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Abstract This paper focuses on the finite-time syn-
chronization problem for a kind of general complex
networks with intrinsic time-varying delays and hybrid
couplings (i.e., containing current-state couplings and
time-varying delay couplings). By designing a simple
discontinuous state feedback controller and using strict
analytical techniques, several synchronization criteria
are proposed to guarantee that the complex dynam-
ical networks can be synchronized onto an isolated
chaotic system in finite time. Besides, the upper bound
of the synchronization time could be estimated, which
is dependent on the initial values of the system as well
as the delays. Then, some finite-time synchronization
criteria about special cases of the complex networks are
also obtained. Here, the coupling configuration matri-
ces are not required to be symmetric or irreducible in
all cases. Finally, numerical examples are provided to
demonstrate the correctness of our theoretical results.

Keywords Complex dynamical network · Finite-time
synchronization · Hybrid coupling · Time-varying
delay

J. Feng (B) · N. Li · Y. Zhao · C. Xu · J. Wang
College of Mathematics and Statistics, Shenzhen
University, Shenzhen 518060, People’s Republic of China
e-mail: fengjw@szu.edu.cn

1 Introduction

The past decades have witnessed an increasing inter-
est in complex networks because an ocean of natural
and man-made systems can be exceedingly described
as complex networks, such as the World Wide Web
(i.e., search engine optimization), electrical power
grids, communication networks, biological networks
(i.e., transcriptional regulatory network, virus–host net-
work) and so on [1–5]. Synchronization, which means
the dynamical behaviors of coupled nodes in a net-
work achieve the same state both in time and spa-
tial, has become one of the hottest topics in complex
networks. Up to date, various types of synchroniza-
tions have been considered: complete synchronization
[6,7], exponential synchronization [8,9], cluster syn-
chronization [10,11], lag synchronization [12,13], gen-
eralized synchronization [14,15] and so on.

However, most of existing results concerning syn-
chronization including thosementioned above are actu-
ally asymptotic results, which can only be guaran-
teed when time goes to infinity. Recently, another
kind of synchronization, called finite-time synchro-
nization, has attractedmore attentions. Finite-time syn-
chronization means that the synchronization goal can
be achieved in a setting time, which has many appli-
cations, especially in engineering fields. For example,
recovering the transmitted signals in a setting time
in secure communication is requested to improve the
efficiency and confidentiality; therefore, we applied
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finite-time synchronization in it, which has not only
the optimality in convergence time, but also better dis-
turbance rejection properties and robustness against
uncertainties [16,17]. Because of various advantages,
an increasing number of researchers focused on the
finite-time synchronization by using many kinds of
control approaches. In [18], the authors designed finite-
time synchronization controllers for a class of coupled
neural networks by using switching approach. Subse-
quently,Mei et al. investigated finite-time synchroniza-
tion of complex dynamical networks with time delay
through impulsive and intermittent control schemes
simultaneously in [19]. Additionally, [20] discussed
finite-time synchronization for a class of chaotic and
hyperchaotic systems via adaptive control method.
Aghababa et al. studied finite-time synchronization of
two different chaotic systems via slid mode control in
[21]. Besides, therewere also some literatures about the
finite-time synchronization of drive-response systems
[24,25]. Here we would focus on the finite-time syn-
chronization of general complex dynamical networks.

However, time delays are unavoidable in practice
due to the finite speed of transmission and conjunc-
tion [22,23]. We do not want to see that synchroniza-
tion of systems with time delays can not be achieved.
Consequently, it is indispensable to consider the time
delays in studies of synchronization of complex net-
work. As we all know, there generally exist two types
of time delays in dynamical networks in practice. One
is internal delay occurring inside the dynamical nodes.
For instance, the effect of autapse on neuronal activ-
ity is often illustrated by adding an additive forc-
ing current along a close loop, which is described by
a time-delayed feedback on the membrane potential.
In neural processing and signal transmission, axonal
signal transmission delays often occur. The other is
coupling delay caused by the exchange of informa-
tion between dynamical nodes. Taking the communi-
cation network as an example, we contact our friends
by telephone, and the information received would be
affected by time delays. Many papers have considered
the finite-time synchronization of complex networks
without time delays or only with internal delay or cou-
pling delay [18–21,27–30]. Fortunately, there are a few
works about finite-time synchronizationwith two kinds
of time delays in recent years. Such as in [31], finite-
time synchronization for complex dynamical networks
with hybrid coupling and time-varyingdelaywasdevel-
oped, but the internal time-varying delays and coupled

time-varying delays are supposed to be the same,which
does not match the realities. Very Recently, Li and Cao
worked on the finite-time synchronization of coupled
networks with one single time-varying delay coupling
in [24]. The controller in [24] included the term like

“(
∫ t
t−τ(t) e

T
i (s)ei (s)ds)

1+η
2

ei (t)
‖ei (t)‖2 ,” which are nonlin-

ear and extremely complicated to implement in real
applications. Compared to them, the controller pro-
posed in [25,26] is easier to be applied to the real world,
but it only analyzed the neural networks with delays,
which is one-dimension networks. To the best of our
knowledge, there are few results concerning finite-time
synchronization (or finite-time boundedness) for gen-
eral complex networks with both internal time-varying
delays and coupled time-varying delays. In this paper,
two types time delay will be considered in the network
systems and they are supposed to be time-varying.

Motivated by the abovediscussions, in this paper, the
finite-time synchronization issue for multi-dimension
complexdynamical networkswith internal time-varying
delays and coupled time-varying delays is investigated
by applying anovel control scheme.We introduce the1-
norm of each error’s vector which can be described the
finite-time synchronization rather than 2-norm which
have been used for all most existing related literatures.
By employing the Lyapunov method combined with
rigorousmathematical analysis, a set of simple and eas-
ily verifiable sufficient conditions are derived to guar-
antee finite-time synchronization for the general net-
work system. Meanwhile, the upper bound of the syn-
chronization time is estimated, which is dependent on
both initial values of the interest system and the delays.
Additionally, some numerical examples are given to
verify the effectiveness of the theoretical results.

The main contributions of this paper can be sum-
marized as follows. The first one is that both internal
delays and coupling delays are modeled in this paper,
which are all time-varying and may be more consistent
with the real-world case. In fact, internal time delay
can facilitate synchronization. The second one is that a
novel controller for achieving finite-time synchroniza-
tion is designed here, which is discontinuous but easy
to be applied in the real world. Moreover, some suffi-
cient conditions guaranteeing the finite-time synchro-
nization are derived through designing a newLyapunov
functional and the proof is rigorous rather thanusing the
well-known finite-time stability theorem, which avoids
designing complex controller for meeting the condi-
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tions of finite-time stability theorem in most existing
literatures. Moreover, some corollaries are presented
which show our main results are less conservative and
more general than previous ones.

The rest of this paper is organized as follows:
Section 2 presents some preliminaries consisting of
assumptions and definitions. Section 3 addresses the
main results about finite-time synchronization for the
present model and its relevant corollaries. Simulation
results are given in Sect. 4 to show the effectiveness of
the theoretical results. Wemake a conclusion in the last
section.

2 Preliminaries

Consider the following complex dynamical network
with time-varying delays

ẋi (t) = f (t, xi (t), xi (t − τ(t))) + c1

N∑

j=1

ai jΓ x j (t)

+ c2

N∑

j=1

bi jΓ x j (t − τi j (t)), i = 1, 2, . . . , N

(1)

where xi (t) = (
xi1(t), xi2(t), . . . , xin(t)

)T ∈ R
n

is the state vector of the node i , f (t, xi (t), xi (t −
τ(t))) = (

f1(t, xi (t), xi (t − τ(t))), f2(t, xi (t), xi (t −
τ(t))), . . . , fn(t, xi (t), xi (t − τ(t)))

)T ∈ R
n repre-

sents the dynamical behavior of the i th node, which is a
continuous vector-valued function. The constants c1 >

0, c2 > 0 denote the non-delayed and the delayed cou-
pling strength, respectively. Γ =diag{γ1, γ2, . . . , γn}
means the inner coupling matrix, and γ j > 0, j =
1, . . . , n. τ(t) is the internal time delay, and τi j (t)
are called coupling delays. Let A = (ai j ), B =
(bi j ) ∈ R

N×N represent the non-delayed and the
delayed coupling matrices, respectively, which satisfy
ai j > 0, bi j > 0 if for all node j receives informa-
tion from node i and otherwise ai j = 0, bi j = 0.
The diagonal elements of A and B can be defined as
aii = −∑N

j=1, j �=i ai j , bii = −∑N
j=1, j �=i bi j , i =

1, 2, . . . , N .

The initial states of the network (1) are xi (t) =
ϕi (t) ∈ C([−τ, 0],Rn), i = 1, 2, . . . , N , where τ =
max{τ̄i j , τ̄ }, τ̄i j and τ̄ are positive constants satisfying
τi j (t) ≤ τ i j , τ (t) ≤ τ̄ , for all i = 1, 2, . . . , N , j =

1, 2, . . . , n. C([−τ, 0],Rn) means the set of continu-
ous functions mapping the interval [−τ, 0] into Rn . In
addition, suppose that τ̇i j (t) ≤ μi j < 1, τ̇ (t) ≤ μ < 1,
for ∀i = 1, 2, . . . , N , j = 1, 2, . . . , n.

Let s(t) be a solution of an isolated node described
by

ṡ(t) = f (t, s(t), s(t − τ(t))) (2)

with initial condition s(t) = ϕ(t) ∈ C[−τ̄ , 0]. In this
paper, our objective is to force the network (1) to the
desired trajectory s(t) with suitable control strategies
in finite time.

Denote ei (t) = xi (t) − s(t). Subtracting Eq. (2)
from (1) and noting the property of matrices A and B,
we have

ėi (t) = f (t, xi (t), xi (t − τ(t))) − f (t, s(t), s(t − τ(t)))

+ c1

N∑

j=1

ai jΓ e j (t) + c2

N∑

j=1

bi jΓ e j (t − τi j (t)),

i = 1, 2, . . . , N . (3)

In order to achieve the synchronization of com-
plex network (1), some controllers ui (t) are needed
to be introduced and the controlled error system can be
described as

ėi (t) = f (t, xi (t), xi (t − τ(t))) − f (t, s(t), s(t − τ(t)))

+ c1

N∑

j=1

ai jΓ e j (t) + c2

N∑

j=1

bi jΓ e j (t − τi j (t))

+ ui (t), i = 1, 2, . . . , N . (4)

To proceed our study, the following assumption con-
ditions are needed.

Assumption 1 [33] There exist two constant matrices
Θ = (θi j )n×n and Φ = (ϕi j )n×n in which ϕi j ≥
0, θi j ≥ 0, such that

| fi (t, x(t), x(t − τ(t))) − fi (t, y(t), y(t − τ(t)))|

≤
n∑

j=1

(
θi j |x j (t) − y j (t)| + ϕi j |x j (t − τ(t)) − y j (t − τ(t))|),

∀x = (x1, x2, . . . , xn)T ∈ R
n , y = (y1, y2, . . . , yn)T ∈ R

n ,

i = 1, 2, . . . , n. (5)

Remark 1 When τ(t) = 0, then inequality (5) in
assumption 1 is changed to

| fi (t, x(t)) − fi (t, y(t))| ≤
n∑

j=1

θi j |x j (t) − y j (t)|
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Remark 2 The reason why we use Assumption 1 is to
deal with the nonlinear dynamical function of every
node, generally speaking, the QUAD condition and
the Lipschitz condition are usually used for 2-norm
to manage nonlinear term, while the Lyapunov func-
tional is based on 1-norm in this paper instead of 2-
norm.

Definition 1 [25] The complex networks (1) are said
to be synchronized with (2) in finite time if, for a suit-
able designed feedback controller, there exists a con-
stant t1 > 0, such that ‖ei (t1)‖1 = 0 and ‖ei (t)‖1 ≡ 0
for t > t1 and i = 1, 2, . . . , N , where ‖ei (t)‖1 =∑n

j=1 |ei j (t)|, for ei (t) = (ei1(t), ei2(t), . . . ,

ein(t))T , t1 is called the setting time.

3 Main results

In this section, we will investigate the finite-time syn-
chronization of complex network (1), which is equiva-
lent to study the stability of error dynamical system (3)
at the origin in a setting time. some sufficient criteria
to guarantee the origin stab are given.

Design the controller as

ui (t) = −ξi ei (t) − δi sign(ei (t)), i = 1, 2, . . . , N ,

(6)

where sign(·) is the sign function, sign(ei (t)) =
(
sign(ei1(t)), sign(ei2(t)), . . . , sign(ein(t))

)T , and
ξi > 0, δi > 0 are the tunable constants for i =
1, 2, . . . , N .

Remark 3 The traditional controllers contain such as
“ui (t) = −δi sign(ei (t))|ei (t)|β , 0 < β < 1′′ in [18]
and most existing literature, if the considered system
contains time delay, the designed controller is more
complicated [24]. It is clear that the controller we
designed here is simpler than previous one and more
easier to implement in reality.

In the following, we will present the main results of
this paper, which ensure the achievement of the syn-
chronization for the general complex networks in finite
time.

Theorem 1 Suppose that Assumption 1 holds. If there
exist δi > 0 and ξi > 0 such that

n∑

j=1

θ jv +
n∑

j=1

1

1 − μ
ϕ jv + c1

N∑

j=1

|a ji |γv

+ c2

N∑

j=1

1

1 − μ j i

×|b ji |γv − ξi ≤ 0, i = 1, . . . , N , v = 1, . . . , n,

(7)

then error network (4) is stable in finite time, which
means synchronization between complex dynamical
network (1) and (2) is achieved under controller (6).
Furthermore, for the given initial value ei (0), the set-
ting time is estimated as

ϒ ≤ (1/δ)

⎡

⎣
N∑

i=1

signT (ei (0))ei (0)

+
N∑

i=1

n∑

j=1

n∑

v=1

1

1 − μ
ϕ jv ×

∫ 0

−τ̄
|eiv(s)|ds

+c2

N∑

i=1

N∑

j=1

1

1 − μi j
|bi j |

∫ 0

−τ̄i j

signT
(
e j (s)

)
Γ e j (s)ds

⎤

⎦−τ,

where δ = min{δi , i = 1, 2, . . . , N }.

Proof Consider the Lyapunov–Krasovskii functional
candidate as follows

V (t) = V1(t) + V2(t) + V3(t) (8)

where

V1(t) =
N∑

i=1

signT (ei (t))ei (t), (9)

V2(t) =
N∑

i=1

n∑

j=1

n∑

v=1

1

1 − μ
ϕ jv

∫ t

t−τ(t)
|eiv(s)|ds,

(10)

and

V3(t) = c2

N∑

i=1

N∑

j=1

1

1 − μi j
|bi j |

×
∫ t

t−τi j (t)
signT (e j (s))Γ e j (s)ds. (11)
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Calculating the time derivative of V1(t), V2(t) and
V3(t) along controlled error system (4), it is followed
from inequation (5) that

dV1(t)

dt

=
N∑

i=1

signT (ei (t))[ f (t, xi (t), xi (t − τ(t)))

− f (t, s(t), s(t − τ(t))) + c1

N∑

j=1

ai jΓ e j (t)

+ c2

N∑

j=1

bi jΓ e j (t − τi j (t)) − ξi ei (t) − δi sign(ei (t))]

≤
N∑

i=1

n∑

j=1

| f j (t, xi (t), xi (t − τ(t))) − f j (t, s(t), s(t − τ(t)))|

+ c1

N∑

i=1

N∑

j=1

ai j sign
T (ei (t))Γ e j (t)

+ c2

N∑

i=1

N∑

j=1

bi j sign
T (ei (t))Γ e j (t − τi j (t))

−
N∑

i=1

ξi sign
T (ei (t))ei (t) −

N∑

i=1

δi sign
T (ei (t))sign(ei (t))

≤
N∑

i=1

n∑

j=1

n∑

v=1

θ jv |eiv(t)| +
N∑

i=1

n∑

j=1

n∑

v=1

ϕ jv |eiv(t − τ(t))|

+ c1

N∑

i=1

N∑

j=1

n∑

v=1

|ai j |γv |e jv(t)|

+ c2

N∑

i=1

N∑

j=1

n∑

v=1

|bi j |γv |e jv(t − τi j (t))|

−
N∑

i=1

n∑

j=1

ξi |ei j (t)| −
N∑

i=1

δi sign
T (ei (t))sign(ei (t)), (12)

dV2(t)

dt
≤

N∑

i=1

n∑

j=1

n∑

v=1

1

1 − μ
ϕ jv |eiv(t)|

−
N∑

i=1

n∑

j=1

n∑

v=1

ϕ jv |eiv(t − τ(t))|, (13)

and

dV3(t)

dt
≤ c2

N∑

i=1

N∑

j=1

n∑

v=1

1

1 − μi j
|bi j |γv|e jv(t)|

−c2

N∑

i=1

N∑

j=1

n∑

v=1

|bi j |γv|e jv(t − τi j (t)|.

(14)

According to Eqs. (12), (13) and (14), we get

dV (t)

dt
≤

N∑

i=1

n∑

v=1

(

n∑

j=1

θ jv +
n∑

j=1

1

1 − μ
ϕ jv + c1

N∑

j=1

|a ji |γv

+c2

N∑

j=1

1

1 − μ j i
|b ji |γv − ξi )|eiv(t)| −

N∑

i=1

δiλi ,

(15)

where λi = signT (ei (t))sign(ei (t)). It can be easily
found that λi ≥ 1 if there exists j = 1, 2, . . . , n such
that ei j (t) �= 0, otherwise λi = 0.

Noticing condition (7) , (15) yields the following
inequality

dV (t)

dt
≤ −

N∑

i=1

δiλi . (16)

Since V (t) is positive and non-increasing, with con-
sidering the above analysis, there must exist nonnega-
tive constant V ∗ such that

lim
t→+∞ V (t) = V ∗ and V (t) ≥ V ∗, ∀t ≥ 0. (17)

On the other hand, taking the integration both sides
of inequation (16) from 0 to t , we can obtain that

V (t) − V (0) ≤ −
N∑

i=1

δiλi t. (18)

If there exists i = 1, 2, . . . , N such that ‖ei (t)‖1 >

0 hold for all t ∈ [0,+∞), then −∑N
i=1 δiλi <

0. From (18), we can get limt→+∞ V (t) = −∞,
which contradicts to (17). Therefore, there exists t1 ∈
[0,+∞) such that

lim
t→t1

V (t) = V ∗ and V (t) ≡ V ∗, ∀t ≥ t1. (19)

Next, we will prove that

‖ei (t1)‖1 = 0 and ‖ei (t)‖1 ≡ 0, ∀t ≥ t1, i = 1, . . . , N .

(20)

First of all, we prove that ∀i = 1, . . . , N , ‖ei (t1)‖1
= 0 holds. For the contradiction, that ∃i = 1, . . . , N
such that ‖ei (t1)‖1 > 0, then there exists a small
positive constant ε such that ‖ei (t)‖1 > 0 for all
t ∈ [t1, t1 + ε]. Thus, there exists at least one j0 ∈
{1, 2, . . . , n} such that |ei j0(t)| > 0 for any instant
t ∈ [t1, t1 + ε]. Based on the previous analysis, it is
easy to know that V̇ (t) ≤ −δi < 0 holds for the instant
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t ∈ [t1, t1+ε], which is contradicted to (19). Therefore,
‖ei (t1)‖1 = 0 holds for i = 1, 2, . . . , N .

Then,wewouldprove that∀i =1, 2, . . . , N , ‖ei (t)‖1
≡ 0 for ∀t ≥ t1. Otherwise, ∃i = 1, 2, . . . , N and
t2 > t1 such that ‖ei (t2)‖1 > 0. Let ts = sup{t ∈
[t1, t2] : ‖ei (t)‖1 = 0}. We have ts < t2, ‖ei (ts)‖1 = 0
and ‖ei (t)‖1 > 0, ∀t ∈ (ts, t2]. Moreover, there
exists t3 ∈ (ts, t2] such that ‖ei (t)‖1 is monotonously
increasing on the interval (ts, t3]. From the definition of
‖ei (t)‖1, we know that V (t) is monotonously increas-
ing on the interval (ts, t3], too. Hence, V̇ (t) > 0,
∀t ∈ (ts, t3]. On the other hand, by ‖ei (t)‖1 > 0,
∀t ∈ (ts, t3], there exists at least one j0 ∈ {1, 2, . . . , n}
such that |ei j0 | > 0 at any instant t ∈ (ts, t3]. By the
same argument as above, it follows that V̇ (t) ≤ −δ < 0
holds for t ∈ (ts, t3], which is a contradiction with
V̇ (t) > 0, ∀t ∈ (ts, t3]. Therefore, ‖ei (t)‖1 ≡ 0 for
∀t ≥ t1, i = 1, 2, . . . , N .

Next, we would prove V ∗ = 0. Note that limt→t1
V1(t) = 0 and ∃t2 = t1 + τ̄ such that limt→t2 V2(t) =
limt→t2

∑N
i=1

∑n
j=1

∑n
v=1

1
1−μ

ϕ jv
∫ t
t−τ(t) |eiv(s)|ds

= 0. Moreover, there exists t3 = t1 + τ̄i j to ensure that
limt→t3 V3(t) = limt→t3 c2

∑N
i=1

∑N
j=1

1
1−μi j

|bi j |
∫ t
t−τi j (t)

signT (e j (s)) × Γ e j (s)ds = 0. Because V (t)
= V1(t) + V2(t) + V3(t), we have limt→t4 V (t) =
limt→t4 V1(t) + limt→t4 V2(t) + limt→t4 V3(t) = 0,
where t4 = max{t2, t3}. Therefore, V ∗ = 0 is proved.

Last, the synchronization timeϒ could be estimated.
We can get V̇ (t) ≤ −δ when ‖ei (t1)‖1 �= 0 from
inequation (16), then t1 ≤ V (0)

δ
. Thus, ϒ = t1 − τ .

Therefore, the upper bound of the synchronization
time is estimated as ϒ ≤ V (0)

δ
− τ . This completes the

proof.

Remark 4 From the criteria of Theorem 1, there are
totally n × N inequalities to be satisfied. The reason is
that the Lyapunov–Krasovskii functional we designed
here is 1-norm, and there are so many components to
multi-dimension situation for the considered system.
Different from using linear matrix inequality method
in previous relative literature, our conditions here are
easier to be realized if the value of control strength
ξi is large enough. Moreover, note that it is crucial to
select the variable λi in (15) according to the value of
ei (t) which makes our proposed method valid for this
finite-time problem. We can see λi plays a key role
in analyzing ‖ei (t)‖1 = 0 from the Theorem 1 in the
end.

Remark 5 From above one can see that ξi in controller
(6) decide whether the system achieves synchroniza-
tion, and δi can regulate the synchronization time, later
mentioned in the simulation. Besides, δi is tunable and
generally the time delay is relatively small; thus, we
can choose proper δi such that the setting time ϒ > 0.

Remark 6 Most of the existing results on finite-time
synchronization of coupled networks were discussed
by using the finite-time stability theory and did not
consider time delays (see [18] and reference therein).
Although both intrinsic time delay and coupled time
delay were considered in [24], they assume that there
is only one single time-varying delay coupling, which
is not comprehensive in a practical network because
there are different time delays during communication
between different two nodes. In this paper, taking into
account the fact that time delay is inevitable ubiquity in
coupled network, we study the global synchronization
in finite time of general coupled complex network with
both intrinsic time-varying delay and different coupled
time-varying delay. Different from the existing works,
we obtain simpler criteria for achieving finite-time syn-
chronization for considered systems by constructing
proper Lyapunov–Krasovskii functional and employ-
ing the property of sign function and strict analytical
techniques. The controller designed here is very simple
and canbe easily implemented in practical applications.
Recently, in [34] we designed the same controller like
(6) to achieve the finite-time synchronization for some
networks that not considering the coupling delay, in a
sense, our work here generalizes the previous works.

Theorem 1 is very general and its conclusion can be
applicable to complex networkswith or without delays.
In order to make Theorem 1 more applicable, we give
some corollaries as follows.

First of all, we consider the complex network with-
out internal delay and coupling delays. Thus, complex
dynamical network (1) can be described as

ẋi (t) = f (t, xi (t)) + c1

N∑

j=1

ai jΓ x j (t), i = 1, 2, . . . , N .

(21)

Correspondingly, s(t) is a solution of the isolated
node of network (21) given by

ṡ(t) = f (t, s(t)). (22)
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Our control objective is to synchronize complex net-
work (21) to homogenous trajectory (22) within the
setting time.

Therefore, the controlled error dynamical system is

ėi (t) = f (t, xi (t)) − f (t, s(t))

+ c1

N∑

j=1

ai jΓ e j (t) + ui (t),

i = 1, 2, . . . , N . (23)

It is easy to derive the following result from Theo-
rem 1.

Corollary 1 Suppose that Assumption 1 holds. If there
exist δi > 0 and ξi > 0 such that

n∑

j=1

θ jv + c1

N∑

j=1

|a ji |γv − ξi ≤ 0, i = 1, . . . , N ,

v = 1, . . . , n. (24)

Then network (21) synchronized to (22) in finite-time
under controller (6). Moreover, for the given initial
value ei (0), the upper bound of the synchronization
time is t1 ≤ ( 1

δ
)[∑N

i=1 sign
T (ei (0))ei (0)].

When τi j (t) �= 0 and τ(t) ≡ 0,∀t > 0, i.e., the net-
work only contain coupling delay, then the dynamical
system of the complex network can be described as:

ẋi (t) = f (t, xi (t)) + c1

N∑

j=1

ai jΓ x j (t)

+c2

N∑

j=1

bi jΓ x j (t − τi j (t)), i = 1, 2, . . . , N .

(25)

We synchronize complex network (25) to homogenous
trajectory (22) in finite-time.

From Theorem 1, one can obtain the following
result:

Corollary 2 SupposeAssumption1holds, If there exist
δi > 0 and ξi > 0 such that

n∑

j=1

θ jv + c1

N∑

j=1

|a ji |γv + c2

N∑

j=1

1

1 − μ j i
|b ji |γv − ξi ≤ 0,

i = 1, . . . , N , v = 1, . . . , n. (26)

Then network (25) finite-timely synchronized to (22)
under the same controller designed as (6). Further-
more, for the given initial value ei (0), the upper bound
of the synchronization time is estimated as

ϒ ≤ (1/δ)
[ N∑

i=1

signT (ei (0))ei (0)

+c2

N∑

i=1

N∑

j=1

1

1 − μi j
|bi j |

∫ 0

−τ̄i j

signT
(
e j (s)

)
Γ e j (s)ds

]

−τ̄i j

Remark 7 Mei et al. studied the similar model with
(25) in [19]. However, not only the time delay con-
sidered in [19] was assumed to be a constant, but also
the designed complex controllers which contain inte-
gral termand impulsive control (or intermittent control)
were used simultaneously for synchronization system.
Compared with [19], the controllers we design here are
much simpler and the conditions we obtained are more
concise. Furthermore, our results show another kind of
effective control strategy for finite-time synchroniza-
tion of complex dynamic network, which is easier to
implement. In this sense, our work improve greatly the
relative existing ones.

When there are not coupling delays in network
model (1), i.e., τ(t) > 0, and τi j (t) ≡ 0,∀t > 0.
In this case, complex network (1) can be turned to

ẋi (t) = f (t, xi (t), xi (t − τ(t))) + c1

N∑

j=1

ai jΓ x j (t),

i = 1, 2, . . . , N . (27)

The corresponding result for this case is as follows:

Corollary 3 SupposeAssumption 1 holds, if there exist
δi > 0 and ξi > 0 such that

n∑

j=1

θ jv +
n∑

j=1

1

1 − μ
ϕ jv + c1

N∑

j=1

|a ji |γv − ξi ≤ 0,

i = 1, . . . , N , v = 1, . . . , n. (28)

Then network (28) can be finite-timely synchronized
onto (2) under controller (6). Moreover, for the given
initial value ei (0), we estimate

ϒ ≤ (1/δ)[
N∑

i=1

signT (ei (0))ei (0)

+
N∑

i=1

n∑

j=1

n∑

v=1

1

1 − μ
ϕ jv

∫ 0

−τ̄

|eiv(s)|ds] − τ̄

as the upper bound of the synchronization time.
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Remark 8 The above three corollaries are direct appli-
cations of Theorem 1. Their proofs are similar to the
proof of Theorem 1 with only a little difference in con-
structing the Lyapunov–Krasovskii functional. we can
consider the V1(t) as the Lyapunov functional in Corol-
lary 1, since V1(t) = 0 is equivalent to ‖ei (t)‖1 =
0, i = 1, 2, . . . , N . Correspondingly, we can construct
the Lyapunov function of corollary 2 and 3, respec-
tively. Here we omit it.

Remark 9 Some sufficient conditions of finite-time
synchronization for several kinds of coupled network
are given by the above three corollaries, respectively. In
a manner, those conclusions improve the existing rela-
tive works. For example, in [30], the authors also study
the finite-time synchronization control for delayed net-
work with intrinsic delay only, the sufficient conditions
of finite-time synchronization in [30] are more com-
plex than the conditions given by Corollary 3, which is
simpler to be verified and be implemented in practical
applications. Furthermore, the isolate node dynamics
here are more general than [30], which was supposed
to be a kind of special neural network. On the other
hand, in our previous work [34], the finite-time syn-
chronization of system (27) was studied also, the result
of Corollary 3 here is the same as Theorem 1 in [34].
In a sense, the conclusion there is a special case of our
work. In other words, the current work improves the
previous one.

4 Numerical simulation

In this section, we present some numerical simulations
to illustrate the effectiveness of theTheoremandCorol-
laries in the previous section. Examples 1 and 2 verify
the correction of Theorem 1 and Corollary 2, respec-
tively. In the following examples, we make the fol-
lowing regulations: xi (t) = (xi1(t), xi2(t))T , in other
words, the nodes in the system are two-dimension and
the complex networks have 6 nodes in total. Besides,
Γ = I2×2, c1 = c2 = 1, initial condition is chosen as
x1(0) = [1.5,−2.7]T , x2(0) = [1.6, 4.8]T , x3(0) =
[−1.3,−4.4]T , x4(0) = [0.8, 2.1]T , x5(0) =
[−4.3, 1.4]T , x6(0) = [1.3,−1.7]T , and the initial
value of s(t) is s(0) = [0.4, 0.6]T . Coupling matrices
A and B are defined as:

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−1.4 0.4 0 1 0 0
0.4 −0.7 0.3 0 0 0
0 0.3 −0.3 0 0 0
1 0 0 −1.6 0.6 0
0 0 0 0.6 −1.1 0.5
0 0 0 0 0.5 −0.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.75 0.5 0.25 0 0 0
0.5 −2.5 0 0.5 0 1.5
0.25 0 −0.65 0 0.4 0
0 0.5 0 −0.5 0 0
0 0 0.4 0 −0.4 0
0 1.5 0 0 0 −1.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Example 1 The effectiveness of Theorem 1 is verified
in this section, which consider both the coupling delays
and the internal delay. Without loss of generality, we
introduce τ(t) = τi j (t) = 1. Therefore, μ = μi j = 0,
and we take f (t, xi (t), xi (t − τ(t))) in complex net-
work (1) as follows [32]:

f (t, xi (t), xi (t − τ(t))) = −Cxi (t) + Mg(xi (t))

+Ng(xi (t − τ(t))),

in which g(xi (t)) = 0.5(|xi1(t) + 1| − |xi1(t) −
1|, |xi2(t) + 1| − |xi2(t) − 1|)T , and

C =
(
1 0
0 1

)

, M =
(
1 + π

4 20
0.1 1 + π

4

)

,

N =
(−1.3

√
2π/4 0.1

0.1 −1.3
√
2π/4

)

From the definition of f (t, xi (t), xi (t − τ(t))), we
have

| f1(t, x1(t), x1(t − 1)) − f1(t, s(t), s(t − 1))|
≤ (2 + π/4)|e11(t)| + 20|e12(t)|

+1.3
√
2π/4|e11(t − 1)| + 0.2|e12(t − 1)|, (29)

and according to assumption 1, θ11 = 2 + π/4, θ12 =
20, ϕ11 = 1.3

√
2π/4, ϕ12 = 0.1, using the samemeth-

ods, we possess θ21 = 1.1, θ22 = 1 + π/4, ϕ21 =
0.1, ϕ22 = 1.3

√
2π/4. In other words,

Θ =
(
2 + π/4 20

1.1 1.3
√
2π/4

)

,

Φ =
(
1.3

√
2π/4 0.1

0.1 1.3
√
2π/4

)

.

Therefore, we should take max
∑2

j=1 θ jv = 21.7875,

and max
∑2

j=1 ϕ jv = 1.5478. Then from the criteria
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Fig. 1 a Time response of the state variables when δi = 0.1;
b time response of the error variables when δi = 0.1; c time
response of the error variables’ 1-norm for each node when δi =
0.1; d time evolution of ‖e(t)‖1 with δi = 1 and δi = 0.1, i =
1, . . . , 6

in Theorem 1, we take ξi = 31.5353, i = 1, . . . , 6,
which satisfy the condition.

Figure 1 describes the time evolution of ei (t) and
‖ei (t)‖1, i = 1, . . . , 6 when δi = 0.1, i = 1, . . . , 6
and ‖e(t)‖1 with different values of δi = δ j , i, j =
1, . . . , 6. When δi = 1, i = 1, . . . , 6 we can see from
Fig. 1 (d) clearly that ‖e(t)‖1 reaches zero earlier than
when δi = 0.1, i = 1, . . . , 6, and they all reach zero
at almost t = 1.149712s. Consequently, Theorem 1
is verified from Fig. 1. At the same time, through the
simple computation, V (0) = 61.9343, then the esti-
mated upper bound is t = 1

δ
V (0) − 1 = 618.343s

when δi = δ j = 0.1, i, j = 1, . . . , 6, meeting the
estimated upper bound we proposed. Besides, we can
see the synchronization is realized quickly from above
figures.

Example 2 The next step is to demonstrate the validity
of Corollary 2, which is the complex network only with
coupling timedelays. In this part,we let τi j (t) = 1, then
we can get μi j = 0,∀i = 1, . . . , 6, j = 1, 2. Here,
f (x) displayed as follows: f (t, xi (t), xi (t − τ(t))) =
−Cxi +Mg(xi (t)), in which g(xi ) is taken as the same
as that in Example 1. According to Remark 1, obvi-
ously, we take ξi = 29.9875 to satisfy the criteria in
the Corollary 2.

Therefore, Corollary 2 is verified. Evidently, Fig. 2
describes the time evolution of ei (t) and ‖ei (t)‖1, i =
1, . . . , 6 when δi = 0.1, i = 1, . . . , 6 and ‖e(t)‖1 with
different values of δi = δ j , i, j = 1, . . . , 6.When δi =
1, i = 1, . . . , 6, we can see from Fig. 2 (d) that ‖e(t)‖1
reaches zero earlier than when δi = 0.1, i = 1, . . . , 6,
and they all reach zero at almost t = 0.254319s. At the
same time, through the simple computation, V (0) =
33.3, then the estimated upper bound is t = 1

δ
V (0) −

1 = 332s when δi = δ j = 0.1, i, j = 1, . . . , 6, which
meets the estimated upper bound we proposed.

From the above two examples, we can conclude that
the larger δi = δ j , i, j = 1, . . . , 6 can shorten the
synchronization time when the initial value is fixed.
Evidently, the synchronization time we estimated is
much larger than the real synchronization time. How-
ever, when δ is increasing, the gap between the real
synchronization time and the setting timewill decrease.
Choosing δi = 10,∀i = 1, . . . , 6 andkeeping the other
parameters same as those in example 1, we have Fig. 3
in which the synchronization time is almost t = 0.1s,
and the gap between the synchronization time and the
setting time t = 5.19343s decrease.
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Fig. 2 a Time response of the state variables when δi = 0.1;
b time response of the error variables when δi = 0.1; c Time
response of the error variables’ 1-norm for each node when δi =
0.1; d Time evolution of ‖e(t)‖1 with δi = 1 and δi = 0.1, i =
1, . . . , 6
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Fig. 3 Time evolution of ‖e(t)‖1 with δi = 10, i = 1, . . . , 6

5 Conclusion

This paper has investigated the finite-time synchro-
nization issues for general complex network. The pro-
posed network model may shed some new lights on the
synchronization without or with intrinsic time-varying
delay and different coupled time-varying delays. From
our perspective, the controller we used reap huge fruits,
which is discontinuous but simple to handle in the real
situations. Some results are obtained to guarantee syn-
chronization of the coupled systems by constructing a
proper Lyapunov–Krasovskii functional and strict ana-
lytical techniques. Moreover, the upper bound of the
synchronization time is estimated for general complex
dynamical network with bounded delay and without
delay. The control law and the synchronization cri-
teria are very simple and can be easily extended to
other complex dynamical networks. Several numeri-
cal examples have been presented to demonstrate the
effectiveness of our theoretical results. In the future, we
will consider the fixed-time synchronization problem
for general complex network with time delay, whose
estimated synchronization time is independent of ini-
tial value of the state variable, in other words, the finite
time we estimated in this paper exists a upper bound
independent to the initial value of Lyapunov functional.
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