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Abstract In this paper, we investigate the local and
global bifurcation behaviors of an archetypal self-
excited smooth and discontinuous oscillator driven by
moving belt friction. The belt friction is described in the
sense of Stribeck characteristic to formulate the mathe-
matical model of the proposed system. For such a fric-
tion characteristic, the complicated bifurcation behav-
iors of the system are discussed. The bifurcation of the
multiple sliding segments for this self-excited system is
exhibited by analytically exploring the collision of tan-
gent points. The Hopf bifurcation of this self-excited
systemwith viscous damping is analyzedbymaking the
examination of the eigenvalues at the steady state and
discussing the stability of the limit cycles. The bifur-
cation diagrams and the corresponding phase portraits
are depicted to demonstrate the complicated dynamical
behaviors of double tangency bifurcation, the bifurca-
tion of sliding homoclinic orbit to a saddle, subcritical
Hopf bifurcation and grazing bifurcation for this sys-
tem.
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1 Introduction

Bifurcation theory is presently not a new but the well-
known and carefully inspected branch of dynamics
being still under deep considerations. It is character-
ized by a qualitative change in the structural behav-
ior while a system parameter value passes through any
critical points. Bifurcations in smooth systems are well
understood in theoretical classification theorems [1,2]
and engineering applications [3], but little is known
about bifurcations in discontinuous systems. Filippov
systems [4] form a very important subclass of discon-
tinuous systems which can be described by a set of
first order ordinary differential equations with a dis-
continuous right-hand side. As mentioned in [5], there
is no general agreement on what a bifurcation could be
in Filippov systems. In the earlier research, the study
was restricted to bifurcations of Filippov systems not
allowing for sliding [6–8] which greatly simplified the
analysis and gave a incomplete classification. Later,
the bifurcation of sliding cycles was deficiently treated
[4]. Actually, the contributions on sliding bifurcations
of limit cycles in Filippov systems refer to the mechan-
ical systems with dry friction [9–17]. The geometrical
criterion for defining and classifying sliding bifurcation
is developed, and the explicit topological normal forms
for all codim 1 local sliding bifurcation were derived
in [18]. Very little is known on bifurcation behaviors
of the nonlinear friction system characterized by geo-
metric nonlinearities.
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In fact, there are many nonlinear friction systems
characterized by geometric nonlinearities of elastic
large deformation or large displacement in practical
mechanical engineering, i.e., the geometric nonlinear
vibration induced by friction between the brake disk
and pad in a brake system [19,20], the moving tectonic
plates in an earthquake fault moving across each other
[21,22], and the ice stream and moving subglacial bed
ofWhillans Ice Stream (WIS) [23] capable of stick–slip
motion.

In this paper, a self-excited smooth and discontin-
uous (SD) oscillator proposed in [24] is a geometrical
nonlinear friction system, based upon the well-known
geometrical mode of SD oscillator [25–27] and classi-
cal moving belt. The SD oscillator can be smooth and
discontinuous depending on the value of the smooth-
ness parameter α. The smooth dynamics appears ifα >

0, while the discontinuous dynamics behavior occurs
when α = 0. Note, in this case of α = 0, this system
has become physically unrealistic because the distance
between the rigid supports has become zero, and the
model corresponds to an oscillating mass supported by
two parallel vertical springs. The self-excited SD oscil-
lator is characterized by themultiple stick zones, hyper-
bolic structure transition and friction-induced asymme-
try phenomena. Under perturbation, themultiple stick–
slip periodic motion and multiple stick–slip chaos for
this system are demonstrated. At present, the research
on the bifurcation theory of the geometrical nonlinear
friction system is very insufficient. Therefore, it is nec-
essary to investigate the bifurcation behaviors of a non-
linear friction system with geometric nonlinearity for
gaining a deeper understanding of nonlinear friction-
induced vibration in mechanical engineering.

Themotivationof this paper is to investigate the local
and global bifurcation behaviors of an archetypal self-
excited SD oscillator with geometrical nonlinearity in
the sense of Stribeck friction characteristic. This paper
examines the sliding motion of the self-excited SD
oscillator including the tangent points, sliding homo-
clinic orbits, fixedpoints, limit cycles and their stability.
The bifurcation behavior of this system can be analyzed
by the bifurcation theory. The analysis is based on the
theoretical bifurcation analysis and phase plane plots
to better exhibit the bifurcation behaviors of this self-
excited system. Through these investigations of self-
excited SD oscillator, we can get insight into the mech-
anism of the geometric nonlinear friction dynamics in
mechanical engineering and geography.

This paper is organized as follows. In Sect. 2, some
basic theoretical backgrounds of Filippov system are
introduced, including switch control function and tan-
gent points. InSect. 3, the descriptionof the self-excited
SD oscillator with Stribeck friction characteristic and
motion equation is presented. In Sect. 4, the dynam-
ical behavior analysis of this system without viscous
damping is performed. In Sect. 5, the analytical inves-
tigations on stability and bifurcation due to the Stribeck
friction characteristic in the self-excited SD oscillator
with viscous damping are investigated. Finally, some
remarks of this paper are concluded.

2 Preliminaries

Our analysis is based on a generic Filippov system of
the form

x =
{
f (1)(x), x ∈ S1,
f (2)(x), x ∈ S2.

(1)

where x ∈ Rn , and f (i) : Rn → Rn, i = 1, 2, are
smooth functions.

Moreover, the discontinuity boundary � separating
the two regions is described as

� = {x ∈ Rn : H(x) = 0}, (2)

where H is a smooth scalar function with nonvanish-
ing gradient Hx(x) = ∂H(x)/∂x on the discontinuity
boundary �, and

S1 = {x ∈ Rn : H(x) < 0},
S2 = {x ∈ Rn : H(x) > 0}. (3)

The boundary � is either closed or goes to infinity
in both directions and f (1) �≡ f (2) on �.

It is possible to construct the desired general solu-
tions of Eq. (1) by concatenating standard solutions in
S1,2 and sliding solutions on � obtained with the well-
known Filippov convex method [4]. Let

σ(x) = 〈Hx(x), f (1)〉〈Hx(x), f (2)〉, (4)

be the definition of switch control function in which
〈·, ·〉 denotes the standard scalar product in Rn .

The crossing set �c ⊂ � is defined as

�c = {x ∈ � : σ(x) > 0}, (5)

123



Complicated bifurcation of self-excited SD oscillator 93

Fig. 1 a Visible and b
invisible tangent point. The
thick orbit is a sliding orbit S2
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Fig. 2 aDynamicalmodel of the self-excited SDoscillator onmoving belt.bStribeck friction characteristicwith exponential description

which is the set of all points x ∈ �, where at these
points the orbit of system (1) crosses the boundary �,
i.e., the orbit reaching x from Si concatenates with the
orbit entering S j , i �= j , from x.

The sliding set �s is the complement to �c in �:

�s = {x ∈ � : σ(x) ≤ 0}, (6)

where at these points x ∈ �s , the orbit of system (1)
which reaches x does not leave �. and will therefore
have to move along �.

The crossing set is open, while the sliding set is the
union of closed sliding segments and isolated sliding
points. In general, the orbit of system (1) crosses � at
points x ∈ �c, while it slides on� when points x ∈ �s .

Notice that, a sliding segment is delimited either by
a boundary equilibrium xB , or by a point xT (called tan-
gent point) in which one of the vectors f (i)(xT ) is tan-
gent to � and both of them are nonzero. Therefore, the
following definition of the tangent points x ∈ �s holds:

〈Hx(xT ), f (i)(xT )〉 = 0, i = 1, 2. (7)

We say that this tangent point is visible if the orbit
of ẋ = f (1)(x) starting from xT belongs to S1 for suf-

ficiently small |t | �= 0. In other hand, the same point
is invisible if the mentioned orbit belongs to S2 (as in
Fig.1).

3 The governing equation

The system analyzed in this paper is composed by a
mass M , supported by a moving belt, connected to a
dashpot with damping coefficientC and a fixed support
by a inclined linear spring of stiffness coefficient K ,
which is capable of resisting both tension and compres-
sion, as shown in Fig. 2a. The contact surface between
the mass and belt is rough so that the belt exerts a
friction force on the mass. The mass vibrates under
the influence of dry friction FS existing in the contact
zone created by the mass’s surface and the outer belt’s
surface. The belt moves with a constant velocity V0.
We assume a non-deformable moving belt being under
action of normal force from total force of the gravity
N = Mg and spring force in the contact zone, and
the mass is secured to move in the horizontal direction
without leaving the belt. The position of the mass over
the belt is represented by X .
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The equation of motion for this mass-spring on the
moving belt is given by

MẌ + C Ẋ + K X
(
1 − L√

X2 + H2

)
+ FS = 0, (8)

where L is the original length of the spring, H is the
distance between fixed point and belt, and the friction
force FS between the mass and belt is described as

FS = μ(Vrel)
[
Mg − K H

(
1 − L√

X2 + H2

)]

×sgn(Ẋ − V0), (9)

where μ(Vrel) is the friction coefficient depending on
the relative velocity Vrel = Ẋ − V0 between the mass
and belt in an exponential description with a Stribeck
friction characteristic [28,29], as

μ(vrel) = μk + Δμe−a|Vrel|, (10)

where μk represents the kinetic friction coefficient
when the relative velocity Vrel goes to infinity, μ0 is
the static friction coefficient, Δμ = μ0 − μk and a
denotes a slope parameter (see Fig. 2b).

Without loss of generality, the non-dimensional vari-
ables and parameters are introduced as follows:

x = X

L
, ω2

0 = K

M
, c = C

Mω0
, α = H

L
,

g1 = g

Lω2
0

, v0 = V0
Lω2

0

τ = ω0t. (11)

Then, substituting Eq. (11) into Eq. (8), the non-
dimensional equation of motion for this system is
obtained as follows

ẍ + cẋ + x
(
1 − 1√

x2 + α2

)

= −μ(vrel)
[
g1 − α

(
1 − 1√

x2 + α2

)]
sgn(ẋ − v0),

(12)

where the dot denotes the derivative with respect to τ .
Equation (12) describes the dynamics of the self-

excited vibration that occurs during the dry friction
between contacting surfaces of mass and the movable
belt.

Changing in Eq. (12) the state variable ẋ = y, we
get the following generic planar Filippov system

ẋ = f (x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
y,−cy − x

(
1 − 1√

x2 + α2

)

+ μ(vrel)
[
g1−α

(
1− 1√

x2+α2

)]]
for y<v0,[

y,−cy − x
(
1 − 1√

x2 + α2

)

− μ(vrel)
[
g1−α

(
1− 1√

x2+α2

)]]
for y>v0,

(13)

where x = [x, y]T and f = [ f (1), f (2)]T .

4 The system with no viscous damping

Prior to further discussions, we investigate the dynam-
ical behavior of system (12) with no viscous damping.
The equation of motion for the system can be easily
obtained from Eq. (13) by assuming c = 0

ẋ = f (x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
y,−x

(
1 − 1√

x2 + α2

)

+ μ(vrel)
[
g1−α

(
1− 1√

x2+α2

)]]
for y<v0,[

y,−x
(
1 − 1√

x2 + α2

)

−μ(vrel)
[
g1−α

(
1− 1√

x2+α2

)]]
for y>v0,

(14)

where x = [x, y]T and f = [ f (1), f (2)]T .

4.1 Bifurcation of tangent points

In this subsection, bifurcations of stick zones and corre-
sponding tangent points of this Filippov systemare con-
sidered. According to the Filippov’s theory, the switch
control function σ(x) given in Eq. (4) have now the
form

σ(x) = f (1)
I I (x) f (2)

I I (x), (15)

where f (1)
I I and f (2)

I I are the second components of f (1)

and f (2) of Eq. (14).

123



Complicated bifurcation of self-excited SD oscillator 95

Assume that xv = [x, v0]T and the switch control
function σ(x) on the boundary will be as follows

σ(xv) = x2
(
1 − 1√

x2 + α2

)2

− μ2
0

[
g1 − α

(
1 − 1√

x2 + α2

)]2
. (16)

If there exists a derivative of function σ(xv), it is
possible to find critical points of the function by means
of the conditions
⎧⎨
⎩

Dσ0 = ∂σ(xv0)

∂xv

= 0,

σ (xv0) = 0,
(17)

then we obtain a set of roots of conditions (17)

x(i)
v0

=
{
0,±

√
1 − α2,±

[1
2
μ0(g1 − α)

−1

2

√
Υ1(μ0) + Δ(μ0)

]}
, i = 1, . . . , 5.

(18)

Substituting x(i)
v0 given by Eq. (18) into Eq. (16) and

then solving it with respect to μ0 and α, we get the
following boundary conditions

H = H1 ∪ H2, (19)

where

H1 = {(α, μ0)|2Υ1(α, μ0) − Δ(α,μ0)

−Υ2(α, μ0) = 0, 0 < α < 1, μ0 > 0}, (20)

H2 = {(α, μ0)|μ0 = 0, α ≥ 0}, (21)

Υ1(μ0) = 1

3
(μ0α − μ0g1)

2 − 2

3
(α2 − 1),

Υ2(μ0) = 8(μ0g1 − μ0α)3 − 16μ0α(α2 − g1α − 1) + 8(μ0α − μ0g1)[(μ0α − μ0g1)2 + α2 − 1]
4
√

Υ1 + Δ
,

Δ(μ0) =
3
√
2Δ1(μ0)

3 3

√
Δ2(μ0) +

√
−4Δ3

1(μ0) + Δ2
2(μ0)

+
3

√
Δ2(μ0) +

√
−4Δ3

1(μ0) + Δ2
2(μ0)

3 3
√
2

,

Fig. 3 Two-parameter bifurcation diagram of the boundary con-
ditions for system (14) when g1 = 2. The curves labeled as H1
corresponds to double tangency bifurcation curve,H2 represents
that system (14) becomes the SD oscillator when μ0 = 0

Δ1(μ0) = 12μ2
0α

2[(g1 − α)2 − 1]
−12(μ0α − μ0g1)(μ0α

3 − μ0α
2g1 − μ0α)

+[(μ0α − μ0g1)
2 + α2 − 1]2,

Δ2(μ0) = 108μ2
0α

2(μ0α − μ0g1)
2[(α − g1)

2 − 1]
−72μ2

0α
2[(α − g1)

2 − 1][(μ0α − μ0g1)
2

+α2 − 1] − 36(μ0α − μ0g1)(μ0α
3

−μ0α
2g1 − μ0α)[(μ0α − μ0g1)

2 + α2 − 1]
+108(μ0α

3 − μ0α
2g1 − μ0α)2

+2[(μ0α − μ0g1)
2 + α2 − 1]3.

Figure 3 shows the two-parameter bifurcation dia-
gramof the boundary conditionsmarked byH1 andH2

for system (14) by assuming g1 = 2. The curve labeled
asH1 corresponds to double tangency bifurcation [18]
curve, as well as the bifurcation curve of the sliding

segments in this Filippov system. Collision of tangent
points in this system happens when the parameters α

and μ0 are taken values in the curve H1. The curve
marked with H2 represents that system (14) becomes
the SD oscillator when μ0 = 0, and furthermore, it is
discontinuous for α = 0, μ0 = 0.
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Fig. 4 a Tangent points (circles) on the intersection of function σ(x) with the axis x for μ0 = 0 (dash line) and μ0 = μ
(2)
0 (thick line).

b Bifurcations of tangent points at changes of the parameter μ0 from 0 to 0.2 for system (14)
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Fig. 5 Double tangency bifurcation of the closing of two “cross-
ing windows” for system (14) with the parameters: g1 = 2,
α = 0.4, v0 = 0.1, Δμ = 0.02, a = 2. a μ0 = 0.1. b
μ0 = μ

(2)
0 = 0.1331. c μ0 = 0.14. The stick zones are marked

with the green lines. The signs “∗” invisible tangent points, “�”
visible tangent points, and “∅” double tangent points. (Color fig-
ure online)

In order to vividly describe the bifurcation of tan-
gent points, we get the set of boundary values μ

(i)
0 =

{0, 0.1331} for i = 1, 2 assuming the following param-
eters in Eq. (16): g1 = 2, α = 0.4, and the function
σ(x) are shown in Fig. 4a when the parameterμ0 takes
different value.

The set of values {μ(i)
0 } places the switch control

function σ(x) of the stick zone as a tangential to the
abscissa of the plane {σ(x), x}, as shown in Fig. 4a. It
is worth noticing that for μ0 = 0 marked in Fig. 4a by
a dashed line, the sliding segments vanish and degen-
erate to the three tangent points, and no stick exists.
Another scenario is regarded to the graph marked in
Fig. 4a by a thick line for μ0 = μ

(2)
0 that is tangent

from below to the abscissa. Three sliding segments
merge into one large sliding segment and the collisions
of tangent points happen. The stick zone in this case is

wide and extends from left to right branch of graph in
the plane {σ(x), x}. It confirms that the location of a
stick zone depends on the parameters of this particular
dynamical system, since the values of μ0 are deter-
mined by the parameters g1, α.

The control function introduced in Eq. (15) multi-
plies the two terms f (1)

I I and f (2)
I I which can be used to

find tangent points of f (1) and f (2) in the discontinu-
ity zone. Bifurcations of tangent points at changes of
control parameter μ0 are presented in Fig. 4b.

Figure 5 shows the behavior of double tangency
bifurcation of system (14) for the variation of parameter
μ0. In all of the following phase portraits, the param-
eters of the system will be fixed g1 = 2, α = 0.4
and a = 2, the cusps correspond to a sign change of
the relative velocity, the short horizontal parts marked
with green lines in the phase portraits correspond to the
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Complicated bifurcation of self-excited SD oscillator 97

sticking zones, and the sign “⊗” represents the unstable
fixed point of the system.

When μ0 < μ
(2)
0 , there are three stable sliding seg-

ments separated by two “crossing windows” between
the visible and invisible points, marked with � and ∗,
respectively, as shown in Fig. 5a. The sliding motions
starting on the left sliding segment terminate at a visi-
ble tangent point and end up in the left stable stick–slip
limit cycle. The sliding trajectories starting on the mid-
dle sliding segment terminate at a visible tangent point,
and continue along a standard orbit which reaches the
right sliding segment, finally terminate at a visible tan-
gent point and end up in the right stable stick–slip limit
cycle. These tangent points collide at μ0 = μ

(2)
0 form-

ing twodouble tangent pointsmarkedwith the sign∅, as
depicted in Fig. 5b, and the “crossing windows” close.
The sliding trajectories originating on the left sliding
segment will enter into the right stick–slip limit cycle
after through two double tangent points and the left
limit cycle disappears. In Fig. 5c, there is an uninter-
rupted sliding orbit ending in the right stick–slip limit
cycle, and one large sliding segment remains.

In the following study, we will focus on the case of
taking the values of parameters α and μ0 below the
curve H1 in Fig. 3.

4.2 The effect of belt velocity

For a more general view, once the other parameters of
system (14) have been chosen, the steady-state motion
of the system depends only upon the driving velocity
v0.

If we assume for example in Eq. (14), g1 = 2, α =
0.4, μ0 = 0.1, Δμ = 0.02, a = 2, it is possible to
detect five qualitatively different steady-state motions.
If 0 < v0 < v1 = 0.2204, a pair of asymmetric stick–
slip limit cycles coexist and the orbits of motion are
presented in Fig. 6a, and the sticking of their motions
exists in two different stick regions.

With the increase of the driving velocity v0, the
radiuses of two limit cycles become larger up to the
value v0 = v1, the left limit cycle collides with a sad-
dle point, a left sliding homoclinic orbit appears in
Fig. 6b, and system (14) undergoes a bifurcation of
a sliding homoclinic orbit to a saddle [18]. If v1 <

v0 < v2 = 0.84638, the left homoclinic orbit disap-
pears and the right stick–slip limit cycle remains and
grows, as depicted in Fig. 6c. As the belt velocity v0

increases, the saddle point has a right homoclinic orbit
containing a sliding segment at v0 = v2 in Fig. 6d,
and system (14) undergoes a bifurcation of a sliding
homoclinic orbit to a saddle again. When v0 ≥ v2, the
right homoclinic orbit disappears and a large stick–slip
limit cycle appears which encompasses all the left and
right limit cycles mentioned above, as shown in Fig.
6e. The critical values 0.2204 and 0.84638 have been
computed numerically.

The following study concentrates on the cases of
small driving velocity, and therefore, in the remainder
the driving velocity v0 will be less than v1.

5 Hopf bifurcation

To consider the influence of the damping (c �= 0),
the theoretical and numerical analysis is carried out to
further investigate the dynamical behaviors of system
(13). A Hopf bifurcation is a local bifurcation in which
a fixed point of the system changes its stability as a
parameter is varied. It is clear that the fixed points can
only occurwhen themass of this system is continuously
slipping; therefore, we firstly have to find all the fixed
points of system (13) and discuss their stability.

5.1 Fixed points and their stability

In this subsection, the focus will be on the fixed points
of system (13). Since there is no fixed point in the sys-
tem for y > v0 > 0, we only analyze the fixed point
by assuming y < v0, then system (13) can be rewritten
as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = y,

ẏ = −cẋ − x
(
1 − 1√

x2 + α2

)

+ μ(vrel)
[
g1 − α

(
1 − 1√

x2 + α2

)]
.

(22)

After some calculations the fixed points of system
(22) are (x1, 0), (x2, 0) and (x3, 0), where

x1 = 1

2
μ(v0)(g1 − α) − 1

2

√
Υ1(μ(v0)) + Δ(μ(v0))

+1

2

√
2Υ1(μ(v0)) − Δ(μ(v0)) − Υ2(μ(v0)),

x2 = 1

2
μ(v0)(g1 − α) + 1

2

√
Υ1(μ(v0)) + Δ(μ(v0))
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0

v0

Bifurcation of a sliding
homoclinic orbit to a saddle

Bifurcation of a sliding
homoclinic orbit to a saddle

Belt velocity

v1

v2

(a)

(b)

(c)

(d)

(e)

Fig. 6 Variation of the belt velocity v0 in system (14) for g1 = 2,
α = 0.4, μ0 = 0.1, Δμ = 0.02 and a = 2. a Coexisting stick–
slip limit cycles for 0 < v0 < v1 = 0.2204. b Coexistence of
a homoclinic orbit and a stick–slip limit cycle for v0 = v1. A
bifurcation of a sliding homoclinic orbit to a saddle happens. c

Only a stick–slip limit cycle for v1 < v0 < v2 = 0.84638. d
A large sliding homoclinic orbit for v0 = v2. The bifurcation of
a sliding homoclinic orbit to a saddle happens again. e A large
stick–slip limit cycle for v0 > v2. (Color figure online)
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+1

2

√
2Υ1(μ(v0)) − Δ(μ(v0)) + Υ2(μ(v0)),

x3 = 1

2
μ(v0)(g1 − α) − 1

2

√
Υ1(μ(v0)) + Δ(μ(v0))

−1

2

√
2Υ1(μ(v0)) − Δ(μ(v0)) − Υ2(μ(v0)),

(23)

and μ(v0) = μk + Δμe−av0 .
The associated Jacobian matrix of system (22) at

(xs, 0)s=1,2,3 can be derived as

J

(
x
y

)
(xs ,0)

=
(

0 1
Ψ (xs) Φ(xs) − c

)
, (24)

where

Ψ (x) = −1 + 1√
x2 + α2

− x2

(x2 + α2)3/2

− xαμ(v0)

(x2 + α2)3/2
,

Φ(x) = Δμa
(
g1 − α + α√

x2 + α2

)
e−av0 .

The characteristic equation of matrix (24) can be
obtained and written as

λ2 − λ[Φ(xs) − c] − Ψ (xs) = 0, (25)

from which we can get

λ1,2|(xs ,0) = Φ(xs) − c ±√(Φ(xs) − c)2 + 4Ψ (xs)

2
.

(26)

Assuming the set of parameters, g1 = 2, α = 0.4,
μk = 0.08, Δμ = 0.02, a = 2, v0 = 0.2, and substi-
tuting xs obtained in Eq. (23) into theΦ(xs) andΨ (xs)
lead to

{
Φ(xs) > 0, s = 1, 2, 3,

Ψ (x1) > 0, Ψ (x2,3) < 0.
(27)

For the fixed point (x1, 0), no matter what value c
is, relation (27) shows that the two eigenvalues are real
and one is positive, another is negative. Thus the fixed
point (x1, 0) is a saddle point.

For the fixed points (xs, 0), s = 2, 3, if c is large,
relations (27) show that the two eigenvalues are real

and negative; consequently, the fixed points are stable.
As c decreases, when Φ(xs) − c is slightly large than
0, the two eigenvalues are complex-conjugate and their
real parts change sigh at a critical value

c = cs = Φ(xs). (28)

In that case, λ1,2|(xs ,0) = ±i
√−Ψ (xs), s = 2, 3,

the system undergo a Hopf bifurcation and a limit cycle
branching from the fixed point (xs , 0), s = 2, 3, is born.

5.2 Analytical approximative solution for periodic
motion

In order to examine the limit cycle, the approximative
solutions of periodic motions for the self-excited SD
oscillator are sought by applying the averagingmethod.
By introducing the coordinate transformation z = x −
xs , s = 2, 3, system (22) can be rewritten in the so-
called standard form such that z = 0 corresponds to
the steady state

z̈ + z = ε f (z, ż), (29)

where

ε f (z, ż) = −cż + z + xs√
(z + xs)2 + α2

+
(
μk + Δμea(ż−v0)

)

×
(
g1 − α + α√

(z + xs)2 + α2

)
− xs .

Letting z = A cos θ , ż = − sin θ and θ = τ +Θ(τ),
Eq. (29) can be transformed into a new coordinates in
the form of slowly varying amplitude and phase

{
Ȧ = − f (A cos θ,−A sin θ) sin θ,

Θ̇ = − 1

A
f (A cos θ,−A sin θ) cos θ.

(30)

Averaging Eq. (30) over one period [0, 2π ] yields
the averaged equation

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ȧ = − 1
2 Ac − 1

2π

∫ 2π
0

(
Δμe−av0e−aA sin θ

)
(
g1 − α + α√

(A cos θ+xs )2+α2

)
sin θdθ,

Θ̇ = − 1
2π A

∫ 2π
0

A cos θ+xs+α(μk+Δμe−av0 e−aA sin θ )√
(A cos θ+xs )2+α2

cos θdθ.

(31)
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Since the amplitude of the limit cycle is determined
by solving the amplitude equation for A, the first equa-
tion of Eq. (31) is investigated for solutions of station-
ary amplitudes with Ȧ = 0 and rewritten as following

0 = −1

2
Ac − 1

2π

∫ 2π

0

(
Δμe−av0e−aA sin θ

)
(
g1 − α + α√

(A cos θ + xs)2 + α2

)
sin θdθ.

(32)

Looking at Eq. (32), it is obvious that

A1 = 0 (33)

is always a solution of stationary amplitude. Separating
this solution from Eq. (32) yields

0 = −1

2
c − 1

2π A

∫ 2π

0

(
Δμe−av0e−aA sin θ

)

×
(
g1 − α + α√

(A cos θ + xs)2 + α2

)
sin θdθ

= −1

2
c − 1

2π A

∫ 2π

0
Δμe−av0

+∞∑
n=0

(−aA sin θ)n

n!
×
(
g1 − α + α√

(A cos θ + xs)2 + α2

)
sin θdθ

= −1

2
c + Δμe−av0

+∞∑
k=1

a2k−1A2k−2

(2k − 1)!

×
〈(

g1 − α + α√
(A cos θ + xs)2 + α2

)
sin2k θ

〉
,

(34)

where 〈 f (θ)〉 = 1

2π

∫ 2π

0
f (θ)dθ denotes averaging

the function f (θ) over a period [0, 2π ].
The amplitude A2 of this limit cycle should satisfies

the response equation in the following

1

2
c = Δμe−av0

+∞∑
k=1

a2k−1A2k−2
2

(2k − 1)!〈(
g1 − α + α√

(A2 cos θ + xs)2 + α2

)
sin2k θ

〉

= 1

2
Δμae−av0

(
g1 − α + α√

x2s + α2

)

+Δμe−av0

+∞∑
k=2

a2k−1A2k−2
2

(2k − 1)!

×
〈(

g1 − α + α√
(A2 cos θ + xs)2 + α2

)
sin2k θ

〉

= 1

2
Φ(xs) + Δμe−av0

+∞∑
k=2

a2k−1A2k−2
2

(2k − 1)!

×
〈(

g1 − α + α√
(A2 cos θ + xs)2 + α2

)
sin2k θ

〉
.

(35)

Regarding Eq. (35), sinceΔμ, e−av0 and the quanti-
ties of the sumare positive, the existence of a limit cycle
with a real amplitude A2 should satisfy the condition

A2 ∈ R+ ⇔ c − Φ(xs) > 0. (36)

In addition, differential equation (22) holds for ẋ <

v0 where in the entire half plane of motion for this
system below the stick line ẋ = v0. The presented
investigation of dynamical behavior for the examined
system will be valid as long as the trajectories do not
touch the stick line, since this would cause them to
be trapped by the stick–slip limit cycle. With this, the
amplitude of the limit cycle in the sense of Eq. (35) has
to fulfill the condition

A2 < v0. (37)

5.3 Stability of the limit cycles

To study the stability of limit cycles given by Eqs. (33)
and (35), the analytical method developed in [29] is
applied in this system. We examine the first derivative
of the first equation of Eq. (31) with respect to A as
following

d Ȧ

dA
= −1

2
c + 1

2
Φ(xs) + Δμe−av0

+∞∑
k=2

a2k−1A2k−2

(2k − 2)!

×
〈(

g1 − α + α√
(A cos θ + xs)2 + α2

)
sin2k θ

〉

+ Δμe−av0

+∞∑
k=1

a2k−1A2k−1

(2k − 1)!
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A

A

A1 A2

I

II

Fig. 7 Qualitative sketch of the amplitude growth behavior for
system parameters g1 = 2, α = 0.4, v0 = 0.2, a = 2, Δμ =
0.02. (I) c = 0.05. (II) c = 0.0522

×
〈

α cos θ(A cos θ + xs)√[
(A cos θ + xs)2 + α2

]3 sin2k θ

〉
, (38)

from which the evaluation at the fixed point A1 = 0
yields

d Ȧ

dA

∣∣∣∣
A=A1

= −1

2

(
c − Φ(xs)

)
. (39)

As qualitatively outlined in Fig. 7, two cases can be
given

(I) If c < Φ(xs), then
d Ȧ

dA

∣∣∣∣
A=A1

> 0: the steady-

state fixed point is unstable. The existence of the
limit cycle is not fulfilled according to the condi-
tion (36); therefore, there is only a unstable fixed
point. The curve (I) in Fig. 7 describes this behav-
ior qualitatively.

(II) If c > Φ(xs), then
d Ȧ

dA

∣∣∣∣
A=A1

< 0: the steady-state

fixed point is stable. Simultaneously condition
(36) is fulfilled. Therefore, there is a limit cycle
coexisting to the stable fixed point, and the insta-
bility of the limit cycle can easily be seen from
Fig. 7, since small perturbations will be ampli-
fied. These behaviors are qualitatively presented
in curve (II) in Fig. 7. But the amplitude A2 of the
unstable limit cycle has to satisfy the condition
(37) to avoid being swallowed by the stick–slip
limit cycle.

Therefore, behavior of the Hopf bifurcation (i.e.,
unstable fixed point � stable fixed point + unstable

c3

c4

Stable stick slip
limit cycle

c

c1

c2

Unstable
limit cycle

Unstable fixed point Stable fixed point

v

2xymax

Subcritical
Hopf bifurcation

ymax
x3

0

Fig. 8 Bifurcation diagram of the damped self-excited SD oscil-
lator for g1 = 2, v0 = 0.2, α = 0.4, μ0 = 0.1, Δμ = 0.02,
a = 2. (Color figure online)

limit cycle) in this system is indeed a subcritical Hopf
bifurcation. The formal proof of the Hopf bifurcation
can be found in “Appendix”.

5.4 Bifurcation diagram

The bifurcation diagram of the damped self-excited SD
oscillator is shown in Fig. 8 which demonstrates the
variation of the maximum velocity y(xs )

max (s = 2, 3) of
the steady-state motions for varying viscous damping
c with respect to the points (x2, 0) and (x3, 0). The
system undergoes two subcritical Hopf bifurcations at
the critical bifurcation values c = c1 and c = c3.

With the increasing of the damping coefficient c, the
amplitude of the unstable limit cycle also increases.
When the maximum value of the velocity of the unsta-
ble motions reaches the value y(xs )

max = v0, two critical
values for the damping coefficient c2 and c4 are defined,
as shown in Fig. 8. In this case the stable stick–slip limit
cycles and unstable limit cycles coincide at a discon-
tinuous fold bifurcation [30,31].

The dynamical behavior of this damped self-excited
system with the increasing of viscous damping coeffi-
cient c is presented in Fig. 9, where the signs “•” and
“⊗” denote the stable and unstable fixed points of the
system, respectively.

– in the range 0 < c < c1, a pair of asymmetric stable
stick–slip limit cycles coexist, as shown in Fig. 9a.
Trajectories starting from the points external to
the limit cycles are attracted to them. Especially,
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c1

c2

c3

c4

lacitircbuS
noitacrufib

fpo
H

Damping
c

0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Grazing bifurcation

Grazing bifurcation

lacitircbuS
noitacrufib

fpo
H

Fig. 9 The behavior of the steady-state for this system as variation of the damped coefficient c for g1 = 2, α = 0.4, v0 = 2, a = 2,
μ0 = 0.1 and Δμ = 0.02. (Color figure online)
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the unstable manifolds of the saddle point (x1, 0)
finally end up in two stick–slip limit cycles after
passing through one or two stick regions. The stable
manifolds of the saddle point (x1, 0) are the bound-
ary of basin of attractions for the two limit cycles.
Trajectories generated from the internal points are
repelled by the unstable fixed points (x2, 0) and
(x3, 0), and they start to tend to the stick–slip limit
cycles.

– in the range c1 < c < c2, there are a pair of asym-
metric stable stick–slip limit cycles coexisting to a
unstable limit cycle, as shown in Fig. 9b. The sys-
tem undergoes a subcritical Hopf bifurcation when
c increases from c < c1 and passes the borderline
c = c1 = Φ(x2). The fixed point (x2, 0) changes
from an unstable one to an asymptotically stable
one, an unstable limit cycle bifurcates from it, and
simultaneously, the fixed point (x3, 0) is unstable
yet. It is easily seen in Fig. 8 that the amplitude of
the unstable limit cycle becomes larger when the
damping coefficient c increases.

– for c = c2 the coexistence of a stable stick–slip
limit cycle and a semi-stable limit cycle is presented
in Fig. 9c. The stick–slip limit cycle repelled by the
unstable fixed point (x3, 0) is still stable, but for
the stable fixed point (x2, 0) the stable stick–slip
limit cycle and the unstable limit cycle coincide.
The system undergoes a grazing bifurcation at c =
c2 where the semi-stable limit cycle is tangent to
the line y = v0 in the phase plane, and it is an
attracting motion for the external initial conditions,
and a repelling motion for the internal points. The
stable manifolds of the saddle point (x1, 0) are the
boundary of basin of attractions for the two limit
cycles yet.

– in the range of c2 < c < c3 there is only a stable
stick–slip limit cycle, as shown in Fig. 9d, which
is still respelled by the unstable fixed point (x3, 0).
Especially, one of unstable manifolds of the saddle
point (x1, 0) finally ends up in a stick–slip limit
cycle, and another is attracted toward the stable
fixed point (x2, 0). The stable manifolds of the sad-
dle point (x1, 0) are the boundary of basin of attrac-
tions for the stick–slip limit cycle and fixed point
(x2, 0).

– in the range of c3 < c < c4 the stick–slip limit
cycle is still stable, but the fixed point (x3, 0) is
asymptotically stable separated by an unstable limit
cycle in the left-hand half phase plane (x, ẋ), as

shown in Fig. 9e. The unstable limit cycle defines
the area of attractionof the stablefixedpoint (x3, 0).
There is only a stable fixed point (x2, 0) in the right-
hand half phase plane, and neighbored trajectories
move toward it.

– for c = c4 there is only a semi-stable limit cycle
repelled by the stable fixed point (x3, 0), as pre-
sented in Fig. 9f, the stable stick–slip limit cycle
and the unstable limit cycle coincide. The system
undergoes a grazing bifurcation again at c = c4
where the semi-stable limit cycle is tangent to the
line y = v0 in the phase plane. Trajectories gener-
ated from the neighbored points external to the limit
cycle are attracted them. The fixed point (x2, 0) is
still stable.

– in the range of c > c4 the limit cycle disappears
and only two stable fixed points (x2, 0) and (x3, 0)
remain, as shown in Fig. 9e. The stable manifolds
of the saddle point (x1, 0) are the separatrix curve to
separate the basin of attractions of two fixed points
(x2, 0) and (x3, 0).

The bifurcation diagram Fig. 8 and the motions of
Fig. 9 are characterized by the following parameters:
g1 = 2, α = 0.4, v0 = 2, a = 2, μ0 = 0.1,
Δμ = 0.02. From Eq. (23), Three fixed points is
exactly located at (x1, 0) = (0.184423, 0), (x2, 0) =
(1.1228, 0) and (x3, 0) = (−0.655524, 0), where the
fixed point (x1, 0) is always a saddle point, the fixed
point (x2, 0) is unstable for values of the viscous damp-
ing smaller than c = c1 = Φ(x2) = 0.0519 and
stable for large values. Simultaneously the fixed point
(x3, 0) is unstable for values of the damping smaller
than c = c3 = Φ(x3) = 0.0569 and stable for large
values. Numerical computations are carried out for two
critical values of viscous damping at c2 = 0.05301 and
c4 = 0.05865.

6 Summary and conclusion

In this paper, the local and global bifurcations due to
the Stribeck friction characteristic of an archetypal self-
excited smooth and discontinuous oscillator have been
investigated. It has been found that this system can
admit the complicated bifurcation behaviors such as
the double tangency bifurcation and the bifurcation of
slidinghomoclinic orbit to a saddle,which are governed
by the hyperbolic structure associated with the station-
ary state, depending on the value of parameters α, μ0
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and v0. It has also been shown that the system with
the presence of viscous damping can undergo a sub-
critical Hopf bifurcation from an unstable fixed point
to an unstable limit cycle after making a local exam-
ination of the eigenvalues at the steady state. Formal
investigation in normal form of Hopf bifurcation has
been discussed. Phase portraits have been depicted for
the better understanding the bifurcation behaviors of
the system.

The self-excitedSDoscillator presented in this paper
is being actively studied in twomain directions. Firstly,
further research is required to completely understand
the full bifurcation structure of this self-excited system,
which can be an important friction systemwith geomet-
ric nonlinearity arising in mechanical engineering. The
second pursued direction is to focus on the experimen-
tal research to measure the related friction characteris-
tic for this oscillator. We are currently working in these
directions.
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Appendix

In this appendix, we will focus our attention on the for-
mal investigation of the subcritical Hopf bifurcation of
Sect. 5. The theoremofHopf bifurcation [2] is precisely
introduced here.

Consider the a system

ẋ = fε(x), (40)

where x ∈ Rn , ε is a bifurcation parameter. The system
has an equilibrium x0 for the parameter value ε0. The
system undergoes a Hopf bifurcation, if the following
properties are satisfied:

– Dx fε0(x0) has a simple pair of pure imaginary
eigenvalues (λε0 , λ̄ε0 ) and noother eigenvalueswith
zero real parts.

– The derivative of the real part of the eigenvalues
with respect to the parameter ε evaluated at ε0 has
to be different to zero:

d

dε
(Reλ(ε))

∣∣
ε=ε0

= d �= 0. (41)

If the first Lyapunov value L1 [32] at the bifurcation
parameter value ε0 is different to zero:

l = L1(ε0) �= 0, (42)

then there is a surface of periodic solutions in the cen-
ter manifold which has quadratic tangency with the
eigenspace of (λε0 , λ̄ε0 ) agreeing to second order with
the paraboloid ε = −(l/d)(x2 + y2). Moreover, the
sign of l actually determines the type of the Hopf bifur-
cation, which is supercritical if l < 0 and subcritical if
l > 0.

For a two dimensional system of the form

(
ẋ
ẏ

)
=
(
0 −ω

ω 0

)(
x
y

)
+
(
f (x, y)
g(x, y)

)
(43)

with f (0) = g(0) = 0 and Df (0) = Dg(0) = 0, the
normal form calculation for the parameter l given by
(42) yields

l = 1

16

(
fxxx + fxyy + gxxy + gyyy

)

+ 1

16ω

[
fxy( fxx + fyy) − gxy(gxx + gyy)

− fxx gxx + fyygyy
]
, (44)

where all partial derivatives are evaluated at the bifur-
cation point, i.e., (x, y) = (0, 0).

To investigate the Hopf bifurcation occurring in the
system (22), the eigenvalues λ1,2 obtained in (26) are
of the form

λ
xs
1,2 = Φ(xs) − c

2
±
√(

Φ(xs) − c
)2

4
+ Ψ (xs), (45)

where λ
xs
1,2, s = 2, 3, represent the eigenvalues of the

fixed point xs = (xs, 0) obtained in (23) for the exam-
ined system. We know that Ψ (xs) < 0 from the con-
ditions (27) for s = 2, 3. Assuming the bifurcation
parameter ε = Φ(xs) − c and Ps = −Ψ (xs) > 0, the
eigenvalues take the form

λ
xs
1,2 = ε

2
+
√(ε

2

)2 − Ps . (46)

For the bifurcation value ε = ε0 = 0, the eigenval-
ues at the fixed point are purely imaginary and there
exist no other eigenvalues. The derivative of the real
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part of the eigenvalues with respect to ε evaluated at ε0
yields

d

dε
(Reλxs1,2)

∣∣
ε=ε0

= 1

2
�= 0. (47)

Therefore, two conditions of the Hopf bifurcation
theorem are fulfilled and the Hopf bifurcation occurs.
For investigatingwhether theHopf bifurcation is super-
critical or subcritical, system (22) will be transformed
to the standard form.Under a coordinate transformation

(
z
y

)
=
⎛
⎝0 1√

Ps
1 0

⎞
⎠
(

ξ

η

)
,

(
ξ

η

)
=
(

0 1√
Ps 0

)(
z
y

)
, (48)

we obtain the system in standard form:

(
ξ̇

η̇

)
=
(

0 −√
Ps√

Ps 0

)(
ξ

η

)
+
(
f (ξ, η)

g(ξ, η)

)
, (49)

where

f (ξ, η) = −cξ + (√Ps − 1√
Ps

)
η

+
1√
Ps

η + xs√
( 1√

Ps
η + xs)2 + α2

+
(
μk + Δμea(ξ−v0)

)

×
(
g1 − α + α√

( 1√
Ps

η + xs)2 + α2

)
− xs,

g(ξ, η) = 0.

To undergo the Hopf bifurcation, expression ε0 =
Φ(xs) − c = 0 has to be fulfilled. At the origin of
the space (ξ, η), which is the fixed point (0, 0) of sys-
tem (22), f (0, 0) = 0 and Df (0, 0) = 0. Therefore,
relation (44) can be applied in order to computer the
parameter

lxs = 1

16

(
fξ,ξ,ξ + fξ,η,η

)

+ 1

16
√
Ps

[
fξ,η( fξ,ξ + fη,η)

]

= 1

16
Δμa3e−av0

(
g1 − α + α√

x2s + α2

)

×
(
1 − Δμαxse−av0

Ps(x2s + α2)3/2

)
+ Δμaαe−av0

16P2
s (x2s + α2)5/2

×
(
2x2s − α2 + α√

x2s + α2

)
. (50)

For the values of the parameters mentioned in
Sect. 5, we can numerically get lx2 = 0.01373 > 0 and
lx3 = 0.02089 > 0. Therefore the two Hopf bifurca-
tions occurring in this system is subcritical. According
to the 3.4.2 of [2], the limit cycles generated at theHopf
bifurcations are unstable.
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