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Abstract In this paper, the (G ′/G)-expansionmethod
is employed to construct more general solitary wave
solutions of three special types of Boussinesq equa-
tion, namely Boussinesq equation, improved Boussi-
nesq equation and variant Boussinesq equation, where
the French scientist JosephValentin Boussinesq (1842–
1929) described in the 1870s model equations for the
propagation of long waves on the surface of water with
a small amplitude. Our work is motivated by the fact
that the (G ′/G)-expansion method provides not only
more general forms of solutions but also periodic, soli-
tary waves and rational solutions. The method appears
to be easier and faster by means of a symbolic compu-
tation.

Keywords Boussinesq equations · Soliton · Solitary
wave solution · Periodic wave solution

1 Introduction

In the recent decades, a new direction related to the
investigation of nonlinear evolution equations (NLEEs)
and processes has been actively developing in vari-
ous areas of sciences. Nonlinear evolution equations
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have been the important subject of study in various
branches of sciences such as physics, fluid mechanics
and chemistry. The analytical solutions ofNLEEs are of
fundamental importance, sincemany ofmathematical–
physical models are described by NLEEs. Among the
possible solutions to NLEEs, certain special form of
solutions may depend only on a single combination of
variables such as solitons. In mathematics and physics,
a soliton is a self-reinforcing solitary wave, a wave
packet or pulse, that maintains its shape while it travels
at constant speed. Solitons are caused by a cancela-
tion of nonlinear and dispersive effects in the medium.
The term “dispersive effects” refers to a property of
certain systems where the speed of the waves varies
according to frequency. Solitons arise as the solutions
of a widespread class of weakly nonlinear dispersive
partial differential equations describing physical sys-
tems. The soliton phenomenon was first described by
John Scott Russell (1808–1882) who observed a soli-
tary wave in the Union Canal in Scotland. He repro-
duced the phenomenon in a wave tank and named it the
“Wave of Translation” (also known as solitary wave or
soliton) [1]. The soliton solutions are typically obtained
by means of the inverse scattering transform [2] and be
in dept their stability to the integrability of the field
equations.

In fluid mechanics, the Boussinesq approximation
for water waves is a valid approximation for weakly
nonlinear and fairly long waves. The approximation is
named after Joseph Valentin Boussinesq (1842–1929),
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who first derived them in response to the observation
by John Scott Russell of the wave of translation [3,4].
According to paper of Boussinesq published in the year
1872 (see reference [4]), for water waves on an incom-
pressible fluid and irrotational flow in the (x, z) plane,
the boundary conditions at the free surface elevation
z = η(x, t) are:

∂η

∂t
+ v

∂η

∂x
− w = 0,

∂ϕ

∂t
+ 1

2
(v2 + w2) + gη = 0,

(1)

where v = ∂ϕ
∂x is the horizontal flow velocity com-

ponent, w = ∂ϕ
∂z is the vertical flow velocity compo-

nent, and g is the acceleration by gravity. Now, the
Boussinesq approximation for the velocity potential ϕ,
as given above, is applied in these boundary condi-
tions. Further, in the resulting equations only the lin-
ear and quadratic terms with respect to η and vb are
retained (with vb = ∂ϕb/∂x the horizontal velocity at
the bed z = −h). The cubic and higher-order terms are
assumed to be negligible. Then, the following partial
differential equations are obtained:

∂η

∂t
+ ∂

∂x

((
h + η

)
vb

)
= 1

6
h3

∂3vb
∂x3

,

∂vb
∂t

+ vb
∂vb
∂x

+ g
∂η

∂x
= 1

2
h2

∂3vb
∂t∂x2

,

(2)

This set of equations has been derived for a flat horizon-
tal bed, i.e., the mean depth h is a constant independent
of position x . When the right-hand sides of the above
equations are set to zero, they reduce to the shallow
water equations. Under some additional approxima-
tions, but at the same order of accuracy, Eq. (2) can
be reduced to a single partial differential equation for
the free surface elevation η(x, t):

∂2η

∂t2
− gh

∂2η

∂x2
− gh

∂2

∂x2

(3
2

η2

h
+ 1

3
h2

∂2η

∂x2

)
= 0, (3)

In dimensionless quantities, by using the water depth h
and gravitational acceleration g for non-
dimensionalization, Eq. (3) after normalization leads:

∂2ψ

∂τ 2
− ∂2ψ

∂χ2 − ∂2

∂χ2

(1
2
ψ2 + ∂2ψ

∂χ2

)
= 0, (4)

where ψ = 3 η
h , τ =

√
3 g
h t, and χ = √

3 x
h . Equa-

tion (4) can be written as follows [5]

utt − uxx −
(
1

2
u2 + quxx

)

xx
= 0, (5)

where |q| = 1 is a real parameter. Setting q = −1
gives the goodBoussinesq equation (GB) orwell-posed
Boussinesq equation, while setting q = 1 we get the
bad Boussinesq equation (BB) or ill-posed classical
Boussinesq equation. Following Bogolubsky’s modifi-
cation [6] in Eq. (5) when the term quxx is replaced
with qutt , it gives the so-called improved Boussinesq
equation (IBq):

utt − uxx −
(
1

2
u2 + qutt

)

xx
= 0, (6)

Similarly, using an analogous characterization used for
Boussinesq Eq. (5), the IBq equation for q = −1 will
give the good or well-posed (GIBq), while for q = 1
the bad or ill-posed (BIBq) equation. The IBq equation
appears in studying the transverse motion and nonlin-
earity in acoustic waves on elastic rods with circular
cross section. In particular, the BIBq is used to discuss
the wave propagation at right angles to the magnetic
field and also to approach the bad BS equation (see
Makhankov [7]) or to study ion-sound(s) waves (see
Bogolubsky [6]).

There are some review articles and works that have
been focused on studying the classical Boussinesq
equation fromvarious points of view.The initial bound-
ary value and the Cauchy problem of (5) have been
described in [8–11].Yazhima [12] studied the nonlinear
evolution of a linearly stable solution, while the expo-
nentially decaying solution of the spherical Boussinesq
equation was obtained by Nakamura [14]. A general
approach to construct exact solution to (5) is given by
Clarkson [9], and Hirota [10] has deduced conserva-
tion laws and has examined N -soliton interaction.Bona
and Sachs, in [8], have discussed that the special soli-
tary wave solutions for Eq. (5), when nonlinear term
is u2, are nonlinearly stable for a range of their wave
speeds. The global existence of the strong solution and
small amplitude solution for the Cauchy problem of the
multi-dimensional Eq. (5) is proved in [13].

And finally, the following variant of Boussinesq
equation

ut + uux + vx + quxx = 0,

vt + (uv)x + puxxx − qvxx = 0,
p, q ∈ R (7)
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was studied by Sachs [15] for Painleve property and
rational solutions. Yao and Li [16] applied a direct
algebraic method to construct some interesting closed-
form traveling wave solutions for Eq. (7). In Eq. (7), p,
q are real constants that represent different dispersive
powers. If p = 0, q �= 0, Eq. (7) leads to approxi-
mate equations for the long-wave equation. While if
p = 1, q = 0, Eq. (7) becomes to a simple variant
of Boussinesq equation where discussed by Fu et al.
in their paper [17], and same variant has been the sub-
ject of study by Zhang [18], wherein the author has
applied the homogeneous balance method to construct
the multi-solitary wave solutions. Recently, in [19],
Singh and Gupta used the symmetry method based on
the Fréchet derivative of the differential operators to
variational coefficient of (7), and Wu and He in [20]
applied the Exp-function method in Eq. (7).

On the other hand, recently, the (G ′/G)-expansion
method, firstly introduced by Wang et al. [21], has
become widely used to search for various exact solu-
tions of NLEEs [21–29]. The value of the (G ′/G)-
expansion method is that one treats nonlinear problems
by essentially linear methods. The method is based on
the explicit linearization of NLEEs for traveling waves
with a certain substitution, which leads to a second-
order differential equation with constant coefficients.
Moreover, it transforms a nonlinear equation to a sim-
ple algebraic computation. Althoughmany efforts have
been devoted to find various methods to solve (inte-
grable or non-integrable) NLEEs, there is no unified
method. The main merits of the (G ′/G)-expansion
method over the other methods are that it gives more
general solutions with some free parameters which, by
suitable choice of the parameters, turn out to be some
known solutions gained by the existing methods.

Our first interest in the present work is in imple-
menting the (G ′/G)-expansion method to show its
power in handling nonlinear partial differential equa-
tions (PDEs), so that one can apply it to other models
of various types of nonlinearity. The next interest is in
the determination of exact traveling wave solutions for
generalized Eqs. (5, 6, 7).

2 Description of the (G′/G)-expansion method

The objective of this section is to outline the use of
the (G ′/G)-expansion method for solving certain non-
linear PDEs. Suppose we have a nonlinear PDE for

u(x, t), in the form

P(u, ux , ut , uxx, uxt, utt, . . .) = 0, (8)

where P is a polynomial in its arguments, which
includes nonlinear terms and the highest order deriva-
tives. The transformation u(x, t) = U (ξ), ξ = x−ωt,
reduces Eq. (8) to the ordinary differential equation
(ODE)

P(U,U ′,−ωU ′,U ′′,−ωU ′′, ω2U ′′, . . .) = 0, (9)

where U = U (ξ), ω is constant and prime denotes
derivativewith respect to ξ .We assume that the solution
of Eq. (9) can be expressed by a polynomial in (G ′/G)

as follows:

U (ξ) =
m∑
i=1

αi

(G ′

G

)i + α0, αm �= 0. (10)

where α0, and αi , for i = 1, 2, . . . ,m, are constants
to be determined later, G(ξ) satisfies a second-order
linear ordinary differential equation (LODE):

d2G(ξ)

dξ2
+ λ

dG(ξ)

dξ
+ μG(ξ) = 0. (11)

whereλ andμ are arbitrary constants.Using the general
solutions of Eq. (11), we have

G ′(ξ)

G(ξ)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
λ2−4μ
2

(
C1 sinh(

√
λ2−4μ
2 ξ)+C2 cosh(

√
λ2−4μ
2 ξ)

C1 cosh(
√

λ2−4μ
2 ξ)+C2 sinh(

√
λ2−4μ
2 ξ)

)
− λ

2 ,

for λ2−4μ>0,√
4μ−λ2

2

(
−C1 sin(

√
4μ−λ2
2 ξ)+C2 cos(

√
4μ−λ2
2 ξ)

C1 cos(
√

4μ−λ2
2 ξ)+C2 sin(

√
4μ−λ2
2 ξ)

)
− λ

2 ,

for λ2−4μ<0,

(12)

and it follows from (10) and (11) that

U ′ = −
m∑

�=1

� α�

( (
G ′

G

)�+1

+ λ

(
G ′

G

)�

+ μ

(
G ′

G

)�−1 )
,

U ′′ =
m∑

�=1

� α�

(
(� + 1)

(
G ′

G

)�+2

+ (2� + 1)λ

(
G ′

G

)�+1

+ �
(
λ2 + 2μ

) (
G ′

G

)�

+ (2� − 1)λμ

(
G ′

G

)�−1

+ (� − 1)μ2
(
G ′

G

)�−2 )
,

(13)

and so on, here the prime denotes the derivative with
respective to ξ . To determine u explicitly, we take the
following four steps:

Step 1 Determine the integer m by substituting Eq.
(10) along with Eq. (11) into Eq. (9) and balancing the
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highest order nonlinear term(s) and the highest order
partial derivative.

Step 2 Substitute Eq. (10) gives the value ofm deter-
mined inStep1, alongwithEq. (11) intoEq. (9) and col-
lect all terms with the same order of (G ′/G) together;
the left-hand side of Eq. (9) is converted into a polyno-
mial in (G ′/G). Then set each coefficient of this poly-
nomial to zero to derive a set of algebraic equations for
k, ω, λ, μ, α0 and αi , for i = 1, 2, . . . ,m.

Step 3 Solve the system of algebraic equations
obtained in Step 2, for k, ω, λ, μ, α0 and αi , for i =
1, 2, . . . ,m, by use of Maple.

Step 4 Use the results obtained in above steps to
derive a series of fundamental solutions u(ξ) of Eq. (9)
depending on (G ′/G), since the solutions of Eq. (11)
have been well known for us, and then, we can obtain
exact solutions of Eq. (8).

3 Application

In this section, we will demonstrate the (G ′/G)-
expansion method on three of the well-known
Boussinesq-type Eqs. (5, 6, 7).

3.1 Boussinesq equation

To look for the traveling wave solution of Boussinesq
equation (5), we use the gauge transformation:

u(x, t) = U (ξ), (14)

where ξ = kx + ωt, and ω is constant. We substi-
tute Eq. (14) into Eq. (5) to obtain nonlinear ordinary
differential equation
(
ω2 − k2

)
U − k2

(1
2
U 2 + qU ′′) = R0, (15)

where R0 is a integration constant. According to Step 1,
wegetm+2 = 2m, andhence,m = 2.Wethen suppose
that Eq. (15) has the following formal solutions:

U = α2

(
G ′

G

)2

+ α1

(
G ′

G

)
+ α0, α2 �= 0, (16)

whereα2, α1, andα0, are constantswhich are unknown
to be determined later. Substituting Eq. (16) along with
Eq. (11) into Eq. (15) and collecting all terms with the
same order of (G ′/G) together, the left-hand sides of
Eq. (15) are converted into a polynomial in (G ′/G).
Setting each coefficient of each polynomial to zero, we

derive a set of algebraic equations for ω, λ,μ, α0, α1,

and α2. as follows:
(
G ′

G

)0

:
(
ω2 − k2

)
α0 − 1

2
k2α0

2 − k4qλμα1

− 2k4qμ2α2 − R0 = 0,
(
G ′

G

)1

:
(
ω2 − k2

)
α1 − k2α0α1 − 6k2qλμα2

− k4q(λ2 + 2μ)α1 = 0,
(
G ′

G

)2

: (
ω2 − k2 − 4k4q(λ2 + 2μ)

)
α2 − k2α0α2

− 3k4qλα1 − 1

2
k2α2

1 = 0,
(
G ′

G

)3

: 10k4qλα2 + k2α1α2 + 2k4qα1 = 0,

(
G ′

G

)4

: 1

2
k2α2

2 + 6k4qα2 = 0,

(17)

Solving the obtained algebraic equations by use of
Maple, we get the following results:

α0 = 1
k2

(ω2 − k2) − 12k2qμ

∓ 1
k2

√
(ω2 − k2)2 − 2k2R0,

α1 = ∓12
√

∓q(4k4qμ +
√

(ω2 − k2)2 − 2k2R0),

α2 = −12qk2,

λ = ± 1

qk2

√
±q(4k4qμ +

√
(ω2 − k2)2 − 2k2R0),

(18)

and k, ω and μ are arbitrary constants. Therefore, sub-
stituting the above case in (16), we get

U± = −12qk2
(
G ′

G

)2

±

∓12

√
∓q

(
4qk4μ +

√(
ω2 − k2

)2 − 2k2R0

)(
G ′

G

)

±

+ 1
k2

(ω2 − k2) − 12qk2μ ∓ 1
k2

√(
ω2 − k2

)2 − 2k2R0,

(19)

Substituting the general solutions (12) into Eq. (19),
we obtain three types of traveling wave solutions of
Boussinesq Eq. (5) in view of the positive, negative or
zero of λ2 − 4μ.
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WhenD = λ2−4μ = ± 1
qk4

√
(ω2 − k2)2 − 2k2R0

> 0, we obtain hyperbolic function solution UH, of
Boussinesq Eq. (5) as follows:

UH (ξ)± = −12qk2
(
G ′

G

)2

±

∓ 12

√
∓q

(
4qk4μ +

√(
ω2 − k2

)2 − 2k2R0

) (
G ′

G

)

±

+ 1
k2

(
ω2 − k2

) − 12qk2μ ∓ 1
k2

√(
ω2 − k2

)2 − 2k2R0,

(20)

where (G
′

G )± =
√
D
2

(
C1 sinh(

1
2

√
D ξ)+C2 cosh(

1
2

√
D ξ)

C1 cosh(
1
2

√
D ξ)+C2 sinh(

1
2

√
D ξ)

)

− λ
2 , ξ = kx +ωt, and C1,C2, are arbitrary constants.

It is easy to see that the hyperbolic solution (20) can be
rewritten at C2

1 > C2
2 , as follows

uH(x, t) = −3k2qD tanh2
(1
2

√
D ξ + ηH

)

−−2qk4D − ω2 + k2

k2
, (21a)

(see Fig. 1) while at C2
1 < C2

2 , one can obtain

uH(x, t) = −3k2qD coth2
(1
2

√
D ξ + ηH

)

−−2qk4D − ω2 + k2

k2
, (21b)

where ξ = kx+ωt, ηH = tanh−1
(
C1
C2

)
, and k, ω and

μ are arbitrary constants. Now when D = λ2 − 4μ =
± 1

qk4

√
(ω2 − k2)2 − 2k2R0 < 0, the trigonometric

function solutions UT of Boussinesq Eq. (5) will be:

UT (ξ)± = −12qk2
(
G ′

G

)2

±

∓ 12

√
∓q

(
4qk4μ +

√(
ω2 − k2

)2 − 2k2R0

) (
G ′

G
x

)

±

+ 1
k2

(
ω2 − k2

) − 12qk2μ ∓ 1
k2

√(
ω2 − k2

)2 − 2k2R0,

(22)

where (G
′

G )± =
√−D±

2(
−C1 sin(

1
2

√−D± ξ)+C2 cos(
1
2

√−D± ξ)

C1 cos(
1
2

√−D± ξ)+C2 sin(
1
2

√−D± ξ)

)
− λ

2 , ξ = kx+
ωt, and C1,C2, are arbitrary constants. Similarly, the
trigonometric solutions (22) can be rewritten at C2

1 >

C2
2 , and C

2
1 < C2

2 , as follows, respectively,

−5

0

5

−5

0

5
−500

0

500

1000

xt

u
H
(x
,t
)

Fig. 1 Hyperbolic solution [Eq. (21a)] of Boussinesq Eq. (5),
for k = 1, ω = 5

2 , R0 = 0, q = −1 and ηH = 0

uT (x, t) = 3k2qD tan2
(1
2

√−D ξ + ηT

)

−−2qk4D − ω2 + k2

k2
, (23a)

uT (x, t) = 3k2qD cot2
(1
2

√−D ξ + ηT

)

−−2qk4D − ω2 + k2

k2
, (23b)

where ξ = kx + ωt, ηT = tan−1
(
C1
C2

)
, and k, ω and

μ are arbitrary constants. Finally, when λ2 − 4μ = 0,
then, the rational function solutions to Eq. (5) will be:

urat(x, t) = − 12k2qC2
2(

C1 + C2(kx + ωt)
)2 + ω2

k2
− 1. (24)

where C1,C2, k, and ω are arbitrary constants.

3.2 Improved Boussinesq equation

Similar on previous section, to obtain the traveling
wave solution of improved Boussinesq Eq. (6), we sub-
stitute the gauge transformation (14) into Eq. (6) to
obtain nonlinear ordinary differential equation

(ω2 − k2)U ′′ − k2
(1
2
U 2 + qω2U ′′)′′ = 0, (25)

According to Step 1, we get m + 4 = 2m + 2, and
hence, m = 2. Then similar on previous section, we
suppose that Eq. (25) has the same formal solutions
(16). Substituting Eq. (16) along with Eq. (11) into Eq.
(25) and collecting all terms with the same order of
(G ′/G) together, the left-hand sides of Eq. (25) are
converted into a polynomial in (G ′/G). Setting each
coefficient of each polynomial to zero, we derive a set
of algebraic equations for k, ω, λ, μ, α0, α1, and α2,

as follows:
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(
G ′

G

)0

:
((

− μω2λ
(
λ2 + 8μ

)
α1

− 2μ2ω2α2
(
8μ + 7λ2

) )
q − 2α1

2μ2

− λμ (1 + 2α0) α1 − 2μ2α2 (1 + 2α0)

)
k2

+ 2ω2α2μ
2 + ω2α1λμ = 0,

(
G ′

G

)1

:
((

− ω2 (
22λ2μ + 16μ2 + λ4

)
α1

− 30μω2α2λ
(
λ2 + 4μ

))
q − 6α1

2λμ

+ (−2μ − λ2 − 12α2μ
2 − 4α0μ

−2α0λ
2) α1 − 6λμα2 (1 + 2α0)

)
k2

+ ω2 (
2μ + λ2

)
α1 + 6ω2α2λμ = 0,

(
G ′

G

)2

:
((

− 15ω2λ
(
λ2 + 4μ

)
α1

− 8ω2α2
(
29 λ2μ + 2 λ4 + 17μ2) )

q

+ (−4λ2 − 8μ
)
α1

2 − 3λ (1 + 2α0 + 10α2μ) α1

− 4α2
(
3α2μ

2 + 2μ

+ λ2 + 4α0μ + 2α0λ
2)

)
k2

+ 3ω2α1λ + 4ω2α2
(
2μ + λ2

) = 0,
(
G ′

G

)3

:
((

− 10ω2 (
4μ + 5λ2

)
α1

− 10ω2α2λ
(
13λ2 + 44μ

) )
q − 10α1

2λ

+ (−4α0 − 2 − 36α2μ − 18α2λ
2) α1

− 2α2λ (14α2μ + 10α0 + 5)

)
k2

+ 10ω2α2λ + 2ω2α1 = 0,
(
G ′

G

)4

:
((

− 60ω2α1λ − 30ω2α2
(
11λ2 + 8μ

) )
q

− 6α1
2 − 42α2α1λ

− 2α2
(
16α2μ + 8α2λ

2 + 3 + 6α0
) )

k2 + 6ω2α2 = 0,

(
G ′

G

)5

:
( (−24ω2α1 − 336ω2α2λ

)
q

− 36α2
2λ − 24α2α1

)
k2 = 0,

(
G ′

G

)6

: (−10 α2
2 − 120 qω2α2

)
k2 = 0,

(26)

and solving by use of Maple, we get the following
results:

{
α0 = −8 qk2ω2μ + qk2ω2λ2 + k2 − ω2

k2

α1 = −12ω2qλ, α2 = −12ω2q

}
, (27)

and k, ω, λ and μ are arbitrary constants. Therefore,
the solution (16) leads to

U = −12ω2q

(
G ′

G

)2

− 12ω2qλ

(
G ′

G

)

−8 qk2ω2μ + qk2ω2λ2 + k2 − ω2

k2
, (28)

Now, for D = λ2 − 4μ > 0, and D = λ2 − 4μ < 0,
the hyperbolic function solutionUH and trigonometric
function solution UT of improved Boussinesq Eq. (6)
are obtained as follows, respectively:
UH (ξ)

= −3ω2q

(√
D

[
C1 sinh

( 1
2

√
D ξ

)+C2 cosh
( 1
2

√
D ξ

)]

C2 sinh
( 1
2

√
D ξ

)+C1 cosh
( 1
2

√
D ξ

) −λ

)2

− 6ω2qλ

(√
D

[
C1 sinh

( 1
2

√
D ξ

)+C2 cosh
( 1
2

√
D ξ

)]

C2 sinh
( 1
2

√
D ξ

)+C1 cosh
( 1
2

√
D ξ

) −λ

)

− 8 qk2ω2μ + qk2ω2λ2 + k2 − ω2

k2
, (29)

UT (ξ)

= −3ω2q

(√−D
[ − C1 sin

( 1
2

√−D ξ
)+C2 cos

( 1
2

√−D ξ
)]

C2 sin
( 1
2

√−D ξ
)+C1 cos

( 1
2

√−D ξ
) −λ

)2

− 6ω2qλ

(√−D
[ − C1 sin

( 1
2

√−D ξ
)+C2 cos

( 1
2

√−D ξ
)]

C2 sin
( 1
2

√−D ξ
)+C1 cos

( 1
2

√−D ξ
) −λ

)

− 8 qk2ω2μ + qk2ω2λ2 + k2 − ω2

k2
, (30)

where ξ = kx+ωt, andC1,C2, are arbitrary constants.
It is easy to see that the hyperbolic solution (34) and
trigonometric solution (36) can be rewritten at C2

1 >

C2
2 as follows

uH(x, t) = −3ω2qD tanh2
(1
2

√
D ξ + ηH

)

−−2qk2ω2D − ω2 + k2

k2
, (31a)

uT (x, t) = 3ω2qD tan2
(1
2

√−D ξ + ηT

)

−−2qk2ω2D − ω2 + k2

k2
, (31b)

while at C2
1 < C2

2 , one can obtain

uH(x, t) = −3ω2qD coth2
(1
2

√
D ξ + ηH

)

−−2qk2ω2D − ω2 + k2

k2
, (32a)
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Fig. 2 Hyperbolic solution [Eq. (31a)] of improved Boussinesq
Eq. (6), for k = 1, ω = 2, q = −1, λ = 2, μ = 1

4 and ηH = 0

uT (x, t) = 3ω2qD cot2
(1
2

√−D ξ + ηT

)

−−2qk2ω2D − ω2 + k2

k2
, (32b)

where ξ = kx + ωt, ηH = tanh−1
(
C1
C2

)
, ηT =

tan−1
(
C1
C2

)
, and k, ω, λ, andμ are arbitrary constants.

The graph of hyperbolic function solution (31a) is
shown in the Fig. 2.

Finally,whenλ2−4μ = 0, then the rational function
solutions of improved Boussinesq Eq. (6) will be:

urat(x, t) = − 12ω2qC2
2(

C1 + C2(kx + ωt)
)2 + ω2

k2
− 1, (33)

where and C1,C2, k, and ω are arbitrary constants.

3.3 Variant Boussinesq equation

Finally, consider the nonlinear Variant Boussinesq
Eq. (7). By using the transformation u(x, t) = U (ξ),

v(x, t) = V (ξ),where ξ = kx+ωt, and once integrat-
ing respect to ξ , Eq. (7) becomes an following ordinary
differential equation,

ωU + k

2
U 2 + kV + qk2U ′ = R1, (34)

ωV + kUV + pk3U ′′ − qk2V ′ = R2, (35)

whereR1 andR2 are the integration constants of first
and second equation of system (7), respectively. From
Eq. (34), we get

V = 1

k

(R1 − ωU − k

2
U 2 − qk2U ′), (36)

By substituting Eq. (36) into Eq. (35), and for simpli-
fying we set R2 = 0, we get the following covering
equation

(
R1 − ω2

k

)
U − 3

2
ωU 2 − k

2
U 3

+ k3
(
p + q2

)
U ′′ + ω

k
R1 = 0, (37)

According to Step 1, we get m + 2 = 3m, and hence,
m = 1.We then suppose that Eq. (37) has the following
formal solution:

U = α1

(
G ′

G

)
+ α0, α1 �= 0, (38)

where α1, and α0, are constants, which are unknown to
be determined later. In a similar manner, substituting
Eq. (38) into Eq. (37) and collecting all terms with the
same order of (G ′/G) and setting each coefficient of
each polynomial to zero, we derive the following set of
algebraic equations for k, ω, λ, μ, α0, and α1:

(
G ′

G

)0

: k3α1μ(p + q2)λ − 1

2
α3
0k + R1α0 − R2

− 3

2
ωα2

0 − ω

k
(α0ω − R1) = 0,

(
G ′

G

)1

: (p + q2)(2μ + λ2)α1k
3

− 3

2
α1α

2
0k + (R1 − 3ωα0) α1 − ω2

k
α1 = 0,

(
G ′

G

)2

: 3λ(p + q2)α1k
3 − 3

2
α2
1α0k − 3

2
ωα2

1 = 0,

(
G ′

G

)3

: (2p + 2q2)α1k
3 − 1

2
α3
1k = 0,

Solving the above set of algebraic equations by use of
Maple, we get the following results:
{
α0 = ±λk

√
p + q2 − ω

k
, α1 = ±2k

√
p + q2, μ

= λ2 − 1

4

2R1k + ω2

k4(p + q2)

}
,

(39)

and k, ω, λ are arbitrary constants, and therefore, sub-
stituting the above case in (38), we get

U = ±2k
√
p + q2

(
G ′

G

)
± λk

√
p + q2 − ω

k
, (40)

Therefore, for D = λ2 − 4μ = 2R1k+ω2

k4(p+q2)
> 0, and

D = λ2 − 4μ = 2R1k+ω2

k4(p+q2)
< 0, the hyperbolic func-

tion solution UH and trigonometric function solution
UT of variant Boussinesq Eq. (7) are obtained, respec-
tively, as follows:
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U±H(ξ) = ± k
√
p + q2

×
(√D[

C1 sinh
( 1
2

√D ξ
) + C2 cosh

( 1
2

√D ξ
)]

C2 sinh
( 1
2

√D ξ
) + C1 cosh

( 1
2

√D ξ
) − λ

)

± λk
√
p + q2 − ω

k
, (41)

U±T (ξ) = ∓k
√
p + q2

×
(√−D[

C2 cos
( 1
2

√−D ξ
) − C1 sin

( 1
2

√−D ξ
)]

C2 sin
( 1
2

√−D ξ
) + C1 cos

( 1
2

√−D ξ
) + λ

)

± λk
√
p + q2 − ω

k
, (42)

and from (36), the VH(ξ) and VT (ξ) is obtained as
follows:

V±H(ξ)

= (2R1k + ω2)(
√
p + q2 ∓ q)(C2

1 + C2
2 )

2k2
√
p + q2

[
C2 sinh

(
1
2

√
D ξ

)
+ C1 cosh

(
1
2

√
D ξ

)]2 ,

(43)
V±T (ξ)

= (2R1k + ω2)(
√
p + q2 ∓ q)(C2

1 + C2
2 )

2k2
√
p + q2

[
C2 sin

(
1
2

√−D ξ
)

+ C1 cos
(
1
2

√−D ξ
)]2 ,

(44)

where ξ = kx+ωt, andC1,C2, are arbitrary constants.
It is easy to see that the hyperbolic and trigonometric
solutions (41, 42, 43, 44) can be rewritten at C2

1 > C2
2

as follows

u±H(x, t) = ± k
√
p + q2

√D tanh
(1
2

√D ξ + ηH

)
− ω

k
,

(45a)

u±T (x, t) = ± k
√
p + q2

√
−D tan

(1
2

√
−D ξ + ηT

)
− ω

k
,

(45b)

v±H(x, t) = 1

2

(2R1k + ω2)(
√
p + q2 ∓ q)

k2
√
p + q2

×sech2
(1
2

√D ξ + ηH

)
, (45c)

v±T (x, t) = 1

2

(2R1k + ω2)(
√
p + q2 ± q)

k2
√
p + q2

× sec2
(1
2

√
−D ξ + ηT

)
, (45d)

while at C2
1 < C2

2 , one can obtain

u±H(x, t) = ±k
√
p + q2

√D coth
(1
2

√D ξ + ηH

)
− ω

k
,

(45e)

u±T (x, t) = ±k
√
p + q2

√
−D cot

(1
2

√
−D ξ + ηT

)
− ω

k
,

(45f)

v±H(x, t) = −1

2

(2R1k + ω2)(
√
p + q2 ∓ q)

k2
√
p + q2

×csch2
(1
2

√D ξ + ηH

)
, (45g)

v±T (x, t) = 1

2

(2R1k + ω2)(
√
p + q2 ∓ q)

k2
√
p + q2

× csc2
(1
2

√
−D ξ + ηT

)
, (45h)

where ξ = kx + ωt, ηH = tanh−1
(
C1
C2

)
, ηT =

tan−1
(
C1
C2

)
and k, ω, are arbitrary constants. Figures 3

and 4 show the graphs of hyperbolic function solutions
(45a) and (45c), respectively. Finally, when λ2 −4μ =
0, then k = − 1

2
ω2

R1
, and therefore, the rational function

solutions to Eq. (39) will be:

urat±(x, t) = ∓ω2C2 + 2R2
1C2 ξ + 2R2

1C1

R1ω
(
C2 ξ + C1

) , (46a)

vrat±(x, t) = −1

2

ω4C2

R2
1

(
C2 ξ + C1

)2 , (46b)

where ξ = − 1
2

ω2

R1
x + ωt, and C1,C2, ω andR1 �= 0

are arbitrary constants.
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Fig. 3 Hyperbolic solution [Eq. (45a)] of variant Boussinesq
Eq. (7), for k = 2

3 , ω = − 1
2 ,R1 = 0, p = 1 and q = −1
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Fig. 4 Hyperbolic solution [Eq. (45c)] of improved Boussinesq
Eq. (7), k = 2

3 , ω = − 1
2 ,R1 = 0, p = 1, q = −1 and ηH = 0
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4 Conclusions

This study shows that the (G ′/G)-expansion method
is quite efficient and practically well suited for use in
finding exact solutions for the three types ofBoussinesq
equation, namely the Boussinesq equation, improved
Boussinesq equations and variant Boussinesq equation.
The reliability of the method and the reduction in the
size of computational domain give this method a wider
applicability. Though the obtained solutions represent
only a small part of the large variety of possible solu-
tions for the equations considered, they might serve
as seeding solutions for a class of localized structures
existing in the physical systems. Furthermore, our solu-
tions are in more general forms, and many known solu-
tions to these equations are only special cases of them.
With the aid of Maple, we have assured the correctness
of the obtained solutions by putting them back into the
original equation.
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