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Abstract We investigate a (2+1)-dimensional cou-
pled nonlinear Schrödinger equation with spatially
modulated nonlinearity and transversemodulation, and
derive analytical vector multipole and vortex soliton
solution. When the modulation depth q is chosen as
0 and 1, vector multipole and vortex solitons are con-
structed, respectively. The number of azimuthal lobes
(“petals”) for the multipole solitons is determined by
the value of 2m with the topological charge m, and the
number of layers in themultipole solitons is determined
by the value of the soliton order number n.

Keywords Vector multipole soliton · Vector vortex
soliton · (2+1)-dimensional coupled nonlinear
schrödinger equation · Kerr nonlinear media

1 Introduction

In the past few decades, dynamic behaviors of optical
solitons have flourished to become a research area of
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great importance and interest inmanydifferent contexts
of nonlinear optics [1–4]. Spatial solitons, as an impor-
tant nonlinear localized state, form and propagate with
the balance between diffraction and self-induced non-
linear potential [5,6]. There has been a lot of interest
in different type of spatial solitons, such as fundamen-
tal soliton [7,8], dromion [9], Peregrine solution [10],
vortex soliton [11] and azimuthon [12].

Recently, spatial scalar solitons have been exten-
sively studied. The sign-alternating Kerr nonlinearity
in a layered medium produces stable two-dimensional
(2D) solitons [13]. Wu et al. [14] investigated 2D sta-
ble vortices with the spatially modulated cubic non-
linearity and a harmonic trapping potential, respec-
tively.Competing cubic-quintic nonlinearity in the bulk
medium generates stable vortex solitons [15]. Zhong
et al. [16] studied two-dimensional accessible solitons
in PT-symmetric potentials.

In contrast with the spatial scalar solitons possessing
one component, spatial vector solitonswith twoormore
components mutually self-trap in a nonlinear medium.
Dynamical propagation behaviors of the vector soli-
tons are richer than those of the scalar solitons due
to their multicomponent structures [17,18]. Consider-
ing multicomponent structures, one needs to consider
the simultaneous propagation of optical solitons for N
fields and the governing equation becomes a coupled
nonlinear Schrödinger equation (NLSE). When two
optical waves of different frequencies co-propagate in a
medium and interact nonlinearly through the medium,
orwhen twopolarization components of awave interact
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nonlinearly at some central frequency, the propagation
equations for the two problems can be described by
Manakov equation [19]. Manakov vector solitons with
the equal self-phasemodulation (SPM)and cross-phase
modulation (XPM) can propagate in the bright-bright,
bright-dark and dark-dark forms [17]. Moreover, Man-
akov vector solitonswith the same velocities in a bound
state have also been investigated [18]. However, these
works discussed one-dimensional spatial vector soli-
tons.

To our knowledge, 2D spatial vector solitons were
relatively few studied. Recently, based on 2DManakov
equation, Zhong et al. discussed self-trapping of scalar
and vector dipole solitary waves in Kerr media [20].
Comparedwith the spatial scalar solitons, spatial vector
solitons have much more application in the control of
optical beam diffraction, design of the logic gates, all-
optical switching devices and information transforma-
tion [21,22]. Vortex solitons were created in photore-
fractive crystals equipped with photonic lattices [23].
As we all know, stationary solitons in 2D Kerr media
are always unstable against collapse or decay, due to
the critical character of the local cubic self-attractive
nonlinearity in the 2D setting. However, these investi-
gationswere carried out almost completely bymeans of
numerical methods, and analytical solutions for local-
ized vector vortices have not been reported yet. In this
paper, we report analytical 2D multipole and vortex
solitons in a local Kerr medium and study the structure
pattern of these solitons.

2 Exact vector multipole and vortex soliton
solutions

Being motivated by the above reasons, we will devote
our attention to the following coupled (2+1)-dimensional
NLSE with varying coefficients

i
∂ψ j

∂z
= −1

2
∇2ψ j + g(r)

N∑

j=1

|ψ j |2ψ j + R(r)ψ j ,

(1)

which describes vector beams consisting of N mutu-
ally incoherent components co-propagating in a Kerr
medium with the refractive index n = n0 + n1R(r) +
n2g(r)|ψ |2. In this equation,ψ j (z, r, ϕ)( j =1, 2, ...N )

are the slowly varying envelopes with the propagation
distance z and the polar coordinates r andϕ in the trans-
verse plane, the 2DLaplacian∇2 = ∂2

∂r2
+ 1

r
∂
∂r + 1

r2
∂2

∂ϕ2 .

The Kerr nonlinearity coefficient g(r), as well as the
transverse modulation R(r), is assumed to be a func-
tion of radial coordinate r ≡ (x, y). The transverse x ,
y and longitudinal z coordinates are normalized to the
beam width w0 = (2k20n1)

−1/4 and diffraction length
Ld = k0w2

0 with the wave number k0 = 2πn0/λ at
the input wavelength λ. For the disappearing transverse
modulation (i.e., R(r) = 0), Eq. (1) may be considered
as a 2D version of the Manakov’s system, which has
been studied in [20]. If ψ j represent the macroscopic
wave function of the condensate, R(r) denotes the
external potential, Eq. (1) is coupled Gross–Pitaevskii
equation in Bose–Einstein condensates.

Spatially inhomogeneous nonlinearity (SIN) and
transverse modulation have been extensively discussed
[24–26]. However, analytical solutions for localized
vector vortices have not been reported yet. Next, we
look for the spatially localized stationary exact solu-
tion to Eq. (1) of the form

ψ j (r, ϕ, z) = A(r)Φ j (ϕ) exp(−iκz), (2)

where κ is the propagation constant, and A(r) is a real
function for the localization demand limr→±∞ A(r) =
0.

Inserting Eq. (2) into Eq. (1), one obtains

r2

A

{
∂2A

∂r2
+ 1

r

∂A

∂r
+ 2[κ−R(r)]A−2g(r)A3

}
= m2,

(3)

− 1

Φ j

∂2Φ j

∂ϕ2 = m2, (4)

with the self-consistency condition
∑N

j=1 |Φ j |2 = 1.
Equation (4) admits solution

Φ j = C j cos(mϕ) + Dj sin(mϕ), (5)

where m may be considered as the topological charge.
Here, we consider two-component case (N = 2), thus
C1 = 1, D1 = ip,C2 = 0,C2 = √

1 + p2 with p(0 ≤
p ≤ 1). The limit values denote the multipole (p = 0)
and vortex (p = 1) solitons, and the topological charge
m = 1 ∼ 5 describes dipole, quadrupole, hexapole,
octopole and dodecagon solitons.

Substituting A(r) ≡ ρ(r)U [χ(r)], with U [χ(r)]
satisfying

−d2U

dχ2 + G(U ) = ηU, (6)
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into Eq. (3) yields

ρrr + 1

r
ρr +

[
2κ − 2R(r) − m2

r2

]
ρ = η

r2ρ3 , (7)

ρr2χrr + ρrχr + 2r2ρrχr = 0, G(U )χ2
r /U 3

− 2gρ2 = 0, (8)

where η and g0 are constants.
Equation (8) admits the following solutions

g(r) ≡ G(U )r−2ρ−6(r)/(2U 3),

χ(r) ≡
∫ r

0
ρ−2(s)s−1ds. (9)

From the procedure above, the coupled NLSE (1) is
reduced to the solvable stationary NLSE (6), thus this
helps one to find exact solutions, as stationary NLSE
(6) possesses rich solutions, such as Jacobian elliptic
function solutions [27]. Thus, the solvability of Eq. (7)
is crucial to construct exact solutions to the underlying
coupled NLSE (1).

Equation (7) is not easily solved. At first, we con-
sider the simpler case, i.e., η = 0 in Eq. (7). In this case,
for parabolic transverse modulation with R(r) = ωr2,
we obtain exact solution

ρ = r−1[c1M(κ/2
√
2ω,m/2,

√
2ωr2)

+ c2W (κ/2
√
2ω,m/2,

√
2ωr2)], (10)

where functions M(·) andW (·) are Whittaker’s M and
W functions, respectively [28]. For disappearing trans-
verse modulation with R(r) = 0, one has solution

ρ = c3 J (m,
√
2κr) + c4Y (m,

√
2κr), (11)

where functions J (·) and Y (·) are the Bessel functions
of the first and second kinds [29], respectively.

Note that the SIN strength is bounded and the inte-
gration in R(r) converges [15], thus the expressions
for R(r) and g(r) require that ρ cannot change its sign,
and it must behave as r−γ with γ ≥ 1/3 at r → 0,
and ρ → ∞ (diverge) at r → ∞. These restrictions
require that c1c2 > 0, κ < κ0 ≡ 2(1 + m)

√
ω in Eq.

(10), and c3c4 > 0, κ < 0 in Eq. (11).
Further, if η 
= 0, solution of ρ(r) become

ρ =
√
1

r
(αφ2

1 + 2βφ1φ2 + γφ2
2), (12)

where η = (αγ − β2)W 2 with three constants α, β, γ

and constant Wronskian W = φ1φ2r − φ2φ1r with

φ1(r) and φ2(r) being two linearly independent solu-
tions of φrr + [2κ − 2R(r) − m2/r2]φ = 0.

The methodology mapping Eq. (1) into Eq. (6) pro-
vides for a systematic way to find an infinite number
of the novel exact “soliton islands” in a “sea of solitary
waves.” Exact solutions of Eq. (1) is generated from
solutions of Eq. (6). The wide choice of G(U ) in Eq.
(6) makes Eq. (6) become some famous equations such
as Schrödinger equation,NLSE, sine-Gordon equation,
KdV equation and thus construct abundant solutions
of Eq. (6). For example, if G(U ) is a linear function
of U , Eq. (6) is the linear Schrödinger equation with
the external potential. When the external potential is
the harmonic and hyperbolic potentials, solutions of
Eq. (6) have been used to construct localized modes in
ref. [30]. If G(U ) = g0U 3, the boundary conditions
U (0) = U (∞) = 0 leads to exact solution of Eq. (6)
with η = 0 as [27]

U (χ) = 2nλ√−g0
sd

[
2nλχ(r),

√
2

2

]
, (13)

where g0 < 0, function sd(·) ≡ sn(·)/dn(·) with the
Jacobian elliptic sine function sn(·) and the Jacobian
elliptic of the third kind dn(·), the soliton order number

n = 1, 2, 3, ..., and λ ≡ K
(√

2
2

)
with the complete

elliptic integral of the first kind K (k) and modulus k.
If G(U ) = g3U 3 + g5U 5, Eq. (6) is a solv-

able cubic-quintic NLSE, which generates richer exact
soliton solutions considering sign-changing cubic-
nonlinearity coefficient for g3g5 < 0 [31]. Further, if
G(U ) = ηU − sin(ηU ), Eq. (6) is the stationary sine-
Gordon equation [31],whose solution has the formwith
periodical function

U (χ) = 2η−1 arcsin[ksn(√ηχ, k)], (14)

where 2nK (k) = √
ηχ with the positive integer n and

the first-kind complete elliptic integral K (k) accord-
ing to the zero boundary condition at r → ±∞. In
this case, the cubic nonlinearity is defocusing sign with
g(r) > 0.

Therefore, from Eqs. (2), (5), (13) [ or (14)] and (10)
[or (11), or (12)], we can obtain the spatially localized
stationary exact solution of Eq. (1). In this paper, we
use solution (13) with (10) [or (11)].

123



2632 C.-Q. Dai et al.

3 Structures of vector multipole and vortex
solitons

In this section, we display and discuss structures of
vector multipole and vortex solitons. The multipole
(p = 0) and vortex (p = 1) solitons are shown in
Figs. 1, 2, 3 and 4.

In the absence of transversemodulationwith R(r) =
0, for p = 0,m = 1, n = 1, vector dipole soliton is
shown in the first row of Fig. 1. Two components of
vector dipole soliton orthogonally arrange in Fig. 1a
and b, and incoherently superpose to form a ring-like
soliton in Fig. 1c. Note that the ring-like soliton is not
a vortex soliton because the phase is not a 2π jump
around its core in Fig. 1d. However, if p = 1, vector
vortex soliton can be constructed. In Fig. 1e, a vortex
soliton is displayed for the component |ψ1|2 because
its phase exists a 2π jump around its core in Fig. 1h.

For p = 0, the multipole solitons with different
values of m and n are exhibited in Fig. 2. The inten-

sity of all multipole solitons equals to zero at the cen-
ter. The number of azimuthal lobes (“petals”) for the
multipole solitons is determined by the value of 2m,
and the number of layers in the multipole solitons is
determined by the value of n. According to the num-
ber of azimuthal lobes (“petals”), multipole solitons in
Fig. 2a, b are called as quadrupole and hexapole soli-
tons, respectively. For the same n, the structure expands
in the radial direction with the increase in the value m
[c.f. Fig. 2a–h]. Similarly, for the same m, the “petals”
in the outermost layer also expands in the radial direc-
tion with the add of the value n [c.f. Figs. 1a and 2c, f;
Fig. 2a, d, g; Fig. 2b, e, h].

When we consider the parabolic transverse modula-
tion R = ωr2, we can also construct vector multipole
and vortex solitons from Eqs. (2), (5), (10) and (13).
Figures3 and 4 show vector multipole and vortex soli-
tons in the presence of the parabolic transverse modu-
lation R = ωr2. For p = 0, two orthogonally arranged
components of vector dipole soliton in Fig. 3a, b also

Fig. 1 (Color online).
Dipole soliton in the first
row and vortex soliton in the
second row with the
intensity of a, e component
|ψ1|2, b, f component
|ψ2|2, c, g total quantity
|ψ |2 = |ψ1|2 + |ψ2|2 and d,
h phase in the absence of
transverse modulation with
R(r) = 0. The parameters
are c3,4 = −κ = −g0 =
1,m = 1, n = 1 with a–d
p = 0 and e–h p = 1

Fig. 2 (Color online).
Multipole soliton for the
intensity of component
|ψ1|2 in the absence of
transverse modulation with
R(r) = 0. The parameters
are c3,4 = −κ = −g0 =
1, p = 0 with
a m = 2, n = 1,
b m = 3, n = 1,
c m = 1, n = 2,
d m = 2, n = 2,
e m = 3, n = 2,
f m = 1, n = 3,
g m = 2, n = 3,
h m = 3, n = 3
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Fig. 3 (Color online).
Dipole soliton in the first
row and vortex soliton in the
second row with the same
quantities in Fig. 1 in the
presence of the parabolic
transverse modulation
R = ωr2 with ω = 0.02 and
c1 = 2, c3 = 3. Other
parameters are chosen as
those in Fig. 1

Fig. 4 (Color online).
Multipole soliton for the
intensity of component
|ψ1|2 in the presence of the
parabolic transverse
modulation R = ωr2 with
ω = 0.02 and
c1 = 2, c3 = 3. Other
parameters are chosen as
those in Fig. 2

incoherently superpose to produce a ring-like soliton
in Fig. 3c. Vortex solitons in Fig. 3e possess a 2π phase
jump around its core in Fig. 3h.

In the presence of the parabolic transverse modula-
tion R = ωr2 in Fig. 4, for the same n, the structure
also expands in the radial direction with the increase
in the value m, and for the same m, the “petals” in
the outermost layer also expands in the radial direc-
tion with the add of the value n. Comparing multipole
solitons in Fig. 3 and those in Fig. 4, multipole soli-
tons expands wider in the radial direction in the pres-
ence of the parabolic transverse modulation R = ωr2

than those in the absence of transversemodulation with
R(r) = 0. The reason is that the effect the parabolic
transverse modulation counteracts the effect of nonlin-
earity, and the effect of nonlinearity attenuates. There-
fore, the pattern of multipole solitons in the presence of
the parabolic transverse modulation possesses a wider
space in the radial direction.

4 Conclusions

In conclusion, we investigate a (2+1)-dimensional cou-
pled nonlinear Schrödinger equation with spatially
modulated nonlinearity and transversemodulation, and
derive analytical vector multipole and vortex soliton
solution. When the modulation depth q is chosen as
0 and 1, vector multipole and vortex solitons are con-
structed, respectively. The number of azimuthal lobes
(“petals”) for the multipole solitons is determined by
the value of 2m with the topological charge m, and the
number of layers in themultipole solitons is determined
by the value of the soliton order number n. Regardless
of the absence or presence of transverse modulation,
for the same soliton order number n, the structure of
the multipole solitons expands in the radial direction
with the increase in the valuem, and for the same topo-
logical charge m, the “petals” in the outermost layer
also expands in the radial direction with the add of the

123



2634 C.-Q. Dai et al.

value n. The effect the parabolic transverse modulation
counteracts the effect of nonlinearity; thus, the pattern
of multipole solitons in the presence of the parabolic
transverse modulation possesses a wider space in the
radial direction.
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