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Abstract The pendulum control of the inverted-
pendulum-on-a-cart (IPC) system is one of the most
important issues in nonlinear control theory and has
been widely investigated. Nevertheless, the control
of pendulum tracking and swinging up has often
been addressed separately. In this paper, by combin-
ing the zeroing dynamics and the conventional gra-
dient dynamics, two concise zeroing-gradient (ZG)
controllers (termed, z2g0 controller and z2g1 con-
troller, respectively) are constructed for the IPC sys-
tem. Importantly, the proposed z2g1 controller not only
realizes the simultaneous control of pendulum swing-
ing up and pendulum angle tracking, but also solves
the singularity problem elegantly without using any
switching strategy. Besides, the ZG method is com-
pared with the optimal control method and the back-
stepping method. The theoretical analyses about the
convergence performance of z2g0 and z2g1 controllers
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are further presented. Moreover, the boundedness of
both control input u and its derivative u̇ of the z2g1
controller is proved. Three illustrative examples are
carried out to demonstrate the tracking performance
of z2g0 and z2g1 controllers for the pendulum track-
ing control. In particular, the efficacy and superiority
of z2g1 controller for the control of pendulum tracking
(including swinging up) of the IPC system in conquer-
ing the singularity problem are substantiated by com-
parative results. Furthermore, this paper investigates
the robustness of the proposed ZG controllers (as well
as the ZG designmethod) in the situations of time delay
and disturbance.

Keywords Inverted-pendulum-on-a-cart (IPC)
system · Swing-up control · Tracking control ·
Zeroing-gradient controller · Singularity conquering

1 Introduction

In recent years, the topic of nonlinear control has
attracted more and more attention as well as research
enthusiasm. This is because: on the one hand, the
advent of microprocessors with high performance
has made the implementation of nonlinear controllers
become relatively simple; on the other hand, mod-
ern technologies (such as high-accuracy robots and
high-performance aircrafts) are demanding control sys-
tems with much more stringent design specifications
[1,2]. Many researchers have devoted much effort to
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the development and applications of nonlinear con-
trol methods [1–10]. Because of the inherently nonlin-
ear, unstable, and underactuated characteristics, var-
ious types of inverted-pendulum models have been
widely developed and investigated in both academia
and industry [11–22]. Being a classical control exam-
ple, the celebrated inverted-pendulum-on-a-cart (IPC)
system has been used as a benchmark to test nonlin-
ear control methods [13–17]. Therefore, the research
of control methods for the IPC system has important
theoretical and practical significance.

According to the control purposes of inverted pen-
dulum, the control of the IPC system can be gener-
ally divided into three aspects, i.e., swing-up control
[23,24], stabilization control [25,26], and tracking con-
trol [27,28]. Specifically, the swing-up control is basi-
cally used to swing up the pendulum from the stable
pendant position toward the unstable upward position;
the stabilization (or say, balance) control is to main-
tain the pendulum at its upright position; and the track-
ing control is to achieve the purpose that the cart or
the pendulum can track a desired trajectory, which is
often more difficult to realize than the balance control.
Owing to the important roles of the IPC system, many
control methods have been put forward by researchers.
For example, the dynamics of an inverted pendulum
with delayed feedback control has been studied in [13].
Zhang et al. [29] have investigated and developed an
effective controller design method to achieve the cart
path tracking control on an inverted-pendulum system.
In [14], a Lyapunov-based controller has been devel-
oped to stabilize the inverted pendulum cart system. In
[30,31], fuzzy controllers have been presented for the
stabilization control of inverted pendulum systems. In
addition, Mazenc and Praly [32] have presented a con-
trol law based on the technique consisting of adding
integrators to handle the control problems of the IPC
system. It is worth pointing out that, for almost all
of the aforementioned methods, the initial pendulum
angles of the IPC system are all assumed to be above
the horizontal position or even located near the upright
position with a small angle deviation from the vertical
line, which means that the swing-up part has not been
included in those control schemes. That is to say, the
problem of getting into the vertically upward region,
i.e., the swinging up, has typically been considered and
investigated separately [23,24,33].On the other hand, a
few literatures [17,25,26] have considered such a com-
bined problem, but theymainly focus on addressing the

swing-up control and the stabilization control of the
IPC system, and often require complicated switching
between swinging up and control around the upright
position. To the best of the authors’ knowledge, up to
now, the unified controller has not been presented and
investigated to perform and realize the pendulum track-
ing control and the swing-up control simultaneously.

In recent years, a special class of neural dynamics
has been exploited for the solution of time-varying (or
say, dynamic) problems [34–42].As this neural dynam-
ics method proposed by Zhang et al. zeroes out each
element of the error function, it is named as zeroing
dynamics (also knownasZhangdynamics, ZD)method
[34–37]. Specifically, ZD is designed on the basis of
an indefinite matrix-/vector-valued error function, and
takes full advantage of the time-derivative informa-
tion of time-varying coefficients. The ZD method is
an error-based dynamic method, of which the core is
the ZD design formula that forces each element of the
error function to converge to zero exponentially. Such
an idea can actually be found in the control field, i.e.,
forcing the error between the actual output of the con-
sidered systemand the desired output to be zero (or near
zero in practice) [41]. Differing from the ZD method,
the conventional gradient dynamics (GD) is designed
on the basis of a scalar-valued nonnegative error func-
tion (termed energy function). The GD method is an
energy-based minimization method, of which the core
is the GD design formula such that the minimum point
of the energy function (i.e., a form of error function)
can be reached along the negative gradient direction
[43]. Besides, the GD method designed intrinsically
for the solution of static (or say, time-invariant) prob-
lems has been extended to time-varying problems solv-
ing [35,37,43–48]. Lately, it has been found that, by
means of the GD method, the division operation can
be transformed into a generalized version containing
no division, which is actually a time-varying mini-
mization problem [44]. Thus, the GD method can be
used to design a singularity-conquering controller in
a division-free manner, which gets rid of the poten-
tial possibility of generating singularities, and thus
remains valid at the singularities encountered during
the tracking-control process. It is worth pointing out
that both of the two methods aim at forcing the error
functions to be zero, which is essentially consistent
with the objective of tracking control. By following the
above control strategies about the ZD andGDmethods,
from the viewpoint of dynamic problems solving, the
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controllers are designed for the control of pendulum
tracking (including swinging up) of the IPC system in
a new manner. To be more specific, in this paper, by
combining the ZD and GD methods together, which is
termed zeroing-gradient (ZG) method, two nonlinear
controllers are then designed for the pendulum con-
trol of the IPC system; i.e., the so-called ZG con-
trollers. Moreover, according to the numbers of times
of utilizing ZD and GD methods, such two controllers
are referred to as z2g0 controller and z2g1 controller,
respectively. By employing the ZD method twice and
without using the GD method, the z2g0 controller is
thus obtained. By contrast, the z2g1 controller is devel-
oped by using the ZDmethod twice and theGDmethod
once.

The control objective of this work is to swing up
the pendulum from the stable pendant position to the
unstable upright position, and then let the pendulum
track a desired trajectory effectively. As we may know,
there usually exists a control singularity when the pen-
dulum is horizontal. This singularity problem would
directly lead to the failure of swinging up for the con-
ventional controllers,which thusmakes the control pro-
cess complicated to realize. To address the singularity
problem, a global stabilization strategy for an inverted
pendulum has been presented in [26], which uses actu-
ator saturation to handle the singularity, and switches
the reference position to realize the global stabilization
of the IPC system. However, though the IPC system
with singularity can be controlled by using the stabi-
lization control, that approach may cost much in terms
of implementation and complicate the stability analy-
sis. Compared with the stabilization control strategy,
the singularity-conquering ZG controller proposed in
this paper not only realizes the simultaneous control of
pendulum swinging up and pendulum angle tracking,
but also solves the singularity problem elegantly in a
unified form and without using any switching strategy.
Besides, it is worth pointing out here that this paper
mainly focuses on designing and investigating a ZG
controller to achieve the control of pendulum track-
ing (including swinging up) instead of the stabilization
control.

2 ZG control method and related work

In this section, for better readability, the basic princi-
ple of the proposed ZG control method as well as the
general design procedure of a singularity-conquering

ZG controller is firstly discussed in detail. Afterward,
the related work is introduced, and the comparisons
between the ZG control method and the optimal con-
trol method are presented.

2.1 ZG control method

For better illustrating the basic principle of the pro-
posed ZG control method as well as the general design
procedure of a singularity-conquering ZG controller,
the multiple-input and multiple-output nonlinear sys-
tem is taken as an illustrative example. Consider the
following multiple-input and multiple-output (MIMO)
nonlinear system:

{
ẋ = f(x,u),

y = h(x,u),

where the system state vector x = [x1, x2, . . . , xn]T ∈
R
n , the system control input vector u = [u1, u2, . . . ,

um]T ∈ R
m , and the system output vector y = [y1,

y2, . . . , ym]T ∈ R
m . f(x,u) = [ f1(x,u), f2(x,u), . . . ,

fn(x,u)]T ∈ R
n andh(x,u)=[h1(x,u), h2(x,u), . . . ,

hm(x,u)]T ∈ R
m both are the continuous and smooth

function vectors, and yd = [yd1, yd2, . . . , ydm]T ∈ R
m

is the given smooth and bounded desired output vec-
tor. The tracking control objective of the above system
is to design a controller such that the system output
vector y tracks the desired output vector yd and the
corresponding tracking-error vector e = y−yd asymp-
totically approaches zero (or near zero in practice). In
order to design a ZG controller for the tracking control
of MIMO nonlinear system, the general framework of
ZG design method is presented as follows.

The first step of ZG design method: According to the
ZG controller design method, one needs to repeatedly
construct a series of zeroing functions (ZFs)with regard
to y1 and yd1, and apply the ZD design formula v̇ =
−λv, until the expansion of ZF includes the explicit
expression of u (specifically, including the component
of u), such as the ϕ1th ZF z1ϕ1(x,u) with ϕ1 being
a positive integer. By this time, the first step of ZG
design method is finished. Thus, define the ZF vector
in the first step as below (which is actually a scalar in
this case):

z1(x,u) = z1ϕ1(x,u) ∈ R.
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It is worth pointing out here that if the explicit expres-
sion of u can still not be obtained, no matter how many
ZFs are constructed, such a ZG controller cannot be
designed for the nonlinear system to track the desired
output yd1. Then, proceed to the second step.

The second step of ZG design method: Construct a
series ofZFswith regard to y2 and yd2, and apply theZD
design formula, until the expansion of ZF includes the
explicit expression of u, such as the ϕ2th ZF z2ϕ2(x,u)

with ϕ2 being a positive integer. If the explicit expres-
sion of u can still not be obtained, no matter how many
ZFs are constructed, such a ZG controller cannot be
designed for the nonlinear system to track the desired
output yd2. Similar to the first step, define the following
ZF vector in the second step:

z2(x,u) = [
z1ϕ1(x,u), z2ϕ2(x,u)

]T ∈ R
2.

The third step of ZG design method: By following
the above two steps, repeatedly construct a series of
ZFs with regard to y3 and yd3 and apply the ZD design
formula. At last, the ϕ3th ZF z3ϕ3(x,u) with ϕ3 being
a positive integer is obtained. Similar to the above two
steps, the ZF vector in the third step can be defined as

z3(x,u) = [
z1ϕ1(x,u), z2ϕ2(x,u), z3ϕ3(x,u)

]T ∈ R
3.

Similarly, if the explicit expression of u can still not
be obtained, no matter how many ZFs are constructed,
such a ZG controller cannot be designed for the non-
linear system to track the desired output yd3 . . .

The mth step of ZG design method: Similar to the
above design procedures, the ϕm th ZF zmϕm (x,u) with
regard to ym and ydm can be obtained, and then the
following ZF vector in the mth step is defined:

zm(x,u) = [
z1ϕ1(x,u), z2ϕ2(x,u), z3ϕ3(x,u), . . . ,

zmϕm (x,u)
]T ∈ R

m .

Similar to the above (m−1) steps, if the explicit expres-
sion of u can still not be obtained, no matter how many
ZFs are constructed, such a ZG controller cannot be
designed for the nonlinear system to track the desired
output ydm . Then, proceed to the last step.

The last step of ZG design method: First of all, an
energy function is defined as ε = ‖zm‖22/2. Then,
the GD design formula is adopted as u̇ = −γ ∂ε/∂u.
Finally, by substituting ε into the GD design formula,
a ZG controller in the form of u̇ can be obtained for

the tracking control of MIMO nonlinear system. It is
worth particularly pointing out that a ZG controller in
the form of u (specifically, a ZD controller) can also
be obtained without using the last step of ZG design
method and that the above ZG controller in the form of
u̇ can conquer the singularity problem effectively.

2.2 Related work

Recently, a neural network-based adaptive dynamic
surface control has been presented in [27] for the pen-
dulum angle tracking control of the IPC system. There
are also a number of other control techniques available
for tracking control of the IPC system, such as optimal
control [28], backstepping control [49], proportional-
integral-derivative control [50], and sliding mode con-
trol [51]. However, it is worth pointing out that most
of those methods are just designed for the cart path
tracking control of the IPC system. To the best of the
authors’ knowledge, the investigation on the simulta-
neous control of pendulum swinging up and pendulum
angle tracking has rarely been studied before, which is
exactly themainmotivation of the present research. For
readers’ convenience, the detailed comparisons of the
ZG control method with the optimal control method as
well as the backstepping control method will be car-
ried out systematically in ensuing Sect. 4 to clarify the
differences and advantages of the proposed ZG control
method.

Moreover, in the authors’ previous studies, the ZD
method and GD method have generally been exploited
for nonlinear problems solving independently and com-
paratively, e.g., [41,44,46], but been hardly ever con-
sidered combining them together for the control of pen-
dulum tracking (including swinging up) of IPC sys-
tem. Specifically, in [41], the applications of the Z-type
dynamicmethod (i.e., the ZDmethod) to solve the pop-
ulation control problem of the classical predator–prey
Lotka–Volterra model have been illustrated; in [44], a
GD-aided IOL (input–output linearization) controller
has been proposed for the tracking control of affine-
form nonlinear system with loose condition on relative
degree; in [46], Zhang neural dynamics and gradient
neural dynamics have been presented and compared
for solving online nonlinear time-varying equations.
Differing from the previous work, in this paper, the ZD
method and GD method are combined to utilize the
advantage of each method as well as the superiority of
their combination for the pendulum tracking control of
the IPC system.
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Fig. 1 Schematic of IPC
system
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3 Mathematical model of IPC system

It is known that the IPC system is an inherently unsta-
ble system with nonlinear and underactuated charac-
teristics. This system is widely used as a conventional
mathematical model of control in academic researches.
Also, in this paper, the control of pendulum tracking
(including swinging up) is investigated on the basis of
the mathematical model of the IPC system as shown in
Fig. 1. The standard assumptions are considered, i.e.,
massless rod and point masses. Let (mc, p) be the mass
and position of the cart, which can move freely on the
horizontal plane. In addition,mp is the mass of the pen-
dulum, concentrated in the ball, θ is the angle between
the vertical line and the pendulum (positive clockwise),
and l is the length of the pendulum. In some practical
applications, the investigated system may also have a
rotation stiffness (denoted by R), which can be mathe-
matically formulated as R = M/θ = aI/θ , where M
is the applied moment, I is the moment of inertia, a
is the angular acceleration, and θ is the rotation angle.
Evidently, there exists a certain relationship between
the rotation stiffness R and the moment of inertia I . By
utilizing the Newton’s second law or Euler–Lagrange
formulation, the dynamics of the complete system can
be obtained as[
mp + mc mpl cos θ

mpl cos θ I + mpl2

] [
p̈
θ̈

]
=

[
mpl θ̇2 sin θ − b ṗ

mpgl sin θ

]

+
[
u
0

]
, (1)

where g is the gravitational acceleration constant, b
is the coefficient of viscous friction for motion of the

cart, and u is the control input of the IPC system, cor-
responding to the horizontal force applied to the cart.
Note that, for the convenience of further research, it is
assumed that the moment of inertia (or say, the rotation
stiffness) of the IPC system is negligible (i.e., I ≈ 0),
as done in [50,52,53]. According to Eq. (1), the state
equations of the IPC system can be expressed as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = u − bx2 + mp(lx
2
4 − g cos x3) sin x3

mc + mp sin
2 x3

,

ẋ3 = x4,

ẋ4 = (mc + mp)g sin x3 − (u − bx2 + mplx
2
4 sin x3) cos x3

l(mc + mp sin
2 x3)

,

(2)

where x1 = p, x2 = ṗ, x3 = θ , and x4 = θ̇ are selected
as state variables. Evidently, x2 and x4 correspond to
the velocity of the cart and the angular velocity of the
pendulum, respectively. In addition, let the output of the
IPC system y = θ = x3. This paper aims at developing
a control law that can combine swing-up control and
tracking control of the pendulum for IPC system (2).

4 Controller design for IPC system

In the section, based on the ZD and GD methods, z2g0
and z2g1 controllers are designed for the pendulum
tracking control of IPC system (2). Throughout the rest
of the paper, the desired trajectory yd and its derivatives
up to a sufficiently high order are assumed to be known
and bounded.
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4.1 Design of z2g0 controller

In order to construct the z2g0 controller, the ZDmethod
is exploited two times, while the GD method is not
used. Specifically speaking, the following three steps
are adopted to develop the z2g0 controller.

In the first step, by following ZD method [35–37],
the first zeroing function (ZF) is defined as

v1 = y − yd = x3 − yd. (3)

Then, the ZD design formula is employed:

v̇1 = −λ1v1, (4)

where λ1 > 0 ∈ R stands for a positive design
parameter used to scale the convergence rate of the
ZD solution. Substituting (3) into (4), one can have
ẋ3 − ẏd = −λ1(x3 − yd).

In the second step, to generate a direct relationship
between the output y and the input u, the second ZF
is defined as v2 = ẋ3 − ẏd + λ1(x3 − yd). Afterward,
applying the ZD formula (i.e., v̇2 = −λ2v2) oncemore,
one can obtain

ẋ4− ÿd+λ1(x4− ẏd) = −λ2 (x4 − ẏd + λ1(x3 − yd)) .

(5)

Finally, defining f1 = ÿd + (λ1 + λ2)(ẏd − x4) +
λ1λ2(yd−x3), which is a function of the state variables,
and combining equations (2) and (5), one can obtain a
nonlinear controller in the form of u:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = ÿd + (λ1 + λ2)(ẏd − x4) + λ1λ2(yd − x3),

f2 = l(mc + mp sin
2 x3),

f3 = (mc + mp)g sin x3,

f4 = bx2 − mplx
2
4 sin x3,

u = f4 − f1 f2 − f3
cos x3

.

(6)

For presentation convenience, the above controller can
be termed z2g0 controller, in view of the fact that the
ZD method is exploited twice and without using the
GD method during the controller design procedure.

Through the above three steps, a concise z2g0 con-
troller is obtained for the tracking control of IPC system
(2). This controller design strategy can also be applied
to many other nonlinear systems. It is noted that, simi-
lar to other conventional controllers, the z2g0 controller

has a fundamental drawback, i.e., (6) has singularities
at x3 = θ = (k + 1/2)π with k = 0,±1,±2, . . ..
In other words, when the pendulum is horizontal, con-
troller (6)will collapse. Thismeans that z2g0 controller
(6) cannot achieve the swing-up control.

4.2 Design of z2g1 controller

To remedy the basic drawback (i.e., the singularity
problem) of z2g0 controller (6), one can adopt the ZD
and GD methods in a unified manner [54] and then
propose the z2g1 controller for the pendulum control
of IPC system (2).

Specifically, given z2g0 controller (6), one can first
define h = cos x3(u − f4) + ( f1 f2 − f3). Evidently,
in order to implement the pendulum control, h should
theoretically be zero. Subsequently, energy function
φ = h2/2 is constructed accordingly. Finally, employ-
ing the GD design formula, i.e., u̇ = −γ ∂φ/∂u, with
γ > 0 ∈ R used to scale the convergence rate of the
GD solution, one can obtain a nonlinear controller in
the form of u̇:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = ÿd+(λ1 + λ2)(ẏd − x4)+λ1λ2(yd − x3),

f2 = l(mc + mp sin
2 x3),

f3 = (mc + mp)g sin x3,

f4 = bx2 − mplx
2
4 sin x3,

u̇ = −γ cos x3h = −γ cos x3 (cos x3(u − f4)

+ ( f1 f2 − f3)) ,

(7)

for the pendulum control of IPC system (2). Evidently,
such a controller is designed by combining the ZD and
GD methods, i.e., containing two procedures. Specifi-
cally, the ZD method is used twice and the GD method
is used once. Thus, controller (7) can be termed z2g1
controller for comparative purposes. Intuitively, z2g1
controller (7) has no division operation and thus has
no singularity. That is to say, the z2g1 controller can
conquer the singularity problem, which means that the
pendulum can pass the horizontal position. As a result,
z2g1 controller (7) can achieve the pendulum tracking
control and swing-up control simultaneously.

Remark 1 Asmentioned above, coefficients λ1, λ2 and
γ are used as the design parameters. It is evident that the
ZG controllers are designed with only one restriction,
i.e., design parameters being larger than zero. Basi-
cally speaking, the control of a ZG controller can be
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effective, provided that such a restriction is satisfied.
Moreover, the basic principle on the choice of design
parameters can be outlined as follows. In general, if the
values of design parameters become larger, the conver-
gence rate of control process is faster and the track-
ing error is smaller. Thus, the control effectiveness is
directly proportional to the values of design parame-
ters; in other words, the tracking error is inversely pro-
portional to the values of design parameters. Thus, the
values of design parameters need to be set sufficiently
large or selected appropriately for simulative purposes
[35,44]. In the numerical tests for a specific example,
one can try different values of the design parameters
to show their effects on the tracking performance and
then to determine their optimal values or intervals for
usage. Besides, in the authors’ previous work [44] as
well as in this paper, the singularity-conquering prop-
erty of the GD method has been theoretically analyzed
and numerically substantiated. Theoretically speaking,
when the value of the GD design parameter tends to
infinity, the upper bound of the tracking error of the
GD-aided controller would converge toward zero. On
the other hand, from Theorem 1 in the ensuing Sect. 5,
one can know that the tracking error of the IPC sys-
tem equipped with the z2g0 controller converges to
zero exponentially. Therefore, it can be concluded that,
even though the control (6) (i.e., the z2g0 controller) is
modified as equation (7) by using the GD method, the
characteristics of control (6) can still be kept up, with
the GD design parameter being sufficiently large.

Remark 2 For better understanding and comparative
purposes, the differences between the ZG control
method and the optimal control method are presented
as below [28,41,44,54–58].

1. The optimal control method is related to finding
a control strategy that drives a dynamic system to
a desired solution in an optimal manner; e.g., find-
ing an optimal controller such that the actual output
tracks a desired trajectory and that a predefined per-
formance index (or cost function) with an integral
form on the whole time interval is minimized. In
contrast, the proposed ZG control method is based
on the combination of ZD andGDmethods. Specif-
ically, the ZD method is an error-based dynamic
method, of which the core is the ZD design formula
that forces the instantaneous error function (termed
zeroing function) to converge to zero exponentially;
the GD method is an energy-based minimization

method, of which the core is the GD design for-
mula such that the minimum point of the energy
function can be reached along the negative gradi-
ent direction.

2. The design of optimal control method, though
mathematically elegant, is usually obtained offline
and requires the complete knowledge of system
dynamics to be known on the whole time inter-
val, e.g., [0,+∞). That is to say, the computation
involved in the optimal control method includes
not only the present and previous data but also
the future data. However, it is usually impossible
that the future information is known at present time
instant in reality. As a consequence, the systemmay
be hard to work accurately in an optimal manner at
present time instant. Besides, in view of the uncer-
tainties in system dynamics, the unknown system
parameters need to be updated/estimated online by
using the tracking error, thereby making the appli-
cation of optimal control to adaptation potentially
less satisfactory. In contrast, the design of ZG con-
trol method is just based on the present (or previ-
ous) data, which may thus be more practical and
applicable in the control field.

3. To design an optimal controller, the performance
functional and constraint conditions are firstly
selected and determined. Secondly, the Hamilton
function of system is constructed. Thirdly, accord-
ing to the necessary conditions of obtaining the
functional extremum, one can obtain several equa-
tions, e.g., the governing equation and the canon-
ical equation. Fourthly, solve these equations and
then determine the integral constants by using the
boundary conditions. Finally, calculate the optimal
control and its optimal trajectory. In contrast, to
design a ZG controller, the ZG control method only
needs to repeatedly construct a series of zeroing
functions and apply the simple ZD design formula
until the expansion of ZD design formula includes
the explicit expression of control input u. Then,
a ZG controller in the form of u (specifically, a
ZD controller) can be obtained without using the
GDmethod. To obtain a singularity-conquering ZG
controller, one can further define an energy func-
tion and employ theGDdesign formula to construct
a ZG controller in the form of u̇. Evidently, the
design procedure of an optimal controller is gener-
ally more complex than that of a ZG controller.
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4. As a special case of optimal control, the bang-bang
control has been studied extensively, of which the
main characteristic is that each component of the
control vector is selected and switched between
the boundary values of control field. However, the
bang-bang control might possibly cause an unde-
sired oscillation problem, as the optimal control
is switched frequently from a boundary value to
another one (though it may have better effective-
ness). Evidently, the optimal control generated is
not smooth. In contrast, with the time-derivative
information guaranteed and exploited, the control
result generated by the ZG control method is usu-
ally smooth. Thus, theZGcontrolmethod can avoid
the above problem effectively.

5. In linear quadratic optimal control system, the de-
sign procedure of optimal control method involves
the Riccati matrix differential equation solving,
where the computationally expensive matrix inver-
sion is required and may result in control sin-
gularities. Moreover, the Riccati matrix differen-
tial equation is a type of nonlinear differential
equation, which is generally difficult to obtain
an analytical solution or is relatively complex to
obtain a numerical solution, especially for compli-
cated high-dimensional systems. Though the Ric-
cati equation for the linear quadratic optimal con-
trol could be solved before the control performing,
its solution is obtained offline, which may be less
desirable for real-time control systems in practice.
In contrast, the above problems do not exist in the
design and implementation of ZG control method.

Remark 3 For readers’ convenience and also for com-
parison, the main design steps in the backstepping
method, as well as the differences between the ZG
method and the backstepping method, are presented
as below [17,35,41,54,59–61].

1. To lay a basis for further comparison with the ZG
method, the main design steps in the backstep-
ping method are outlined as follows. To design a
backstepping controller, the whole system is firstly
divided into several subsystems. Secondly, an error
or regulatory variable is defined, and a Lyapunov
function is designed accordingly. Thirdly, a vir-
tual control law is chosen to make the derivative
of the Lyapunov function negative definite. A sta-

bilizing function, which equals the virtual control,
is then found to stabilize the subsystem. The above
design procedure is repeated till the last subsystem.
Besides, the actual control law can be designed in
the same manner. Evidently, the control law design
is a recursive process in backstepping control [17].

2. In the design of linear systems, it can be found
that the ZG method and the backstepping method
have a certain degree of connection. However, in
the design of nonlinear systems, the distinctions
between such two methods are more than their
connections. For instance, in the design of the ZG
method, the ZG controller is constructed with only
one negligible restriction (i.e., with design param-
eters larger than zero). However, the Lyapunov
function has to be introduced in each step in the
design of the backstepping method, and the deriva-
tion process can be much more complex than that
in the ZGmethod. Besides, there are many system-
atic/parametric requirements and limitations in the
backstepping control.

3. The usage of ZG method is simple yet effective,
which is reflected in the following facts. i) It does
not need to introduce Lyapunov function during the
design process; and ii) it does not need to define
any virtual control. In contrast, with the increase
of design steps, the backstepping method becomes
more and more complicated, due to the Lyapunov
functions introduced in each design step, their time-
derivative derivation, and the concept of virtual
control.

4. In the design of control systems, the ZGmethod can
solve the singularity problem successfully. In con-
trast, the backstepping method may introduce the
singularity problem but cannot solve it effectively.

Note that, in the authors’ previous work [54], a ZG
stabilization controller has been designed by the ZG
method for stabilization control of a bilinear system.
Throughan illustrative example, the numerical compar-
ison of the ZG controller with a backstepping controller
has further illustrated the superiority of the proposed
ZG controller (as well as the ZG method). Please see
Sect. 2 of [54] for more details. Besides, being an inter-
esting and challenging issue, the numerical comparison
of theZGcontrollerwith anoptimal controller designed
by the optimal strategy can be a future research direc-
tion of this work.
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Control of pendulum tracking (including swinging up) of IPC system 9

5 Theoretical analyses on z2g0 controller

This section provides the theoretical analyses on the
convergence performance of z2g0 controller (6) for
IPC system (2). Specifically, for the z2g0 controller,
the following theoretical result on its convergence per-
formance is obtained. In what follows, ε = y − yd =
x3 − yd = θ − yd represents the tracking error.

Theorem 1 For a continuously differentiable and bou-
nded desired trajectory yd, starting from a bounded
initial state [x1(0), x2(0), x3(0), x4(0)], the tracking
error ε of IPC system (2) equipped with z2g0 con-
troller (6) converges to zero exponentially, provided
that cos x3 �= 0, ∀t ∈ [0,+∞).

Proof Defining v = [v1, v2]T ∈ R
2 (with superscript

T denoting the vector or matrix transposition), one can
choose a Lyapunov function candidate as

V = 1

2
‖v‖22 = 1

2
vTv = 1

2

(
v21 + v22

)
≥ 0,

where ‖ · ‖2 represents the Euclidean norm of a vector.
Because V > 0 for v �= 0, and V = 0 only for v = 0
(i.e., v1 = 0 and v2 = 0), V is positive definite. Then,
one has its time derivative

V̇ = dV

dt
= v1v̇1 + v2v̇2 = −λ1v

2
1 − λ2v

2
2 ≤ 0, (8)

which is negative definite, because V̇ < 0 for v �= 0,
and V̇ = 0 only for v = 0. In addition, if ‖v‖2 → ∞,
the Lyapunov function candidate V = ‖v‖22/2 → ∞.
By the Lyapunov stability theory, v converges to zero.
Given that ε = y − yd = v1 is an element of v, the
tracking error ε converges to zero.

Next, the exponential convergence performance of
the tracking error is proved as follows. In practical
applications, there exist two cases for Eq. (8), i.e.,
λ1 ≥ λ2 and λ1 < λ2. When λ1 ≥ λ2 > 0, by defining
λ1 = λ2 + Δλ, with Δλ ≥ 0 ∈ R, Eq. (8) can be
rewritten as

V̇ = −λ1v
2
1 − λ2v

2
2 = −λ2

(
v21 + v22

)
− Δλv21 ≤

= −λ2

(
v21 + v22

)
− λ2vTv = −2λ2V,

so that

0 ≤ 1

2
‖v‖22 = V ≤ V (0) exp (−2λ2t) , ∀t ≥ 0.

This shows that v exponentially converges to zero with
the rate 2λ2. When 0 < λ1 < λ2, one can analogously
have V̇ ≤ −2λ1V, and then

0 ≤ 1

2
‖v‖22 = V ≤ V (0) exp (−2λ1t) ,∀t ≥ 0,

which implies that v tends to zero exponentially with
the rate 2λ1. Summarizing the above analyses, one can
conclude that the tracking error ε = v1 (as an element
of v) is exponentially convergent to zero, which leads
to exponentially convergent tracking for IPC system
(2). The proof is thus completed. ��

6 Theoretical analyses on z2g1 controller

In this section, the convergence performance of z2g1
controller (7) for the pendulum control of IPC system
(2) is proved. Analogously, one can define the tracking
error as ε = y − yd. Moreover, based on controllers
(6) and (7), it can be readily found that the desired
solution (or say, optimal solution) of z2g1 controller
(7) is u∗ = f4 − ( f1 f2 − f3)/ cos x3. Then, for z2g1
controller (7), the following theoretical results on its
convergence performance are obtained.

Theorem 2 For a continuously differentiable and bou-
nded desired trajectory yd, starting from bounded ini-
tial state [x1(0), x2(0), x3(0), x4(0)] and control input
u(0), the following results about IPC system (2),
equipped with z2g1 controller (7), are achieved.

– For the case of cos x3 �= 0 (i.e., the non-singularity
case), the tracking error ε of IPC system (2) con-
verges toward or stays within the error bound

�
√

η2

λ1λ2γ η1lmc
,

provided that |u̇∗| ≤ �, ∃0 ≤ � < +∞, and η1 ≤
cos2 x3 ≤ η2, ∃0 < η1 ≤ η2 ≤ 1.

– For the case of cos x3 = 0 (i.e., the singularity
case), the tracking error ε of IPC system (2) is
bounded.

Proof For the case of cos x3 �= 0 (i.e., the non-
singularity case), one can define a solution error of
controller (7) as ε = u − u∗ = u − f4 + ( f1 f2 −
f3)/ cos x3. Apparently, it can be further deduced
that u̇ = −γ cos x3 (cos x3(u − f4) + ( f1 f2 − f3)) =
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10 Y. Zhang et al.

−γ cos2 x3ε. Consequently, one can have the deriva-
tive of ε as ε̇ = u̇ − u̇∗ = −γ cos2 x3ε − u̇∗. Defining
a Lyapunov function candidate as L = ε2/2 ≥ 0, one
then obtains its time derivative

L̇ = dL

dt
= εε̇ = −γ cos2 x3ε

2 − εu̇∗. (9)

It follows from Eq. (9) that L̇ has two terms, i.e.,
−γ cos2 x3ε2 and −εu̇∗. For the first term, given
cos2 x3 ≥ η1, −γ cos2 x3ε2 ≤ −γ η1ε

2 holds true. For
the second term, according to the Cauchy’s inequality
[62], one can obtain −εu̇∗ ≤ |ε||u̇∗| ≤ �|ε|. Then, the
following inequality holds:

L̇ = −γ cos2 x3ε
2 − εu̇∗ ≤ −γ η1ε

2 + � |ε|
= − |ε| (γ η1 |ε| − �) . (10)

During time evolution of solution error ε, there exist
three situations for (10): i) γ η1|ε|−� > 0; ii) γ η1|ε|−
� = 0; and iii) γ η1|ε| − � < 0. The detailed analyses
are presented as below.

– In the first situation (i.e., γ η1|ε| − � > 0), L̇ < 0
which means that ε tends to zero (i.e., u tends to
u∗) with time.

– In the second situation (i.e., γ η1|ε| − � = 0, a
so-called ball surface), L̇ ≤ 0 which means that ε

tends to zero (i.e., u tends to u∗) or stays on the
surface with |ε| = |u − u∗| = �/γ η1. In other
words, ε would not go outside the ball of �/γ η1 in
this situation.

– In the third situation (i.e., γ η1|ε|−� < 0, inside the
ball of �/γ η1), L̇ is less than a positive constant,
comprising sub-situations L̇ ≤ 0 and 0 < L̇ ≤
−|ε|(γ η1|ε|−�). If L̇ ≤ 0 holds, then it returns to
the second situation. Then, let us analyze the worst
situation, i.e., 0 < L̇ ≤ −|ε|(γ η1|ε| − �). In this
situation, L = ε2/2 and |ε| would increase with
time, which means that γ η1|ε| − � increases as
well. As a result of the worst situation, there exists
a certain time instant such that γ η1|ε| − � = 0,
which returns to the second situation, i.e., L̇ ≤ 0.
In brief, ε would not go outside the ball of �/γ η1
in any situation.

Summarizing the above three situations, one can
conclude that the solution error ε of z2g1 controller
(7) is upper bounded by �/γ η1, i.e.,

lim sup
t→+∞

|ε| = lim sup
t→+∞

∣∣u − u∗∣∣ ≤ �

γ η1
. (11)

By following state Eq. (2) and the design procedure
of z2g1 controller (7), it can be obtained that

v̇2 + λ2v2 = ẋ4 − f1 = f3 + ( f4 − u) cos x3
f2

− f1

= −cos x3
f2

ε. (12)

In addition, one canhave v̇2+λ2v2 = v̈1+(λ1+λ2)v̇1+
λ1λ2v1. Considering ε = v1 and Eq. (12), one can fur-
ther have (ε̈ + (λ1 + λ2)ε̇ + λ1λ2ε) f2/ cos x3 = −ε.

Therefore, it follows from (11) that

lim sup
t→+∞

∣∣∣∣(ε̈ + (λ1 + λ2)ε̇ + λ1λ2ε)
f2

cos x3

∣∣∣∣
= lim sup

t→+∞
|ε| ≤ �

γ η1
.

Taking into account that 0 < lmc ≤ f2 = l(mc +
mp sin2 x3) ≤ l(mc + mp) and 0 < | cos x3| ≤ √

η2,
one then obtains

lim sup
t→+∞

∣∣∣∣(ε̈ + (λ1 + λ2)ε̇ + λ1λ2ε)
lmc√

η2

∣∣∣∣
≤ lim sup

t→+∞

∣∣∣∣(ε̈ + (λ1 + λ2)ε̇ + λ1λ2ε)
f2

cos x3

∣∣∣∣ ≤ �

γ η1
,

which leads to

lim sup
t→+∞

|(ε̈ + (λ1 + λ2)ε̇ + λ1λ2ε)| ≤ �
√

η2

γ η1lmc
. (13)

For an enough large time instant te, (13) reduces to

|(ε̈(te) + (λ1 + λ2)ε̇(te) + λ1λ2ε(te))| ≤ �
√

η2

γ η1lmc
.

According to the Gronwall’s inequality [63], the above
formula can be reformulated as |ε(te)| ≤ �

√
η2/(λ1λ2

γ η1lmc) or, equivalently,

lim sup
t→+∞

|ε| ≤ �
√

η2

λ1λ2γ η1lmc
,

by considering te → +∞.
For the case of cos x3 = 0 (i.e., the singularity case),

one can readily obtain limcos x3→0 u̇ = 0, because
u̇ = −γ cos x3 (cos x3(u − f4) + ( f1 f2 − f3)). As a
result, the control input at the time instant of singular-
ity ts is equal to the one at the previous time instant
ts− , i.e., u(ts) = u(ts−). Analogously, one can have
u(ts) = u(ts+) with ts+ being after the time instant
of singularity ts. Note that, at the time instant ts− , the
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Control of pendulum tracking (including swinging up) of IPC system 11

control input u(ts−) is bounded, which implies that
u(ts+) = u(ts) = u(ts−) is bounded. When the input
is bounded, the output y of IPC system (2) is also
bounded. Then, for the bounded desired trajectory yd,
the tracking error ε = y − yd is bounded at the time
instants ts− , ts and ts+ . In other words, by means of the
z2g1 controller, the singularity problem is conquered
successfully. This implies that the pendulum can pass
the horizontal position and achieve the swing-up con-
trol. After passing the singularity, the tracking error
converges toward an error bound again. The proof is
now completed. ��

According to Theorem 2, one can get the result
that the tracking error of IPC system (2) equipped
with controller (7) is globally convergent to the ball of
�
√

η2/(λ1λ2γ η1lmc). This means that, when design
parameters λ1, λ2, and/or γ are chosen to be infinite,
the tracking-error bound diminishes to zero. However,
Theorem 2 shows that the tracking error is just asymp-
totically convergent, which may be less acceptable in
applications since it requires an infinitely long time
period to achieve the tracking control. Actually, by
choosing a relatively loose upper bound, the tracking
error can be proved here to be globally and exponen-
tially convergent. The important theoretical results and
analysis are given as below.

Theorem 3 For a continuously differentiable and bou-
nded desired trajectory yd, starting from bounded ini-
tial state [x1(0), x2(0), x3(0), x4(0)] and control input
u(0), the following results about IPC system (2),
equipped with z2g1 controller (7), are achieved.

– For the case of cos x3 �= 0 (i.e., the non-singularity
case), the tracking error ε of IPC system (2) expo-
nentially converges toward or stays within the error
bound

�
√

η2

αλ1λ2γ η1lmc

with the weighting parameter α ∈ (0, 1), provided
that |u̇∗| ≤ �, ∃0 ≤ � < +∞, and η1 ≤ cos2 x3 ≤
η2, ∃0 < η1 ≤ η2 ≤ 1.

– For the case of cos x3 = 0 (i.e., the singularity
case), the tracking error ε of IPC system (2) is
bounded.

Proof For the case of cos x3 �= 0 (i.e., the non-
singularity case), from (10), it can be readily obtained
that

L̇ ≤ −γ η1ε
2 + � |ε| = −(1 − α)γ η1ε

2

+
(
−αγ η1ε

2 + � |ε|
)

, (14)

where parameter α ∈ (0, 1) is referred to as a loosing
ratio. Evidently, on the right side of (14), the first term
−(1 − α)γ η1ε

2 ≤ 0 holds all the time. Additionally,
regarding the second termon the right side of (14), there
exist two sub-situations, i.e., −αγ η1ε

2 +�|ε| ≤ 0 and
−αγ η1ε

2 + �|ε| > 0.
When −αγ η1ε

2 + �|ε| ≤ 0 [i.e., |ε| ≥ �/(αγ η1)],
one can have

L̇ ≤ −(1 − α)γ η1ε
2 = −2(1 − α)γ η1L .

Solving the abovedifferential inequality, one canobtain

1

2
ε2 = L ≤ L(0) exp (−2(1 − α)γ η1t)

= 1

2
ε2(0) exp (−2(1 − α)γ η1t) ,

which leads to
�

αγ η1
≤ |ε| ≤ |ε(0)| exp (−(1 − α)γ η1t) , ∀t ∈ [0, tc] ,

(15)

where the convergence time tc = ln (αγ η1|ε(0)|/�) /

((1 − α)γ η1). This means that |ε| exponentially con-
verges to �/(αγ η1) with the rate (1 − α)γ η1.

When −αγ η1ε
2 + �|ε| > 0 [i.e., |ε| < �/(αγ η1)],

ε stays within the new ball of �/(αγ η1). The analysis
is similar to that of the third situation of equation (10)
in Theorem 2.

In light of the above analysis, the results are sum-
marized as follows.

– If |ε(0)| ≥ �/(αγ η1), then

|ε|
{

≤ |ε(0)| exp (−(1 − α)γ η1t) , ∀t ∈ [0, tc] ,

≤ �/(αγ η1), ∀t ∈ [tc,+∞) .

– If |ε(0)| ≤ �/(αγ η1), then |ε| ≤ �/(αγ η1), ∀t ∈
[0,+∞).

Evidently, the exponential convergence rate of the solu-
tion error is (1 − α)γ η1. Moreover, when t ≥ tc,
|ε| ≤ �/(αγ η1) always holds. Similar to the proof
given in Theorem 2, the following inequality can be
derived as

|(ε̈ + (λ1 + λ2)ε̇ + λ1λ2ε)| ≤ �
√

η2

αγ η1lmc
, ∀t ≥ tc.
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12 Y. Zhang et al.

Analogously, based on the Gronwall’s inequality [63],
it can be concluded that |ε| exponentially converges
to the new error bound �

√
η2/(αλ1λ2γ η1lmc) when

t ≥ tc.
In summary, for the case of cos x3 �= 0, the tracking

error of IPC system (2) equipped with z2g1 controller
(7) globally and exponentially converges to or stays
within the error bound �

√
η2/(αλ1λ2γ η1lmc).

For the case of cos x3 = 0 (i.e., the singularity case),
by following Theorem 2, it can be readily and analo-
gously proved that the tracking error of IPC system (2)
equipped with z2g1 controller (7) is bounded. That is
to say, the z2g1 controller can conquer the singularity
problem, thereby implying that the pendulum can pass
the horizontal position and then accomplish the process
of swinging up. The proof is thus completed. ��

Moreover, it is worth investigating the boundedness
of both control input u and its derivative u̇ in the pen-
dulum control of IPC system (2) equipped with z2g1
controller (7). Thus, one can have the following theo-
retical results and analysis.

Theorem 4 Starting from bounded initial state [x1(0),
x2(0), x3(0), x4(0)] and control input u(0), the follow-
ing results about IPC system (2), equipped with z2g1
controller (7), are achieved.

– For the case of cos x3 �= 0 (i.e., the non-singularity
case), the control input u and its derivative u̇ in the
pendulum tracking control of IPC system (2) are
upper bounded, respectively, as

⎧⎪⎨
⎪⎩
lim sup
t→+∞

|u̇| ≤ �η2/η1,

lim sup
t→+∞

|u| ≤ �/γ η1 + ζ,

provided that |u∗| ≤ ζ , ∃0 ≤ ζ < +∞, |u̇∗| ≤ �,
∃0 ≤ � < +∞, and η1 ≤ cos2 x3 ≤ η2, ∃0 <

η1 ≤ η2 ≤ 1.
– For the case of cos x3 = 0 (i.e., the singularity
case), the control input u and its derivative u̇ of
IPC system (2) are both bounded.

Proof For the case of cos x3 �= 0 (i.e., the non-
singularity case), a solution error of controller (7)
is defined as ε = u − u∗ = u − f4 + ( f1 f2 −
f3)/ cos x3. Thus, one can have h = cos x3ε, and
then u̇ = −γ cos2 x3ε = −γ cos x3h. Taking into
account that 0 < | cos x3| ≤ √

η2, one then obtains

|h| = | cos x3||ε| ≤ √
η2|ε|. Evidently, it can be fur-

ther derived that

|u̇| = |−γ cos x3h| = γ |cos x3| |h| ≤ γ η2 |ε| .

In addition, from Eq. (11), one can know that the solu-
tion error ε of z2g1 controller (7) is upper bounded
by �/γ η1, i.e., lim supt→+∞ |ε| = lim supt→+∞ |u −
u∗| ≤ �/γ η1. Consequently, it can be obtained that

lim sup
t→+∞

|u̇| ≤ γ η2 lim sup
t→+∞

|ε| ≤ �η2

η1
.

That is to say, the derivative of u (i.e., u̇) is upper
bounded by �η2/η1.

Next, the boundedness of the control input u in the
pendulum tracking control is proved as follows. Taking
into account that ε = u − u∗ and according to the
triangle inequality [64], one can obtain |u| − |u∗| ≤
|u − u∗| = |ε|. Considering that lim supt→+∞ |ε| ≤
�/γ η1 and |u∗| ≤ ζ , one then has

lim sup
t→+∞

|u| ≤ �

γ η1
+ ζ.

From the above inequality, one can readily know that
the control input u is upper bounded by �/γ η1 + ζ .

For the case of cos x3 = 0 (i.e., the singularity case),
one can readily know limcos x3→0 u̇ = 0, in view of
u̇ = −γ cos x3 (cos x3(u − f4) + ( f1 f2 − f3)). Evi-
dently, u̇ is bounded and tends to zero, as time t evolves
to the time instant of singularity ts. Besides, it can
be readily known that the control input at the time
instant of singularity ts is equal to the one at the pre-
vious time instant ts− , i.e., u(ts) = u(ts−). Analo-
gously, one can have u(ts) = u(ts+) with ts+ being
the time instant after the singularity. Note that, at the
time instant ts− , the control input u(ts−) is bounded,
which implies that u(ts+) = u(ts) = u(ts−) is bounded.
In other words, for the case of cos x3 = 0 (i.e., the
singularity case), the control input u of the IPC sys-
tem is bounded. After passing the singularity, the con-
trol input u and its derivative u̇ both converge toward
respective bounds again (which are given in the non-
singularity case). The proof on the boundedness of both
control input u and its derivative u̇ is thus completed.

��
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Fig. 2 Output trajectory, control input and tracking error of IPC system (2) equipped with z2g0 controller (6), with desired trajectory
yd = sin(0.1π t) cos(0.2π t). a Output trajectory and desired trajectory. b Control input. c Tracking error. d Order of |ε|

7 Simulation, verification and comparison

In the previous sections, for comparative purposes, two
controllers, i.e., z2g0 controller (6) and z2g1 controller
(7), have been designed and analyzed for pendulum
control of the IPC system. Actually, the z2g0 con-
troller designed by using ZDmethod twice can be con-
sidered as a special type of conventional controller,
of which the expression involves division operation
and the divisor may pass through zero at some time
instant(s), just like other conventional controllers. In
this section, three simulation examples are provided
and performed. Without loss of generality, the parame-
ters of IPC system (2) are set as mc = 0.378 kg,mp =
0.037 kg, l = 0.125m, g = 9.81m/s2, and b =
0.001N s/m.

Example 1 (control of pendulum tracking without
swinging up). A sinusoidal desired trajectory yd =
sin(0.1π t) cos(0.2π t) is firstly considered in this exam-
ple. Both z2g0 controller (6) and z2g1 controller (7)
are applied in the pendulum tracking control of IPC
system (2). The initial states of the plant are set as
x3(0) = 0.5 and x1(0) = x2(0) = x4(0) = 0, as well
as the initial input value of z2g1 controller u(0) = 0.
Moreover, the associated design parameters are chosen
as λ1 = λ2 = 15 and γ = 1000. Note that, in this
example, x3 = θ ∈ (−π/2, π/2); that is to say, the
pendulum is above the horizontal position.

The corresponding simulation results are displayed
in Figs. 2 and 3. Specifically, Fig. 2 shows the output
trajectory, the control input, and the tracking error of
IPC system (2) equipped with z2g0 controller (6). As
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Fig. 3 Output trajectory, control input and tracking error of IPC system (2) equipped with z2g1 controller (7), with desired trajectory
yd = sin(0.1π t) cos(0.2π t). a Output trajectory and desired trajectory. b Control input. c Tracking error. d Order of |ε|

illustrated in Fig. 2a, the output y (i.e., pendulum angle
θ ) converges to the desired trajectory yd within a short
time, which means that a good tracking is obtained.
Besides, it is seen from Fig. 2c that the tracking error
ε decreases to zero. From Fig. 2d, one can observe
that the maximal steady-state tracking error is of order
10−4. Furthermore, just as indicated in Fig. 2b, the con-
trol input u (i.e., control force) is smooth and has not
undergone abrupt changes, which is suitable for engi-
neering applications. Additionally, Fig. 3 shows the
output trajectory, the control input, and the tracking
error of IPC system (2) using z2g1 controller (7). From
Fig. 3, the similar conclusion can be obtained. That is
to say, the proposed z2g1 controller (7) works well for
the pendulum tracking control of IPC system (2). It is
worth pointing out here that the maximal steady-state

tracking error with z2g1 controller (7) is slightly larger
than that with z2g0 controller (6) but still small enough
for general practical applications. Therefore, the feasi-
bility and effectiveness of z2g0 controller (6) and z2g1
controller (7) for the pendulum tracking control is sub-
stantiated primarily, when x3 = θ ∈ (−π/2, π/2).
Besides, as seen from Figs. 2 and 3, one can compare
and find that when IPC system (2) is equipped with
the z2g0 and z2g1 controllers, respectively, the corre-
sponding simulation results are almost the same as each
other. So, in some sense, this indicates that z2g1 con-
troller (7) could effectively keep up the characteristics
of z2g0 controller (6).

Remark 4 In some real-world applications, the time-
delayed phenomena are often arising. Therefore, it is
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Control of pendulum tracking (including swinging up) of IPC system 15

imperative to investigate the sensitivity of the proposed
ZG controllers as well as the ZG control method for
the situation of time delay. To lay a basis for further
investigation, the reference derivative signals ẏd and
ÿd involved in both z2g0 controller (6) and z2g1 con-
troller (7) can be generally approximated via the back-
ward difference rule [65,66]. Specifically, the reference
derivative ẏd can be approximated by employing the
backward difference rule with two data points [65,66]
as ẏd(t) ≈ (

yd(t) − yd(t − τ)
)
/τ having a truncation

error of O(τ ), where τ > 0 denotes the time inter-
val or time delay between two measurements. Anal-
ogously, the second-order reference derivative ÿd can
be approximated by employing the backward differ-
ence rule with three data points [65,66] as ÿd(t) ≈(
yd(t)−2yd(t − τ)+ yd(t −2τ)

)
/τ 2, which also has a

truncation error of O(τ ). Afterward, the time-delayed
z2g0 controller can be expressed as below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′
1(t) = 1

τ 2

(
yd(t) − 2yd(t − τ) + yd(t − 2τ)

− (λ1 + λ2)τ
2x4(t) + λ1λ2τ

2(yd(t)

− x3(t)) + (λ1 + λ2)τ (yd(t) − yd(t − τ)
)
,

f2(t) = l(mc + mp sin
2 x3(t)),

f3(t) = (mc + mp)g sin x3(t),

f4(t) = bx2(t) − mplx
2
4 (t) sin x3(t),

u(t) = f4 − f ′
1(t) f2(t) − f3(t)

cos x3(t)
.

(16)

In the same manner, the time-delayed z2g1 con-
troller can be formulated as below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f ′
1(t) = 1

τ2

(
yd(t) − 2yd(t − τ) + yd(t − 2τ)

− (λ1 + λ2)τ
2x4(t) + λ1λ2τ

2(yd(t)

− x3(t)) + (λ1 + λ2)τ (yd(t) − yd(t − τ)
)
,

f2(t) = l(mc + mp sin
2 x3(t)),

f3(t) = (mc + mp)g sin x3(t),

f4(t) = bx2(t) − mplx
2
4 (t) sin x3(t),

u̇(t) = −γ cos x3(t) (cos x3(t)(u(t) − f4(t))

+ ( f ′
1 f2 − f3)

)
.

(17)

For better illustrating and comparing the sensitivity
of the proposed ZG controllers to the time delay,
computer simulations are further performed on the
basis of Example 1, with the same desired trajectory
and initial states set. Besides, the time delays in the
simulations are set as τ = 0.5, 0.05, and 0.005 s,
respectively. The corresponding simulation results are
illustrated in Fig. 4. Specifically, Fig. 4 shows the

orders of absolute tracking errors |ε| of the IPC sys-
tem equipped with time-delayed z2g0 controller (16)
and time-delayed z2g1 controller (17), respectively, by
using three different time delays τ for desired trajectory
yd = sin(0.1π t) cos(0.2π t). As illustrated in Fig. 4a,
the maximal steady-state tracking error of the IPC sys-
tem equipped with time-delayed z2g0 controller (16)
is of order 10−2, 10−3, or 10−4, corresponding to time
delay τ = 0.5, 0.05, or 0.005 s, respectively. From Fig.
4b, the similar observation can be obtained. In addi-
tion, it can be seen from both Fig. 4a, b, with slightly
larger time delay used, the order of |ε| of the IPC sys-
tem equipped with time-delayed z2g0 controller (16)
or time-delayed z2g1 controller (17) remains within an
acceptably small level, which, to some extent, means
that the proposed ZG design method is still feasible
and effective for the pendulum tracking control of IPC
system (2) in the situation of time delay.

Remark 5 In practical applications, the disturbance
suppression performance of the IPC system is also
worth investigating, for example, suppressing har-
monic and wide-band random excitations [56–58,67–
71]. Here, we briefly investigate the effects of distur-
bances on the IPC system. In general, there exist two
types of disturbances for the IPC system, i.e., sys-
tem disturbance and observation disturbance [72]. In
the following, the effects of such two types of distur-
bances on the IPC system are investigated individu-
ally. For the convenience of illustration, only the IPC
system equipped with the z2g1 controller is adopted
here and the disturbance in system or observation is
assumed to be a harmonic excitation, just as adopted in
[17,20,27,50,73]. First of all, let us consider the situ-
ation of system disturbance. To lay a basis for further
investigation on the robustness of the z2g1 controller in
the presence of system disturbance, the state equations
of the disturbed IPC system [50] can be formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 = u − bx2 + mp(lx
2
4 − g cos x3) sin x3

mc + mp sin
2 x3

+ d1,

ẋ3 = x4,

ẋ4 = (mc + mp)g sin x3 − (u − bx2 + mplx
2
4 sin x3) cos x3

l(mc + mp sin
2 x3)

+ d2,

(18)

where x1 = p, x2 = ṗ, x3 = θ , x4 = θ̇ , as well as
d1 and d2 denote the system disturbances. Besides, the
output of the IPC system is the same as before, i.e.,
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Fig. 4 Orders of absolute tracking errors |ε| of IPC sys-
tem (2) equipped with time-delayed z2g0 controller (16)
and time-delayed z2g1 controller (17), respectively, by using

three different time delays τ for desired trajectory yd =
sin(0.1π t) cos(0.2π t). a Orders of |ε|with z2g0 controller (16).
b Orders of |ε| with z2g1 controller (17)

y = θ = x3. Without loss of generality, the system
disturbances are set as d1 = d2 = 10 sin(20π t) in the
simulation. For better illustrating and comparing the
robustness of the proposed ZG controller to the system
disturbances, Example 1 is considered here, with the
same initial states and desired trajectory employed. The
corresponding simulation results are illustrated in Fig.
5. Specifically, Fig. 5 shows the output trajectory, the
control input, and the tracking error of IPC system (18)
interfered by system disturbances and equipped with
the z2g1 controller. As shown in Fig. 5a, c, in the pres-
ence of systemdisturbancesd1 andd2, the output y (i.e.,
pendulum angle θ ) can still approximate the desired
trajectory yd rapidly, with the tracking error ε converg-
ing toward zero and remaining within an acceptably
small level. From Fig. 5d, it can be further observed
that the maximal steady-state tracking error remains at
the order of 10−3. By comparing the simulation results
shown in Fig. 3, one can find that the effect of the sys-
tem disturbances on the tracking performance for the
IPC system is very small. In other words, the ZG con-
troller can realize the pendulum tracking control of the
IPC system with good robustness.

Moreover, the situation of observation disturbance
is analyzed as follows. To lay a basis for further inves-
tigation on the robustness of the z2g1 controller in the
presence of observation disturbance, the output of the
IPC system can be described as y = x3 + σ , with
σ denoting the observation disturbance. Note that the

state equations of the IPC system is the same as the
one in (2). In the simulation, the observation distur-
bance is set as σ = 0.03 sin(10π t). Specifically, Fig.
6 shows the output trajectory, the control input, and
the tracking error of IPC system (2) equipped with the
z2g1 controller, with output y = x3 + σ interfered
by observation disturbance σ . As seen from the figure,
the z2g1 controller still works well for the pendulum
tracking control of IPC system (2) in the presence of
the observation disturbance, with the maximal steady-
state tracking error remaining at a relatively small level
(i.e., 10−3). Therefore, the simulation results shown in
Fig. 6 indicate that the z2g1 controller is robust to the
observation disturbance to some extent. In summary,
these simulation results illustrate well the robustness of
the ZG controllers (as well as the ZG design method)
for the pendulum tracking control of the IPC system
in the presence of system disturbance or observation
disturbance. Note that the systematical analysis about
the proposed ZG controllers with time delay and distur-
bance would be one of our future main research topics.

Example 2 (control of pendulum tracking including
swinging up). Consider an eventually constant desired
trajectory with the form:

yd = 0.3π cos(0.5t) exp(−0.2t),

which can be seen, without loss of generality, as regu-
lation of an output to zero. The initial state x3(0) [i.e.,
θ(0)] is chosen to be π . That is to say, the pendulum
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Fig. 5 Output trajectory, control input and tracking error
of IPC system (18) interfered by system disturbances and
equipped with z2g1 controller, with desired trajectory yd =

sin(0.1π t) cos(0.2π t). a Output trajectory and desired trajec-
tory. b Control input. c Tracking error. d Order of |ε|

is vertical down at the initial time. Hence, the task also
includes the swing-up control. The other initial states
are chosen as x1(0) = x2(0) = x4(0) = 0 for both
z2g0 and z2g1 controllers, and the initial control value
of z2g1 controller u(0) = 0. In addition, the design
parameters are set as λ1 = λ2 = 15 and γ = 100.

The simulation results are plotted in Figs. 7 and 8.
Specifically, in Fig. 7, output trajectories and track-
ing errors of IPC system (2) equipped with z2g0 con-
troller (6) and z2g1 controller (7) are reported. As seen
from Fig. 7a and b, the tracking-control process of IPC
system (2) equipped with z2g0 controller (6) stops at
around 0.3 s. In contrast, the tracking-control process
of IPC system (2) equipped with z2g1 controller (7)
runs uninterruptedly, which is clearly illustrated in Fig.

7c, d. Meanwhile, it can be seen from Fig. 7d that the
tracking error with z2g1 controller (7) goes to zero
quickly, whichmeans that the tracking-control purpose
is achieved by means of z2g1 controller (7). Consid-
ering that the initial value of θ is π , one can readily
know that a good swing-up control is achieved simul-
taneously, as clearly visualized in Fig. 7c. Besides, Fig.
8 further reveals the reason why z2g0 controller (6)
fails but z2g1 controller (7) works well. Intuitively, as
shown in Fig. 8a, the value of control input tends to
infinity at about 0.16 s, which leads to a crash of z2g0
controller (6). Indeed, when time t is around 0.16 s,
cos x3 = 0 holds true such that z2g0 controller (6)
encounters the singularity problem, just as displayed
in Fig. 8b. Therefore, it follows from (6) that u goes
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Fig. 6 Output trajectory, control input and tracking error of IPC
system (2) equippedwith z2g1 controller, with output y = x3+σ

interfered by observation disturbance σ and with desired trajec-

tory yd = sin(0.1π t) cos(0.2π t). aOutput trajectory and desired
trajectory. b Control input. c Tracking error. d Order of |ε|

to infinity theoretically, resulting in the failure of z2g0
controller (6). In contrast, as displayed in Fig. 8c, d,
even when cos x3 = 0 holds true, the control input of
z2g1 controller (7) is bounded and acceptable, which
implies that this controller works well. In other words,
by making use of z2g1 controller (7), the singularity
problem is conquered successfully. In summary, the
above comparative results show well the efficacy of
z2g1 controller (7) in conquering the singularity prob-
lem for the control of pendulum tracking (including
swinging up) of IPC system (2).
Example 3 (control of pendulum tracking including
swinging up). In this example, the effectiveness of z2g1
controller (7) and the important effect of design param-

eters λ1, λ2 and γ are further investigated. The desired
trajectory yd = 0.5(sin(t)+cos(0.5π t)) is considered.
Additionally, the initial values are chosen to be the same
as those in Example 2. Note that, in this example, the
initial state x3(0) [i.e., θ(0)] is also selected asπ , which
means that the pendulumneeds to be swung up from the
pendant position during the tracking-control process of
IPC system (2).

For comparative purposes, both z2g0 controller (6)
and z2g1 controller (7) are employed. Meanwhile, the
design parameters are set as λ1 = λ2 = 16 and
γ = 1000. The simulation results are shown in Fig.
9. As seen from Fig. 9a, b, when z2g0 controller (6)
is employed, the control input u tends to infinity and
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Fig. 7 Output trajectories and tracking errors of IPC system (2)
equippedwith z2g0 controller (6) and z2g1 controller (7), respec-
tively, with desired trajectory yd = 0.3π cos(0.5t) exp(−0.2t). a

Output trajectory with z2g0 controller (6). b Tracking error with
z2g0 controller (6). c Output trajectory with z2g1 controller (7).
d Tracking error with z2g1 controller (7)

the tracking-control process stops at time t ≈ 0.13 s. In
contrast, as indicated in Fig. 9c, d, the desired trajectory
is tracked well and the control input is continuous and
smooth. Evidently, a good pendulum tracking control
is achieved by means of z2g1 controller (7). Besides,
from Fig. 9c, one can clearly find that this tracking-
control process achieves the swinging up successfully.
In brief, the efficacy of z2g1 controller (7) in conquer-
ing the singularity problem is verified once more for
the control of pendulum tracking (including swinging
up) of IPC system (2).

Next, in order to further investigate the simulation
results in the situation of relatively small values of
design parameters (i.e., λ1, λ2 and γ ) as well as their

effect on the tracking performance of z2g1 controller
(7), different sets of design parameters with small val-
ues are tested in the simulations accordingly. Specif-
ically, Fig. 10 shows the absolute tracking errors of
IPC system (2) equipped with z2g1 controller (7) by
using different small values of λ1, λ2 and γ . From the
figure, one can observe that, although relatively small
values of λ1, λ2 and γ are used, the absolute track-
ing errors all converge toward zero rapidly and remain
with an acceptably small level, which means that z2g1
controller (7) as well as the ZG design method is still
effective for the pendulum control of IPC system (2).
Besides, it can be readily found that the tracking error
bound becomes smaller with larger values of design
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Fig. 8 Control inputs and trajectories cos x3 of IPC system (2)
equippedwith z2g0 controller (6) and z2g1 controller (7), respec-
tively, with desired trajectory yd = 0.3π cos(0.5t) exp(−0.2t).

a Control input with z2g0 controller (6). b Trajectory cos x3 with
z2g0 controller (6). c Control input with z2g1 controller (7). d
Trajectory cos x3 with z2g1 controller (7)

parameters used, which coincides with the theoretical
analyses provided in Sect. 6. In practical applications,
the practitioners can choose the appropriate values of
λ1, λ2 and γ in accordance with specific requests.

Remark 6 For dynamic control problems, it is impor-
tant to evaluate the power or energy consumption of
controllers [74,75]. Specifically, the power consump-
tion for the IPC system can be estimated from two
essential parts, i.e., cart and pendulum. In terms of
the cart, the instantaneous power consumption of the
cart due to the horizontal motion can be described by
Pc = |ux2|, where u is the control input of the IPC
system that corresponds to the horizontal force applied

to the cart, and x2 is the velocity of the cart. In terms of
the pendulum, the instantaneous power consumption
of the pendulum due to the rotational motion can be
formulated as Pp = |I aw|, where I is the moment of
inertia of the pendulum, a is the angular acceleration of
the pendulum, andw is the angular velocity of the pen-
dulum. Thus, the total power consumption can be com-
puted by P = Pc + Pp = |ux2| + |I aw|. Considering
that the moment of inertia of the pendulum is assumed
to be negligible (i.e., I ≈ 0), one can further formulate
the total power consumption as P = |ux2|. The power
consumptions for IPC system (2) equipped with z2g1
controller (7) in above three different examples (i.e.,
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Fig. 9 Output trajectories and control inputs of IPC system (2)
equippedwith z2g0 controller (6) and z2g1 controller (7), respec-
tively, with desired trajectory yd = 0.5(sin(t) + cos(0.5π t)). a

Output trajectory with z2g0 controller (6). b Control input with
z2g0 controller (6). c Output trajectory with z2g1 controller (7).
d Control input with z2g1 controller (7)

Example 1, Example 2 and Example 3) have been esti-
mated by simulations, where different desired trajecto-
ries are used, respectively. The corresponding simula-
tion results are illustrated in Fig. 11. From the figure,
it can be observed that all of the power consumptions
in the three different simulation examples are accept-
ably small. By comparison, one can further find that
the amplitude of power consumption for Example 2 is
the smallest one. This means that the power consump-
tion of controller depends on the selection of desired
trajectory to some extent.

In summary, from the above three illustrative exam-
ples, the efficacy and superiority of the proposed
singularity-conquering z2g1 controller (7) for the con-

trol of pendulum tracking (including swinging up) of
IPC system (2) in conquering the singularity problem
have been substantiated. Besides, the robustness of the
proposed ZG controllers (as well as the ZG design
method) in the presence of time delay or disturbance
has been investigated. The suitability for the situation
of relatively small values of design parameters (i.e., λ1,
λ2 and γ ) and their effect on the tracking performance
of z2g1 controller (7) have also been illustrated. Fur-
thermore, the power consumptions for IPC system (2)
equipped with z2g1 controller (7) in the above three
simulation examples have been estimated. Finally, it
is worth pointing out that, in the simulations of the
above three examples, the desired trajectory functions
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are selected in a relatively arbitrarymanner to verify the
effectiveness of the proposed z2g1 controller (as well
as the ZG design method) under different situations.
Thus, other continuously differentiable and bounded
functions can also be selected as the desired trajectory
functions in these simulation examples.

8 Conclusions

In this paper, two controllers, i.e., z2g0 controller (6)
and z2g1 controller (7), have been proposed for the
pendulum control of IPC system (2). Between them, by
using the GD method to eliminate the division opera-
tion, z2g1 controller (7) not only achieves the control of
pendulum tracking (including swinging up) of the IPC
systemwith satisfactory tracking accuracy but also suc-
cessfully conquers the troublesome singularity prob-
lem. Theoretical analyses on the convergence perfor-
mance of both z2g0 and z2g1 controllers have been pre-
sented. In particular, the tracking error bound of z2g1
controller (7) has been derived analytically. Besides,
the boundedness of both control input and its deriva-
tive has been investigated and proved. The comparative
simulation results of three illustrative examples have
substantiated the efficacy and superiority of z2g1 con-
troller (7) in conquering the singularity problem for the
control of pendulum tracking (including swinging up)
of IPC system (2). In contrast, just like other conven-
tional controllers, z2g0 controller (6) fails to achieve
the pendulum control of the IPC system when encoun-
tering the singularity problem. Although the proposed
ZG control method aims at the IPC system, the gradi-
ent strategy can be generalized to the control of some
other nonlinear systems with the singularity problem,
e.g., an affine-formnonlinear system, an nth-order non-
linear system, and a class of chaotic systems (including
Lorenz, Chen and Lu systems) equipped with IOL con-
trollers [76,77]. It is worth pointing out that the appli-
cation of the gradient strategy, for example, to random
systems, may also be an interesting topic, which will
be explored and studied in the future work.
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