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Abstract The finite-time stochastic synchronization
of time-delay neural networks with noise disturbance
is investigated according to finite-time stability the-
ory of stochastic differential equation. Via construct-
ing suitable Lyapunov function and controllers, finite-
time stochastic synchronization is realized and suffi-
cient conditions are derived. By analyzing the synchro-
nization progress, factors affecting the convergence
speed are given and feasible suggestions are proposed
to improve the convergence rate. Finally, numerical
simulations are given to verify the theoretical results.

Keywords Finite-time stochastic synchronization ·
Time-delay neural network · Noise disturbance

1 Introduction

Since being proposed byPecora andCarroll [1], chaotic
synchronization has been considered and applied in
many areas, such as chemical reaction, biological sys-
tem, secure communication, information processing
and so on. A variety of approaches have been pro-
posed to investigate the chaos synchronization, includ-
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ing adaptive control [2,3], optimal control [4], and
sliding mode control [5–7]. Therefore, many kinds of
synchronizations have been explored, involving lag
synchronization [8], projective synchronization [9],
anti-synchronization [10], burst synchronization [11],
phase synchronization [12], hybrid synchronization
[13] etc.

In the past decades, as a hot topic, dynamical
behaviors of neural network have attracted much
attention due to its good explaining some of the
neurophysiologic phenomena and potential applica-
tion in many fields [14–16]. In fact, the intrinsic
time in realistic neuronal systems could be associ-
ated with response delay and propagation time delay
in cell loop [17], which focuses on the synchro-
nization stability under appropriate schemes. It is
important to mention further guidance on prediction
for collapse of synchronization and pattern stability
[18,19]in the end of the paper. Therefore, in prac-
tical engineering, it is desirable to realize the syn-
chronization in finite time. For this, finite-time sta-
bility theory is brought forward [20–23], in which
finite-time control techniques have been concerned.
Research shows that the finite-time control technique
has demonstrated better robustness and disturbance
rejection property [24]. In fact, finite-time synchro-
nization means the optimality in convergence time.
Recently, combining the advantages of finite-time con-
trol technique and finite-time stability theorem, finite-
time synchronization of complex networks was raised
[25].
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In real applications, almost all network systems
received random uncertainties, e.g., stochastic forces
and noisy measurements. Therefore, the network with
noise perturbations aroused the interest of researchers
[26,27], especially the neural network, in which only
a single node is considered with noise disturbances.
However, in actual neural network, there is more
than one node with noise disturbance; even all the
nodes are provided with it. That is the reason why
the stochastic synchronization has become one of the
focused subjects [28–30], in most of which time-delay
is hardly taken into account, while time-delay always
exists between the neurons when communication is
implemented in one neural network or between neu-
ral networks. Existing results show that, in some sys-
tems, time-delay often causes oscillation, divergence
[31,32]. Therefore, the dynamical behaviors of neu-
ral network with time-delay have been widely studied
in recent years, especially the control of synchroniza-
tion and stability. Accordingly, many schemes have
been proposed for realizing the chaos synchroniza-
tion of time-delay neural networks [33–36], in which
noise disturbance is rarely considered. In real applica-
tions, time-delay and noise disturbance often coexist
in many neural networks, which causes more com-
plex dynamic behaviors and more difficult to con-
trol.

Motivated by above discussion, we consider a neural
network with time-delay and noise disturbance, which
includes vector-formWiener process. This kind of net-
work is more practical in real world. Using proper-
ties of the Wiener process and inequality techniques,
suitable controllers are designed to ensure the finite-
time stochastic synchronization of time-delay neu-
ral networks with noise disturbance and the factors
affecting the convergence speed are found out. Several
cases are given via numerical simulations to demon-
strate the impact of the factors on the synchronization
time.

The rest of this paper is arranged as follows.
Section 2 describes the system and some relative pre-
liminaries. In Sect. 3, the finite-time stochastic syn-
chronization of time-delay neural networks is realized,
sufficient conditions are given and some factors affect-
ing the convergence speed are obtained via theoretical
analysis. In Sect. 4, numerical simulations are demon-
strated to verify the theoretical results. Section 5 draws
some conclusions and gives future investigation direc-
tions.

2 System description and some preliminaries

In this section, some relative preliminaries are described
to discuss the finite-time stochastic synchronization of
time-delay neural networkswith noise disturbance, and
the time-delay neural network consisting of N nodes is
considered as following

ẋ(t) = Ax(t) + B f (x(t)) + Cg(x(t − τ)), (1)

where x = (x1(t), x2(t), . . . , xN (t))T is the state vec-
tor of the neural network, xi (t) is the state variable of
the i th node, τ is the time-delay, and A, B,C ∈ RN×N

are constant matrices.

f (x) = ( f1(x1(t)), f2(x2(t)), . . . , fN (xN (t)))T

∈ RN ,

g(x) = (g1(x1(t)), g2(x2(t)), . . . , gN (xN (t)))T

∈ RN ,

are continuously differential nonlinear vector func-
tions. In this work, time-delay τ is assumed as constant.

To gain the main result of this paper, system (1)
is taken as the drive system, and the slave system is
considered as

ẏ(t) = Ay(t) + B f (y(t)) + Cg(y(t − τ))

+ δ(y(t) − x(t))Ẇ (t) +U, (2)

where the noise term δ(y(t) − x(t))Ẇ (t) is used
to describe the coupling process influenced by envi-
ronmental fluctuation, δ is noisy intensity matrix,
Ẇ (t) is a N -dimensional white noise, and U =
(U1,U2, . . . ,UN )T is the controller vector to be
designed.

Definition 1 [28] It is said that the finite-time stochas-
tic synchronization between systems (2) and (1) can be
achieved if, for any initial states x(0), y(0), there is a
finite time function

T0 = inf {T : xi (t) − yi (t) = 0, ∀t ≥ T } ,

holding that, for all t ≥ T0, we have

P {|xi (t, xi (0)) − yi (t, yi (0))| = 0}
= 1 (i = 1, 2, . . . , N ),

where T0 is called the stochastic time.
For n-dimension stochastic differential equation

dx = f (x)dt + g(x)dW (t), (3)

where x ∈ Rn is the state vector, f : Rn → Rn and g :
Rn → Rn×m are continuous functions which satisfies
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f (0) = 0, g(0) = 0, it is granted that Eq. (3) has a
unique global solution denoted by x(t, x(0))(0 ≤ t <

∞), where x(0) is the initial state.
For each V ∈ C2,1(Rn × R+, R+), the operator

LV [28] relative to Eq. (3) is defined as

LV = ∂V

∂x
· f + 1

2
trace

[
gT · ∂2V

∂x2
· g

]
, (4)

where ∂V
∂x =

(
∂V
∂x1

, ∂V
∂x2

, . . . , ∂V
∂xn

)
and ∂2V

∂x2
=(

∂2V
∂xi ∂x j

)
n×n

(i, j = 1, 2, . . . n).

Assumption 1 For system (1), it is believed that fi ,
gi (i = 1, 2, . . . , N ) all satisfy Lipchitz condition, e.g.,
there are positive constants L f , Lg such that

| fi (xi ) − fi (yi )| ≤ L f |xi − yi | ,
|gi (xi ) − gi (yi )| ≤ Lg |xi − yi |
for all xi , yi ∈ Rn(i = 1, 2, . . . , N ).

Because the change rate of concrete system is far more
than the speed of the environmental fluctuations, then
for the noise intensity function, following Assump-
tion 2 is given.

Assumption 2 Thenoise of intensity function δ(y(t)−
x(t)) satisfies Lipchitz condition; namely, there exists
a constant q such that

trace(δT (y(t) − x(t))δ(y(t) − x(t)))

≤ 2q(y(t) − x(t))T (y(t) − x(t)). (5)

Moreover, δ(0) ≡ 0.

Lemma 1 [37] For Eq. (3), define T0(x0) = inf{T ≥
0 : x(t, x0) = 0,∀t ≥ T }, and assume that Eq. (3) has
the unique global solution, if there is a positive definite,
twice continuously differentiable, radially unbounded
Lyapunov function V : Rn → R+ and real numbers
k > 0, 0 < ρ < 1, such that

LV (x) ≤ −k(V (x))ρ, (6)

then the origin of system (3) is globally stochastically
finite-time stable, and

E [T0(x0)] ≤ (V (x0))1−ρ

k(1 − ρ)
. (7)

Lemma 2 [38] Suppose that 0 < r ≤ 1, a, b are all
positive numbers, then the inequality

(a + b)r ≤ ar + br

is quite straightforward.

Lemma 3 [39] Suppose that�1,�2,�3 are real matri-
ces with appropriate dimensions and s > 0 is a scalar,
satisfying �3 = (�3)

T > 0, then following inequality

�T
1 �2 + �T

2 �1 ≤ s�T
1 �3�1 + s−1�T

2 �−1
3 �2 (8)

holds.

Corollary In Lemma 3, if �3 is chosen as the identity
matrix with appropriate dimension, inequality (8) can
be simplified as

�T
1 �2 + �T

2 �1 ≤ s�T
1 �1 + s−1�T

2 �2. (9)

3 Main result

In this section, the finite-time stochastic synchroniza-
tion of time-delay neural networks with noise distur-
bance is investigated based on above preliminaries. For
this, let e(t) = y(t) − x(t), and then the error system
can be gotten as

ė(t) = Ae(t) + B[ f (y(t)) − f (x(t))]
+C[g(y(t − τ)) − g(x(t − τ))]
+ δ(e(t))Ẇ (t) +U. (10)

The main result can be given as following Theorem 1.

Theorem 1 Suppose that I is the identity matrix with
appropriate order, if there exist constants q,s,k1,k2 sat-
isfying following two conditions:

(i) A+AT +L f (B+BT )+(k2+q−2k1+sLg)I ≤ 0,
(ii) s−1LgCTC − k2 I ≤ 0,

then the finite-time stochastic synchronization between
systems (1) and (2) can be obtained under the feedback
control

U = −k1e(t) − ηsign(e(t)) |e(t)|θ

−η

(∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2 · e(t)

‖e(t)‖2 , (11)

where k1,k2 are the control strengths, η > 0,0 < θ < 1
and

sign(e(t)) = diag(sign(e1(t)), sign(e2(t)),

. . . , sign(eN (t))),

|e(t)|θ = (|e1(t)|θ , |e2(t)|θ , . . . , |eN (t)|θ )T .

The finite time is estimated by E [T0(x0)] ≤ T =
t0 + (V (x0))

1−θ
2

η(1−θ)
.

Note: Here ‖·‖ refers to Euclidean norm.
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Proof Firstly, substitute (11) into (10), and the error
system can be obtained as

ė(t) = Ae(t) + B( f (y(t)) − f (x(t)))

+C(g(y(t − τ)) − g(x(t − τ))) + δ(e(t))Ẇ (t)

− k1e(t) − ηsign(e(t)) |e(t)|θ

− η

(∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2 · e(t)

‖e(t)‖2 . (12)

Secondly, Lyapunov function is chosen as

V (t) = eT (t)e(t) +
∫ t

t−τ

k2e
T (v)e(v)dv. (13)

Diffuse operator L defined in Eq. (4) onto function V
along error system (12), and we can get

LV (t) = eT (t)ė(t) + ėT (t)e(t) + k2e
T (t)e(t)

− k2e
T (t − τ)e(t − τ)

+ 1

2
trace(δT (e(t))δ(e(t)))

= eT (t)

[
Ae(t) + B( f (y(t)) − f (x(t)))

+C(g(y(t − τ)) − g(x(t − τ)))

− k1e(t) − ηsign(e(t)) |e(t)|θ

− η

(∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2 · e(t)

‖e(t)‖2
]

+
[
Ae(t) + B( f (y(t)) − f (x(t)))

+C(g(y(t − τ)) − g(x(t − τ)))

− k1e(t) − ηsign(e(t)) |e(t)|θ

− η

(∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2 · e(t)

‖e(t)‖2
]T

e(t)

+ k2e
T (t)e(t) − k2e

T (t − τ)e(t − τ)

+ 1

2
trace(δT (e(t))δ(e(t)))

≤ eT (t)[A + AT + L f (B + BT )

+ (k2 + q − 2k1)I ]e(t) + Lg[eT (t)(Ce(t − τ))

+ (Ce(t − τ))T e(t)] − k2e
T (t − τ)e(t − τ)

− ηeT (t)sign(e(t)) |e(t)|θ
−[ηsign(e(t)) |e(t)|θ ]T e(t)

− 2η

(∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2

.

According to theCorollary ofLemma3, there is a scalar
s > 0 such that

eT (t)Ce(t − τ) + (Ce(t − τ))T e(t) ≤ seT (t)e(t)

+ s−1eT (t − τ)CTCe(t − τ). (14)

Meanwhile, it is noticed that

−ηeT (t)sign(e(t)) |e(t)|θ
− η[sign(e(t)) |e(t)|θ ]T e(t) = −2η

∣∣∣eT (t)
∣∣∣ |e(t)|θ

≤ − 2η
∣∣∣eT (t)e(t)

∣∣∣
1+θ
2

. (15)

Therefore, in line with Lemma 2 and the conditions in
Theorem 1, we have

LV (t) ≤ eT (t)[A + AT + L f (B + BT )

+ (k2 + q − 2k1 + sLg)I ]e(t)
+ eT (t − τ)(s−1LgC

TC − k2 I )e(t − τ)

− 2η
∣∣∣eT (t)e(t)

∣∣∣
1+θ
2

− 2η

(∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2

≤ −2η
∣∣∣eT (t)e(t)

∣∣∣
1+θ
2

− 2η

(∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2

≤ −2η

(∣∣∣eT (t)e(t)
∣∣∣ +

∫ t

t−τ

k2e
T (v)e(v)dv

) 1+θ
2

= −2ηV (t)
1+θ
2 .

On the basis of Lemma 1, the trivial solution of (12)
is globally stochastically asymptotically stable in finite
time. It means that the finite-time synchronization of
systems (1) and (2) could be achieved for almost every
initial data, and the finite time is estimated by

E [T0] ≤ T = (V (0))
1−θ
2

η(1 − θ)
, (16)

where V (0) = (1 + τ)
∑N

i=1 e
2
i (0). Theorem 1 is

proved.

Remark 1 From the conditions (i) and (ii) of Theo-
rem 1, it is known that, for any high-level noise, there
are sufficiently large positive constants k1 and k2 such
that the finite-time synchronization of neural networks
is obtained in probability. That is to say, this kind of
synchronization is robust to the perturbation.

Remark 2 In the light of Itô formula, it is obvious to
see that the decay rate of function V (t) depends on
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the quality of LV . It means that the quality of LV
dominates the convergence speed of the error system
(10). So the synchronization time of systems (1) and
(2) is controlled by the quality of LV .

Remark 3 From Eq. (16), it is easy to see that, for fixed
initial values, the convergence time of the proposed
algorithm is closely related to the protocol parame-
ters η and θ . Following conclusions can be further
obtained: (a) For fixed value of θ , the synchronization
time decreases with η increasing. (b) If η is fixed, the
synchronization time becomes longerwith θ increasing
when 1 − 2/ ln V (0) < θ < 1, while it becomes less
with θ increasing when 0 < θ < 1− 2/ ln V (0), which
can be derived from the derivation T of θ . This result
depends on the initial values of the systems. Therefore,
in the following numerical simulations, we only con-
sider the influence of η on the synchronization time.

4 Numerical simulations

In this section, byMATLAB program, some numerical
simulations are given to verify the feasibility and effec-
tiveness of the proposed scheme. For this, we think of
following neural network with single time-delay [40]:

ẋi (t) = −ai xi (t) +
n∑
j=1

bi j f (x j (t))

+
n∑
j=1

ci j f (x j (t − τ))

+Ii , (i, j = 1, 2, . . . , N ), (17)

where ai > 0, bi j and ci j are real numbers. τ > 0
is time-delay. Ii (i = 1, 2, . . . , N ) are external inputs.
The input–output transfer function f (x) is selected as
tanh(x), which means L f = 1. Let

x = (x1(t), x2(t), . . . , xN (t))T ,

f (x) = ( f (x1(t)), f (x2(t)), . . . , f (xN (t)))T ,

f (x(t − τ)) = ( f (x1(t − τ)), f (x2(t − τ)),

. . . , f (xN (t − τ)))T ,

I = (I1, I2, . . . , IN )T ,

A = diag(ai )N×N ,

B = (bi j )N×N ,

C = (ci j )N×N ,

and then system (17) can be rewritten as

Fig. 1 The time evolution curves of the drive system (18) and
the response system (19) without controller, N = 2, η = 6.0,
θ = 0.01, (a) x1, y1; (b) x2, y2

ẋ(t) = −Ax(t) + B f (x(t)) + Cg(x(t − τ)) + I,

(18)

which is taken as themaster system and the correspond-
ing slave system is

ẏ(t) = −Ay(t) + B f (y(t)) + C f (y(t − τ)) + I

+ δ(e(t))Ẇ (t) +U, (19)

where controller vector U is taken as (11).
In the simulations, the value of time-delay is τ = 1.

The control strengths are taken as k1 = 20, k2 = 2.
The initial values are taken from the interval [−1.0, 1.0]
randomly. In addition, we choose δ(e(t)) = √

2δ0e(t),
which holds trace(δT δ) ≤ 2δ0eT (t)e(t). To investi-
gate the effect of the number of nodes on the synchro-
nization time, we select the neural networks with two
nodes, five nodes and ten nodes, respectively. Further-
more, for the purpose of comparing the convergence
rate of the system, we think about the total error func-
tion

E(t) =
√√√√ N∑

i=1

e2i (t). (20)

Case 1 When N = 2, we take A =
(
1 0
0 1

)
,

B =
(
3.0 5.0
0.1 2.0

)
, C =

(−2.5 0.2
0.1 −1.5

)
, θ = 0.01

and η = 6.0. Figure 1 shows the time evolution curves
of the drive system (18) and response system (19) with-
out controller, from which it could be seen that the two
systems gradually separate from each other over time.
To obtain ourmain point, the error dynamics of systems
(18) and (19) with controller as (11) are to be simulated
in several conditions. Figure 2 depicts the error dynam-
ics of systems (18) and (19) when N = 2, θ = 0.01
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Fig. 2 The error dynamics of systems (18) and (19) with con-
troller, N = 2, η = 6.0, θ = 0.01

and η = 6.0, which suggests that stochastic synchro-
nization can be realized in finite time for 2-node neu-
ral network. Figure 3 gives the evolution of total error
function E(t)in (20) with the same protocol parameter
values of Fig. 2.

Case 2When N = 5, the matrices are chosen as

A =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

B =

⎛
⎜⎜⎜⎜⎝

3.0 5.0 4.0 6.0 3.0
0.1 2.0 3.0 4.0 1.0
0.3 0.8 1.0 2.5 5.0
0.4 0.9 0.6 4.0 8.0
0.2 0.7 0.8 0.6 5.0

⎞
⎟⎟⎟⎟⎠ ,

C =

⎛
⎜⎜⎜⎜⎝

2.5 0.2 0.1 0.3 0.1
0.1 −1.5 0.4 0.5 0.3
0.7 1.0 −0.5 0.2 0.5
0.6 2.0 0.7 −3.5 0.1
0.5 0.8 0.6 0.8 −4.5

⎞
⎟⎟⎟⎟⎠ .

Figure 4 traces the error evolution of systems (18)
and (19) when θ = 0.01 and η = 6.0, which means
that the finite-time stochastic synchronization can be
obtained if the neural network possesses 5 nodes. Fig-
ure 5 depicts dynamical behavior of the total error func-
tion E(t) in (20) with the same protocol parameter val-
ues of Fig. 4.
Case 3When N = 10, A is taken as the 10th order unit
matrix and the matrices B,C are chosen as

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

8.0 2.0 1.0 3.0 1.0 0 0 2.0 0 1.0
0.1 6.5 2.0 4.0 1.0 0 0 2.0 1.0 3.0
0.3 0.6 5.0 2.0 4.0 1.0 0 1.0 0 2.0
0.5 0.9 0.2 4.0 8.0 3.0 2.0 1.0 0 1.0
0.2 0.7 0.8 0.6 6.0 5.0 2.0 4.0 3.0 0
0.1 0.3 0.4 0 0.3 5.5 8.0 3.0 0 1.0
0 0.8 0.9 0.5 0.2 0.2 7.0 2.0 5.0 1.0
0 0.8 0.9 0.3 0.1 0 0.3 3.5 3.0 2.0
0 0.8 0.2 0.5 0.2 0.1 0.3 0.5 2.0 3.0
0 0.5 0.6 0.3 0.8 0.5 0 0 0.2 3.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−7.5 0.1 0.2 0.9 0.8 0.6 0.5 0.6 0.4 0.2
0.7 −6.0 0.1 1.0 0.8 0.7 0.5 0.6 0.3 0
0.5 0.8 −4.5 0.2 0.4 0.5 0.6 0.4 0 0.1
0.6 0.7 0.9 −3.5 0.1 1.0 0.5 1.2 0.7 1.0
0.5 0.8 0.6 0.8 −5.5 0.6 0.9 1.0 0.5 0
0.2 0.6 0.4 0.7 0.8 −5.0 3.0 2.0 1.0 0.8
0.4 0.3 0.6 0.9 0.7 0.9 −6.5 0.3 0.2 0.1
0.3 0.4 0.5 0.6 0.7 0.8 0.1 −3.0 2.0 0.3
0 0.2 0.4 0.8 0.7 0.6 0.3 0.5 −1.5 1.0
0.1 0.3 0.2 0.4 0.8 0.7 0.6 0.5 0.1 −2.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 6 draws the time evolution of error dynamics
of systems (18) and (19) when θ = 0.01 and η = 6.0,
fromwhichwe know that the finite-time stochastic syn-
chronization can be obtained for 10-node neural net-
work. Figure 7 pictures the dynamics of the total error
function E(t) in (20) with N = 10, θ = 0.01, η = 6.0.
Furthermore, comparing Figs. 2, 5 and 7, it is obvious
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Fig. 3 The time evolution curve of E(t) in (20) with controller,
N = 2, η = 6.0, θ = 0.01

Fig. 4 The error dynamics of systems (18) and (19) with con-
troller, N = 5, η = 6.0, θ = 0.01

Fig. 5 The time evolution curve of E(t) in (20) with controller,
N = 5, η = 6.0, θ = 0.01

to see that the total error function of the neural networks
withmore nodes converge slower than thosewith fewer
nodes.

To find out the time of stochastic synchroniza-
tion over parameter η, Fig. 8 describes the evolution
of E(t) over time t when N = 2, θ = 0.01 and
η is taken as different values, which indicates that
the time required to realize the finite-time stochas-
tic synchronization becomes less with η increasing.
This phenomenon is consistent with the comment in
Remark 3.

Fig. 6 Error dynamics of systems (18) and (19) with controller,
N = 10, η = 6.0, θ = 0.01. (a) Evolution curve of ei (i =
1, 2, . . . , 10), (b) enlargement of the corresponding portion in
(a) for t ∈ [0, 200] and ei ∈ [−10, 1]

Fig. 7 The time evolution curve of E(t) in (20) with controller,
N = 10, η = 6.0, θ = 0.01

5 Conclusions and future works

In this paper, based on finite-time stability theory of
stochastic differential equation, via suitable controllers,
stochastic synchronization of time-delay neural net-
works with noise disturbance is achieved in finite time.
This result is not only obtained by theoretical anal-
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Fig. 8 The evolution of E(t) in (20) along time t for N = 2,
θ = 0.01 and different values of η

ysis, but also verified by numerical simulations. Fur-
thermore, factors affecting the convergence rate are
described. When the number of nodes in the neural
network is fixed, larger η is helpful for improving the
convergence rate. At the same condition, the time of
convergence is positively correlated with the number
of nodes in the neural networks. The fewer the nodes,
the less time is required to achieve stochastic synchro-
nization.

Because the discussed neural networks take into
account both time-delay and noise disturbance, it is
attractive and practical in understanding the dynamic
behavior of neural networks. It will be helpful for the
application of neural network.

In this work, the time-delay is assumed as con-
stant. For some systems with time-varying delay, adap-
tive control [41,42] can be used to realized the finite-
time stochastic synchronization of neural networks.
Our next work is to investigate this problem to fur-
ther understand the complexity mechanism of the neu-
ral system and avoid some unfavorable phenomenon as
much as possible.
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