will expand. When γ = 0 in Fig. 10a,
the stability condition is held, the traffic flow is stable,
the hysteresis loop will not be generated, and in phase
space, there will be only a point on the optimal velocity
curve instead.

Figure 11 shows the traffic patterns after a suffi-
ciently long time t = 100, 000 for different γ with a =
3.5. In Fig. 11, the patterns (a)–(d) exhibit the time evo-
lution of the density ρ( j, t) for γ = 0, 0.06, 0.2, 0.4,
respectively. When the stability condition is satisfied,
the small amplitude disturbance will dissipate and traf-
fic flow becomes uniform which is shown in patterns
(a) and (b). For patterns (c) and (d), the stability condi-
tion is not satisfied; hence, the traffic flow is unstable
due to the initial disturbance. Furthermore, we can see
the traffic patterns in Fig. 11c, d are different from the
ones in Fig. 3b–d. In Fig. 11c, d, the densitywaves band
with one another, break up and propagates in the back-

ward direction. The main reason is that a ≥ 7k
√

μgR
4 sin2 θ j

,

which means the traffic is in chaotic jam phase; hence,
traffic flow becomes chaotic. Figure 12 shows the den-
sity profile obtained at t = 90, 000 corresponding to
Fig. 11.

Figure 13 represents the phase space plot of den-
sity difference ρ( j, t) − ρ( j, t − 1) against ρ(t) for
t = 60, 000s − 70, 000s at site j = 1 corresponding
to Fig. 11. For patterns (a) and (b), the uniform flow
in the stable region is represented by a single point.
Patterns (c) and (d) exhibit the behavior characteristics
of chaos; the patterns exhibit dispersed plots around a
closed loop due to the irregular traffic waves. This is
the characteristics of chaos.

Figures 14, 15 and 16 represent the phase space
plot of density difference ρ( j, t) − ρ( j, t − 1) against
ρ(t) at site j = 20, 60, 100 for t = 60, 000s −
70, 000s corresponding to Fig. 11, respectively. From
Figs. 13d, 14d, 15d and 16d, we can see that compared
with other segments of curved road, traffic flow with
passing easily becomes unstable at the entrance and
exit of curved road, especially the entrance of curved
road.

Figures 17 and 18 show the hysteresis loop of the
flux and velocity for different γ at site j = 60 for t =
60, 000s − 70, 000s corresponding to Fig. 11, respec-
tively. From Fig. 17, it shows that with the decreasing

of the value of γ , the size of loops will shrink. When
γ = 0, 0.06 in Fig. 17a, b, the stability condition is
held, traffic flow is stable, the hysteresis loop will not
be generated, and in phase space, there will be only
a point on the optimal current curve instead. When
γ = 0.2, 0.4, the hysteresis loops exhibit the behav-
ior characteristics of chaos. From Fig. 18, it shows that
with the increasing of the value of γ , the size of loops
will be expansion. When γ = 0, 0.06 in Fig. 18a, b,
the stability condition is held, the traffic flow is stable,
and in phase space, there will be only a point on the
optimal velocity curve instead. When γ = 0.2, 0.4,
the hysteresis loops exhibit dispersed plots around a
closed loop due to the irregular traffic behavior. This is
the characteristics of chaos.

Moreover, From Figs. 3c and 11c (Figs. 3d, 11d),
we can see that for constant γ which is larger than
the critical value, the instable region is divided into
kink region and chaotic region. And the congested flow
occurs from chaotic jam to kink jam with decreasing
sensitivity a.

6 Summary

In order to investigate the effect of passing on traffic
flow on curved road, we propose an extended lattice
hydrodynamic model for traffic flow on curved road
by taking passing into account. We obtain the stabil-
ity condition of the proposed model by the use of lin-
ear stability theory. The stability condition shows that
passing behavior play an important role in influencing
the stability of traffic flow. The nonlinear wave equa-
tions including Burgers, KdV and MKdV are obtained
to describe traffic flow behavior in different regions,
respectively.The analytical and simulation results show
that reducing passing behavior may enhance the stabil-
ity of traffic flow. Jamming transition occurs between
uniform flow and kink jamwhen γ is less than the criti-
cal value. When γ is larger than the critical value, jam-
ming transition occurs from uniform flow to irregular
wave through chaotic phase with decreasing sensitivity
a. In addition, compared with other segments of curved
road, traffic flow with passing easily becomes unstable
and complicated at the entrance and exit of curved road,
especially at the entrance of curved road. Such findings
mean that at the entrance and exit of curved road, pass-
ing behavior should be prohibited.As to other segments
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Fig. 11 Traffic patterns from time t = 99, 000 to t = 100, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 = π/4, θN = π/3
for γ = a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 12 Density profiles ρ( j, t) at time t = 90, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 = π/4, θN = π/3 for γ = a
0, b 0.06, c 0.2, d 0.4, respectively
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Fig. 13 Phase space plot at site j = 1 from time t = 60, 000 to t = 70, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ = a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 14 Phase space plot at site j = 20 from time t = 60, 000 to t = 70, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ = a 0, b 0.06, c 0.2, d 0.4, respectively
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Fig. 15 Phase space plot at site j = 60 from time t = 60, 000 to t = 70, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ = a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 16 Phase space plot at site j = 100 from time t = 60, 000 to t = 70, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k = 0.14, θ0 =
π/4, θN = π/3 for γ = a 0, b 0.06, c 0.2, d 0.4, respectively
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Fig. 17 Hysteresis loop of flux at site j = 60 from time t = 60, 000 to t = 70, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k =
0.14, θ0 = π/4, θN = π/3 for γ = a 0, b 0.06, c 0.2, d 0.4, respectively

Fig. 18 Hysteresis loop of velocity at site j = 60 from time t = 60, 000 to t = 70, 000 with a = 3.5, ρ0 = ρc = 0.2, μ = 0.3, k =
0.14, θ0 = π/4, θN = π/3 for γ = a 0, b 0.06, c 0.2, d 0.4, respectively
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of curved road, when passing conditions are satisfied,
passing behavior could be taken if necessary.
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