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Abstract Anovel memristor-based oscillator derived
from the autonomous jerk circuit (Sprott in IEEE Trans
Circuits Syst II Express Briefs 58:240–243, 2011)
is proposed. A first-order memristive diode bridge
replaces the semiconductor diode of the original cir-
cuit. The complex behavior of the oscillator is investi-
gated in terms of equilibria and stability, phase space
trajectories plots, bifurcation diagrams, graphs of Lya-
punov exponents, as well as frequency spectra. Anti-
monotonicity (i.e. concurrent creation and destruction
of periodic orbits), chaos, periodic windows and crises
are reported. More interestingly, one of the main fea-
tures of the novelmemristive jerk circuit is the presence
of a region in the parameters’ space in which the model
develops hysteretic behavior. This later phenomenon is
marked by the coexistence of four different (periodic
and chaotic) attractors for the same values of system
parameters, depending solely on the choice of initial
conditions. Basins of attractions of various compet-
ing attractors display complex basin boundaries thus
suggesting possible jumps between coexisting solu-
tions in experiment. Compared to previously published
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jerk circuits with similar behavior, the novel system
distinguishes by the presence of a single equilibrium
point and a relatively simpler structure (only off-the-
shelf electronic components are involved). Results of
theoretical analyses are perfectly traced by laboratory
experimental measurements.
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1 Introduction

The memristor (the acronym of memory resistor) was
theoretically described by Chua [1] in 1971 and later
implemented (a nanoscale T iO2 device) by the Stanley
William group from Hewlett Packard (HP) in 2008[2].
It takes its place alongside the rest of more stan-
dard circuit elements such as resistor, capacitor and
inductor. The characteristic of these four basic ele-
ments of electrical circuit theory relates the four vari-
ables in electrical engineering, namely voltage, cur-
rent, flux and charge. The memristor is a two-terminal
nonlinear component with variable resistance called
memristance which depends on the amount of elec-
tric charge that has passed through it in a given direc-
tion [3,4]. More precisely, memristors have the distinc-
tive property to memorize the past quantity of electric
charge. The current–voltage (i-v) characteristic curve
of a memristor (i.e. its fingerprint) displays a pinched
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hysteresis loop whose shape varies with frequency and
takes the form a straight line as the frequency goes
to infinity[3,4]. Potential applications of such mem-
ristors span diverse fields of science and engineering
ranging from nonvolatile memories on the nanoscale
to modeling neural networks. The intrinsic nonlinear-
ity of memristors is also currently exploited for the
design of new chaotic circuits by substituting non-
linear elements in standard chaotic circuits with the
memristor, thus giving rise to rich varieties of bifur-
cation structures [5–9]. Since memristors are com-
mercially unavailable, various memristor emulators
have been proposed. Accordingly, several nonlinear-
ities including HP memristor model [10], non-smooth
piecewise linearity [11], cubic nonlinearity [12] and
smooth piecewise quadratic nonlinearity [13] (just to
name a few) are currently utilized to model the rela-
tionship between flux and electric charge of the mem-
ristors. The main advantage of these memristor emu-
lators is that the corresponding equivalent circuit can
be constructed using off-the-shelf components such as
resistors, capacitors, operational amplifiers and ana-
log multipliers, which are particularly suited for bread-
board experiments. Of particular interest are memris-
tive diode bridge-based circuits [14–16] with relatively
simple topological structures (involving only elemen-
tary electronic circuit elements such as diodes, resistors
and capacitors).

In this contribution, we consider the dynamics of a
simple autonomous jerk circuit obtained by substitut-
ing the single semiconductor diode in the jerk circuit
described in [17] with a first-order memristive diode
bridge to synthesize a symmetric nonlinearity. Owing
to the presence of the memristor in the modified cir-
cuit, the new model is highly symmetric [18] and thus
is particularly suited to experience multiple coexist-
ing attractors among many other interesting properties
such as antimonotonicity, period-doubling, symmetry-
recovering crises and chaos. At this point, we would
like to recall that jerk systems [19–22] are third-order
differential equations of the form

...
x = J (ẍ, ẋ, x)

where the nonlinear function J (·) is called the “jerk,”
because it denotes the third-time derivative of x , which
would correspond to the first-time derivative of accel-
eration in a mechanical system. Very recently, a series
of works dealing with the issue of coexisting multi-
ple attractors in simple jerk dynamical systems have
been published [23–25]. In Ref. 23, a systematic anal-
ysis of a simple autonomous jerk system with cubic

nonlinearity [22,23,26] is considered. The dynamics
of the model is investigated in terms of equilibria and
stability, phase portraits, frequency spectra, bifurcation
diagrams and Lyapunov exponent plots. A window in
the parameter space is found in which the jerk system
with cubic nonlinearity experiences the unusual fea-
ture of multiple attractors (i.e. coexistence four discon-
nected periodic and chaotic attractors). Results of theo-
retical analysis are verified by laboratory experimental
measurements. By approximating the cubic nonlinear-
ity with by a hyperbolic sine function (synthesized by
two antiparallel diodes) [24], or alternatively by using
a memristive diodes bridge [25], novel jerk circuits
(with relatively simpler electronic structure) capable
of multiple coexisting attractors are obtained. Com-
pared to some few cases of lower-dimensional sys-
tems (e.g. Newton–Leipnik system [27,28]) capable
of displaying such type of behavior reported to date,
the above-mentioned jerk systems represent the sim-
plest and the most “elegant” paradigms. We would
like to point out that all the three jerk circuits stud-
ied by Kengne et al. [23–25] can be regarded as typical
examples of third (or four order, in the case of mem-
ristive jerk)-order control systems with nonlinear posi-
tion feedback showing three rest points. In contrast, the
model introduced in this work is an example of fourth-
order systemwith nonlinear velocity feedback having a
single rest point located at the origin. The novel mem-
ristive jerk circuit shows simpler electronic structure
and depicts richer bifurcation scenarios compared to
cases of jerk circuits with position feedback. Also, the
aim of this paper can be formulated in the following
three key points: a) to carry out a systematic analysis
of the novel jerk circuit and explain the chaos mecha-
nism; b) to define the domain in the parameter space in
which the proposed model experiences multiple coex-
isting attractors and hysteretic dynamics; c) to carry out
an experimental study of the system to validate the the-
oretical predictions. The overall motivation behind this
work is to enrich the literature with a novel chaotic sys-
tem/circuit with multiple coexisting attractors; in addi-
tion, we develop useful tools for the practical circuit
design of such types of oscillators. More importantly,
a simple conclusion that can be drawn from this work
is that the presence of a multitude of fixed points is
not a necessary condition for the occurrence of mul-
tiple attractors in a jerk system in particular (as the
example shows) and nonlinear dynamical systems in
general.
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Fig. 1 Simple electronic
circuit realization (a) of the
memristor-based novel jerk
circuit. The memristor
symbol and the
corresponding discrete
realization are shown in b.
The following values of
electronic circuit
components are used for the
analysis,
Rm = 1 k�, Rδ = 5 k�,
R = 10 k�C1 = C2 =
C3 = C = 10 nF,Cm =
100 nF, D1 = D2 = D3 =
D4 (1N4148)
(η = 1.9, VT =
26mV, IS = 2.682 nA); Rα

is tuneable resistor
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The layout of the paper is as follows. Section 2
is concerned with the modeling process. The elec-
tronic structure of the novel memristive jerk circuit
is described, and a suitable mathematical model is
derived to investigate the dynamics of the proposed
oscillator. Some basic properties of the model are
discussed. The stability of the unique equilibrium
point is studied. In Sec. 3, the bifurcation structures
of the system are investigated numerically showing
period-doubling, periodic windows and symmetry-
recovering crises events. Somewindows (in the param-
eter space) corresponding to the occurrence of mul-
tiple competing attractors (for the same parameters
settings) are depicted. Accordingly, basins of attrac-
tion of various coexisting solutions are plotted show-
ing nontrivial basin structures. The experimental study
is carried out in Sec. 4. Laboratory experimental
measurements show a very good agreement with
the theoretical results. Finally in Sec. 5, we sum-
marize our results and draw the conclusion of this
work.

2 Description and analysis of the model

2.1 Circuit description

The circuit diagram of the novel memristor-based jerk
circuit under investigation is depicted in Fig. 1. The
single semiconductor diode of the original circuit [17]
is replaced by a memristor diode bridge [14,16]. The
novel memristive jerk oscillator consists of three suc-
cessive active integrators in a loop, plus a second non-
linear feedback loop involving two integrators and an
inverter with a memristor. The following values of
electronics components are adopted: D1 = D2 =
D3 = D4(1N4148); op. amplifiers (TL084 type) C =
10 nF;Cm = 100 nF; R = 10 k�; Rm = 0.1 k�; Rα

and Rδ are tuneable resistors. These resistors will
serve as the main control parameters for the system.
Assuming ideal op. amplifiers (working in their linear
domain), we would like to point out that the memristor
represents the only nonlinear component responsible of
the chaotic behavior of the complete electronic oscil-
lator. The generalized memristor consisting of a diode
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bridge (see Fig. 1b) with a first-order parallel RC filter
[14] is employed. Its mathematical description [14] is
given by the following equations:

im = 2Is exp(−ρυCm ) sinh(ρυ) (1a)
dυCm

dt
= 2Is(exp(−ρυCm ) cosh(ρυ) − 1)

Cm
− υCm

RCm

(1b)

where ρ = 1/2nυT ; IS, n, υT denote the reverse cur-
rent, the emission coefficient and the thermal voltage
of the diode, respectively [29,30]. υCm is the volt-
age of the capacitor Cm while υ and im represent the
input voltage and current of the generalized memris-
tor. According to Eq. (1a), the generalized memristor
is voltage-controlled and its memductance which can
be expressed by:

Gm = i

υ
= 2Is exp(−ρυCm ) sinh(ρυ)

υ
(2)

depends both on its input and capacitor voltages. The
RC memristive diode bridge is implemented using
the following nominal values of electronic circuit
components: Cm = 100 nF, Rm = 1 k� and four
diodes (1N4148 type) which parameters are IS =
2.682 nA, n = 1.9 and υT = 26mV. Following the
works of Bao and colleagues [14,16], the generalized
memristor exhibits the three characteristic fingerprints
for identifying a memristor [3]. It should be noted that
with the additional memory element brought by the
memristor, the novel memristor-based jerk circuit is
now a fourth-order dynamical system.

2.2 State equation

Denoting by υC1 , υC2 , υC3 and υCm the voltage across
capacitors C1,C2,C3 and Cm , respectively, the Kirch-
hoff’s electric circuit laws can be applied to the
schematic diagram of Fig. 1 to derive the following set
of four coupledfirst-order differential equation describ-
ing the novel memristive jerk circuit:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1
dυC1
dt = υC2

R

C2
dυC2
dt = υC3

Rα

C3
dυC3
dt = −υC1

Rδ
− υC3

R − 2Is exp(−υCm/2nυT )

× sinh(υC2/2nυT )

Cm
dυCm
dt = 2Is(exp(−υCm/2nυT )

× cosh(υC2/2nυT ) − 1) − υCm
Rm

(3)

where the nonlinear terms describe the nonlinear char-
acteristics of the memristor as defined above. With the
following change of variables and parameters:

t = τ RC, α = R/Rα, δ = R/Rδ, η = R/Rm,

β = 2RIS
1V

, ε = C/Cm, ρ = 1V

2nυT
,

1V × x1 = υC1 ,

1V × x2 = υC2 , 1V × x3 = υC3 , 1V × x4 = υCm

(4)

the dimensionless circuit equations (convenient for
numerical analyses) are defined by the following
smooth nonlinear fourth-order differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = x2
ẋ2 = αx3
ẋ3 = −δx1 − x3 − β exp(−ρx4) sinh(ρx2)
ẋ4 = ε(β(exp(−ρx4) cosh(ρx2) − 1) − ηx4)

(5)

where the over dots represent differentiation with
respect to the dimensionless time τ . It can be noticed
that only two state variables (namely x2 and x4) are
involved in the nonlinearities of model (5). Also, it
should be mentioned that all the state variables are
real and may be measured in real experiments with a
standard oscilloscope (see the model in Ref. [17] for
comparison purposes). In the mathematical model (5),
six parameters can be found; nevertheless, parameter
α (resistor Rα) will be considered as the main bifur-
cation control parameter in this work. The numerical
experiment is carried outwith the following dimension-
less parameters: δ = 2, ε = 2 × 10−3, η = 10, β =
5.36 × 10−5, ρ = 10.121.

2.3 Symmetry and dissipation

One can easily notice that system (5) is invariant under
the transformation: (x1, x2, x3, x4) ⇔ (−x1,−x2,
−x3, x4). Therefore, if (x1, x2, x3, x4) is a solution
of system (5) for a specific set of parameters, then
(−x1,−x2,−x3, x4) is also a solution for the same
parameters set. A symmetric solution is a solution of
(5) that is invariant under the above transformation;
otherwise, it is an asymmetric solution. Consequently,
the projections of attractors onto the (x1, x2, x3) sub-
space have to be symmetric with respect to the origin;
otherwise, they must occur in pairs, to satisfy the exact
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symmetry of the model equations. This exact symme-
try may be used to explain the appearance of multi-
ple coexisting attractors in state space. We would like
to remark that compared to other types of memristive
systems [23,24] with three rest points, the novel mem-
ristive jerk system has the origin E0 (0, 0, 0, 0) as the
only fixed point.

The rate of volume contraction of system (5) is given
by the Lie derivative,

∇V = ∂ ẋ1
∂x1

+ ∂ ẋ2
∂x2

+ ∂ ẋ3
∂x3

+ ∂ ẋ4
∂x4

= −(1 + ε(βρ exp(−ρx4) cosh(ρ1x2) + η)) (6)

This expression shows that the divergence is negative
independently of the position (x1, x2, x3, x4) in state
space, meaning that the novel memristive jerk circuit is
dissipative. Hence, system (5) limit sets are ultimately
confined to a specific limit set of zero volume in state
space, and the asymptotic motion of the novel memris-
tive jerk circuit settles onto an attractor [31].

2.4 Fixed-point analysis

The preliminary study of the system’s dynamics starts
by analyzing possible states of equilibrium (i.e. static
solutions). Briefly recall that the fixed points constitute
the simplest cases of steady states; thus through the
study of their bifurcations, it is possible to detect the
existence of other more complicated dynamic regimes
[31–33] including the possibility of hidden oscillations
[34–37]. In other words, the equilibrium points play a
crucial role on the nonlinear dynamics of the circuit. As
mentioned above, system (5) has a single equilibrium
point located at the origin of the system coordinates
independently of the values of control parameters. The
Jacobian matrix of system (5) evaluated at any point(
x01 , x

0
2 , x

0
3 , x

0
4

)
of the state space is expressed as fol-

lows:

Mj =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 α 0

−δ −θ −1 φ

0 εφ 0 −ε(θ + η)

⎤

⎥
⎥
⎦ (7)

where θ = βρ
(
exp(−ρx04 ) cosh(ρx

0
2 )

)
and φ =

βρ
(
exp(−ρx04 ) sinh(ρx

0
2 )

)
. Thus, the Jacobian matrix

evaluated at the equilibrium point E0 (0, 0, 0, 0) satis-
fies the following characteristic equation
(det (MJ − λId) = 0):

λ4 + b3λ
3 + b2λ

2 + b1λ + b0 = 0 (8a)

where Id is the 4x4 identity matrix and the coefficients
bi (i = 0, 1, 2, 3) are defined as:

b0 = δαε (1 + η) (8b)

b1 = α (ε + εη + δ) (8c)

b2 = ε + εη + α (8d)

b3 = ε + εη + 1 (8e)

A set of necessary and sufficient conditions for all the
roots of Eq. (8) to have negative real parts is given by
the well-known Routh–Hurwitz criterion expressed in
the form:

bi > 0 (i = 0, 1, 2, 3) (9a)

b2b3 − b1 > 0 (9b)

b3 (b1b2 − b0b3) − b21 > 0 (9c)

Thus, if inequalities (9) are satisfied, the system
exhibits a fixed-point motion; otherwise, the equilib-
rium is unstable and the system experiences an oscil-
latory behavior. These conditions can be achieved in
practice by monitoring some suitable tuneable cir-
cuit components. For instance, considering the fol-
lowing set parameters: δ = 2, ε = 2 × 10−3, η =
10, β = 5.36 × 10−5, ρ = 10.121, for which the sys-
tem develops a double scroll attractor (see Sect. 3),
we have numerically computed the following eigen-
values for the Jacobian matrix MJ for α = 15 : λ1 =
−3.4788, λ2 = −1.0001 andλ3,4 = 1.2394±2.6623i .
Also, due to the presence of eigenvalues with real parts
of different signs, the origin E0(0, 0, 0, 0) is an unsta-
ble equilibrium point for system (5) for this particu-
lar set of parameters. More generally, in the regime
of oscillations, the fixed point E0 is always unsta-
ble; hence, the system develops self-excited attractors
[38,39] instead of hidden ones [40–43].

3 Complex dynamics in the novel jerk circuit

3.1 Numerical methods

In order to investigate the rich variety of bifurcation
modes which can be observed in the novel memristor-
based jerk circuit, system (5) is solved numerically
using the classical fourth-order Runge–Kutta integra-
tion algorithm. For each set of parameters used in this
work, the time step is always �t = 0.0025 and the
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calculations are performed using variables and con-
stants parameters in extended precision mode. The
system is integrated for a sufficiently long time, and
the transient is cancelled. Two indicators are substan-
tially exploited to define the type of scenario giving
rise to chaos, namely the bifurcation diagram and the
graph of three largest Lyapunov exponents. Concern-
ing the latter case, the dynamics of the system is classi-
fied using its Lyapunov exponents which are computed
numerically by exploiting the algorithm described by
Wolf and collaborators [44]. Mention that for periodic
orbits, λ1 = 0, λ2, λ3, λ4 < 0, for quasiperiodic orbits
λ1 = λ2 = 0, λ3, λ4 < 0, while for chaotic attrac-
tors λ1 ≥ 0, λ2 = 0, λ3, λ4 < 0 and for hyperchaotic
attractors λ1 ≥ λ2 ≥ 0, λ3 = 0, λ4 < 0. In particular,
the sign of the largest Lyapunov exponent determines
the rate of almost all small perturbations to the sys-
tem’s state, and consequently, the nature of the under-
lined dynamical attractor. For λ1 < 0, all perturba-
tions vanish and trajectories starting sufficiently close
to each other converge to the same stable equilibrium
point in state space. For λ1 = 0, initially close orbits
remain close but distinct, corresponding to oscillatory
dynamics on a limit cycle or torus. Finally for λ1 > 0,
small perturbations grow exponentially, and the system
evolves chaotically within the folded space of a strange
attractor.

3.2 Transitions to chaos

To investigate the sensitivity of the novel jerk system
with respect to a single bifurcation control parameter,
we fix δ = 2; η = 10 and vary α in the range 1 ≤
α ≤ 34. It is observed that the novel memristive jerk
system under consideration can experience very rich
bifurcation structures when slowly adjusting the bifur-
cation parameter. Sample results showing the bifurca-
tion diagram for varying α as well as the corresponding
graphs of Lyapunov exponents are provided in Fig. 2a,
b, respectively. The bifurcation diagramdepicts plots of
local maxima of the coordinate in terms of the bifurca-
tion control parameter. In the graph in Fig. 2a, two sets
of data (magenta and cyan) are superimposed. The dia-
gram in cyan is obtained for increasing (or decreasing)
values of parameter α starting from the initial condi-
tion (x1(0) = −1.2, x2(0) = x3(0) = x4(0) = 0); the
final state at each iteration of the bifurcation control
parameter α serves as the initial state for the next

Fig. 2 Bifurcation diagram (a) showing local maxima of the
coordinate x1 (τ ) and the corresponding graph of four largest
Lyapunov exponents (b) versus parameter α. Cyan and magenta
diagrams correspond, respectively, to increasing and decreasing
values of α plotted in the range 1 ≤ α ≤ 34. The positive value
of λ1 is the signature of chaotic motion. Notice the presence of a
windowof hysteretic behaviors in the range of 27.24 ≤ α ≤ 29.8
where up to four different attractors coexist. (Color figure online)

iteration. In contrast, the one in magenta is obtained
by starting the system from the initial conditions
(x1(0) = 1.4, x2(0) = 0.8, x3(0) = x4(0) = 0) at each
iteration of the control parameter. The four largest Lya-
punov exponents are obtained by exploiting the same
strategy as that used for the cyan bifurcation diagram
(see Fig. 2b). This strategy represents a simple method
to uncover the domain in which the novel memris-
tive jerk system exhibits multiple coexisting attractors’
behavior (see Sect. 4). From the graph in Fig. 2a, some
striking bifurcation events including period-doubling
scenarios to chaos, revere period-doubling, symmetry-
recovering crises [45], as well as periodic windows can
easily be identified. It can be seen that the bifurcation
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Novel autonomous memristor-based jerk circuit 2595

Fig. 3 Phase portraits
showing routes to chaos in
the system for varying α: a
period-1 for α = 4, b
period-2 for α = 5, c
period-4 for α = 5.554, d
single-band chaos for
α = 6.5, e double-band
chaotic attractor for α = 10,
f single-band chaos for
α = 17.7, g single-band
chaos for α = 28, period-4
for α = 32, period-2 for
α = 35, period-1 for
α = 35
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Fig. 3 continued
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Fig. 4 Two-dimensional
projections of the
double-band chaotic
attractor a–d illustrating the
complexity of the system,
corresponding frequency
spectra (e) and
corresponding double-sided
Poincaré section (f) in the
plane x1 = 0. Parameters
are those in Fig. 3

diagram well matches with the spectrum of the Lya-
punov exponents. Note that there is always a single
positive Lyapunov exponent, meaning that the system
is simply chaotic (and not hyperchaotic), although it is
a fourth-order nonlinear system. Using the same val-
ues of parameters in Fig. 2, various numerical phase
portraits and corresponding frequency spectra were
computed to confirm different bifurcation sequences
depicted previously (see Fig. 3). Asymmetric attractors
pairs are observed in Fig. 3a–e, g–j while a double-
band strange attractor is depicted in Fig. 3f. To gain
more information about the complexity of the attrac-
tor shown in Fig. 3f, we provide in Fig. 4 the related
two-dimensional projections, frequency spectrum, as

well the double-sided Poincare section projected onto
the plane x1 = 0. The shape of this Poincaré section
as well as the broad noise like frequency spectrum is
characteristics of chaotic attractors.

Using the following set parameters α = 29.12;
η = 10, the period-doubling scenario to chaos, the
symmetry-recovering crisis phenomenon as well as
periodic windows are also found when using δ as bifur-
cation control parameter. The corresponding bifurca-
tion diagram for varying δ in the range 1 ≤ δ ≤ 8
and the graph of Lyapunov exponents are provided
in Fig. 5a, b, respectively. In the graph in Fig. 5a,
the diagram in cyan is obtained for decreasing val-
ues of parameter δ starting from the initial condi-
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Fig. 5 Bifurcation diagram (a) showing local maxima of the
coordinate x2 (τ ) and the corresponding graph of three largest
Lyapunov exponents (b) versus parameter δ. Magenta and cyan
diagrams correspond, respectively, to increasing and decreasing
values of δ plotted in the range 1 ≤ δ ≤ 8 (see text for detailed
procedures). The positive value of λ1 is the signature of chaotic
motion. Notice the presence of a window of hysteretic behaviors
in the range of 2 ≤ δ ≤ 2.65 where up to four different attractors
coexist

tions (x1(0) = 0.1, x2(0) = x3(0) = x4(0) = 0) and
the final state at each iteration of the bifurcation con-
trol parameter α serves as the initial state for the next
iteration. The one in magenta is obtained by starting
the system from the same (i.e. fixed) initial conditions
(x1(0) = −0.2, x2(0) = 0, x3(0) = x4(0) = 0) at each
iteration of the control parameter. The three largest Lya-
punov exponents are obtained by exploiting the same
strategy as that used for the cyan bifurcation diagram
(see Fig. 5b). Those diagrams are of great utility for
a practical circuit design of a physical jerk circuit. In
particular, it can be noticed, in both cases, a window

Fig. 6 Enlargement of the bifurcation diagram of Figs. 2 and 5
showing the region in which the system exhibits multiple coex-
isting attractors. This region corresponds to values of a: α in the
range: 26 ≤ α ≤ 31 and b: δ in the range 1 ≤ δ ≤ 3. Two sets
of data corresponding, respectively, to increasing and decreas-
ing values of the bifurcation control parameter are superimposed
(see text for detailed procedures)

of hysteretic dynamics marked by the coexistence of a
pair of periodic attractors with a pair of chaotic ones
[depending solely on the choice of initial conditions
(see Sect. 3.3)]. Also, it should be stressed that the
routes to chaos reported in this work have also been
found in various other nonlinear systems such as the
second-order non-autonomous Duffing oscillator [33]
and Chua’s circuit [44].

3.3 Occurrence of multiple attractors

With Reference to the enlargement of the diagram
shown in Fig. 6a, a window of hysteretic dynamics
can be identified in the range 27.24 ≤ α ≤ 29.8
(see Fig. 6a). In this graph, two sets of data (magenta
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Fig. 7 Coexistence of four
different attractors (a pair of
chaotic attractors a(i) and a
pair of period-3 limit cycles
a(ii)) for α = 29.12 and
δ = 2. Initial conditions
(x1(0), x2(0),
x3(0), x4(0)) are
(±1.4, 0, 0, 0) and
(±2.4, 0, 0, 0), respectively,
and coexistence of four
different chaotic attractors
(a pair of chaotic attractors
b(i) and another pair of
chaotic attractors b(ii)) for
α = 27.3 and δ = 2. Initial
conditions (x1(0), x2(0),
x3(0), x4(0)) are
(±1.4, 0, 0, 0) and
(±2.4, 0, 0, 0)

and cyan) are superimposed. The diagram in cyan is
obtained for increasing values of parameter α starting
from the initial point (α = 26, x1(0) = 0.4, x2(0) =
x3(0) = x4(0) = 0), while the one in magenta is
obtained for decreasing values of α starting from the
initial point (α=29.8, x1(0) = 0.04, x2(0) = x3(0) =
x4(0) = 0). In both cases, the final state at each iter-
ation of the bifurcation control parameter α serves
asthe initial state for the next iteration. Using the
same strategy as described above, the diagram of
Fig. 6b is obtained. In the graph of Fig. 6b, the
diagram in magenta is obtained for increasing val-
ues of parameter δ starting from the initial point
(δ = 2, x1(0) = 0.04, x2(0) = x3(0) = x4(0) = 0)
while the one in cyan is obtained for decreasing val-
ues of δ starting from the initial point (δ = 3, x1(0) =
−0.52, x2(0) = x3(0) = x4(0) = 0). For values of α

within the range 27.24 ≤ α ≤ 29.8, the long-term
behavior of the system depends crucially on the choice
of initial conditions, thus leading to the interesting
and striking phenomenon of coexisting multiple attrac-
tors’ behavior. Up to four different solutions can be
obtained depending solely on the value of initial condi-
tions (see Fig. 7a, b). For instance, the phase portraits of
Fig. 7a(i)–a(ii) can be obtained under the initial condi-
tions x1(0) = ±1.4, x2(0) = 0, x3(0) = 0, x4(0) = 0

and x1(0) = ±2.4, x2(0) = 0, x3(0) = 0, x4(0) = 0,
respectively, with α = 29.12. Similarly, we provide
in Fig. 7 the coexistence of four different asymmet-
ric chaotic solutions for different initial conditions for
α = 27.3. Correspondingly, using the same set of
parameters in Fig. 7a and carrying out a scan of ini-
tial conditions (see Fig. 8), we have computed the
domain of initial conditions in which each attractor can
be found. The complex structure of the resulting basin
boundaries is clearly visible in Fig. 8 where cross sec-
tions of the basins of attraction are provided, respec-
tively, for x1 = 0, x2 = 0, x3 = 0, and x4 = 0 asso-
ciated with the symmetric pair of limit cycles (blue
and yellow) and the pair of chaotic attractors (green
and magenta). Red zones denote unbounded motion.
It should be mentioned that for all sets of parame-
ters considered in this work, the system has a single
equilibrium point E0 (0, 0, 0, 0) for which the eigen-
values always have real parts of opposite sign. For
instance, considering the following set of parameters:
δ = 2, ε = 2 × 10−3, η = 10, β = 5.36 × 10−5, ρ =
10.121α = 29.12, for which the system develops a
pair of periodic attractors coexisting with a pair of
chaotic ones, we have numerically computed the fol-
lowing eigenvalues: λ1 = −4.2397, λ2 = −1.0001
and λ3,4 = 1.6198±3.3336i. Hence, it is clear that the

123



2600 J. Kengne et al.

Fig. 8 Cross sections of the
basin of attraction for
x3(0) = x4(0) = 0, x1(0) =
x4(0) = 0, x2(0) = x4(0) =
0, x2(0) = x3(0) = 0,
respectively, corresponding
to the asymmetric pair of
period-3 cycle (blue and
yellow) and the pair of
chaotic attractors (green and
magenta) obtained for
α = 29.12, δ = 2 et η = 10.
(Color figure online)

system always experiences self-excited attractors [46–
51]. It ought be mentioned that, as far as the authors’
knowledge goes, the striking phenomenon of multiple
stability involving four disconnected coexisting attrac-
tors is also reported in the Leipnik–Newton system
[27] and very recently in a linear transformation of
jerk systemModels MO5 andMO15 [23,24]. The case
reported in this work is singular in the sense that the
novel memristor circuit has a unique fixed point in con-
trast to the above-mentioned cases. Thus, a simple con-
clusion that can be drawn from this paper is that the
presence of a multitude of equilibrium points is not
a necessary condition for the occurrence of multiple
coexisting attractors in a jerk system in particular and
nonlinear dynamical systems in general. However, we
would also like to recall that multiple attractors behav-
ior (involving least than four non-static attractors) is
reported in various other nonlinear dynamical systems
such as laser [52], biological system [53,54], Lorenz
system [55], electrical circuits [56–59], smooth 3D and
4D systems [60–62], just to name a few. The intrigu-
ing situation involving the coexistence of infinitely
many attractors also called extreme multistability was
recently reported by Hens and co-workers [63] and

very recently by [64,65] in a fourth-order memristor
oscillators. It is known that the occurrence of multiple
attractors represents an additional form of randomness
[66]; also, some obvious potential applications include,
for instance, chaos-based secret communication, image
encryption as well as random bits generation. How-
ever, this singular phenomenon is not desirable in gen-
eral and thus requires control. Detailed development on
this direction is far beyond the scope of this work; also,
interested readers would consult profitably the review
work on control of multistability described in [67].

3.4 Antimonotonicity

It is well established that in many nonlinear systems,
periodic orbits can be created and then annihilated
via reverse period-doubling bifurcation scenarios as
a bifurcation control parameter is slowly monitored
[68]. This phenomenon is referred to as antimonotonic-
ity and has been reported in various nonlinear sys-
tems including the Duffing oscillator [69,70], Chua
circuit [71], laser system [72] and second-order non-
linear non-autonomous MLC circuit [73,74]. Recall
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Fig. 9 Bifurcation
diagrams showing local
maxima of the coordinate
x2 (τ ) in terms of control
parameter δ for remerging
Feigenbaum tree (bubbling):
a primary bubble for
α = 1.6; b period-4 bubble
for α = 1.75; c period-8
bubble for α = 1.82; d–f
full Feigenbaum remerging
tree at α = 1.85, α = 1.95
and α = 2.2, respectively.
Parameters are: η = 100
and δ in the range
0 ≤ δ ≤ 7

Fig. 10 First-return map of the maxima of the coordinate x2.
This map is indicative of one-dimensional maps with two crit-
ical points confirming the occurrence of antimonotonicity phe-
nomenon in the improved Colpitts oscillator. The parameters are:
α = 3.2 and η = 100

that in order for a nonlinear system to develop forward
and reversed period-doubling bifurcations, it is neces-
sary to form periodic islands in the parameter space
[68]. Also, in order to demonstrate the phenomenon
of antimonotonicity in our model (1), we have pro-
duced some bifurcation diagrams as parameter δ is
varied in the range 0.1 ≤ δ ≤ 7 for some discrete
values of parameter α. Sample results are depicted in
Fig. 9. In light of the graphs in Fig. 9, for α = 1.60,
a period-2 bubble is observed and the branch devel-
ops a stable period-4 bubble at α = 1.75. Similarly,
we have a period-8 bubble at α = 1.82. As α is
further increased, more bubbles are created until an
infinitely tree (like chaos) finally occurs. In Fig. 10,
we provide the first return map of the coordinate x1
(Mn+1 (x1) = f (Mn (x1)). This map is typical of
one-dimensional maps with two critical points P1 and
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Fig. 11 The experimental
memristor-based novel jerk
circuit in operation. The
oscilloscope displays the
double-band chaotic
attractor captured from the
experimental circuit
mounted on a breadboard

P2 which support the occurrence of antimonotonicity
in the novel system (1) [68,75]. Following the work
of [75], reverse period-doubling scenarios can occur
when a minimum number of conditions are satisfied.
The main requirement is that the system of differential
equations must remain invariant under the transforma-
tion (x1, x2, x3, x4) ↔ (−x1,−x2,−x3,−x4) where
(x1, x2, x3, x4) represents the system state vector. Sys-
tem (5) does not remain invariant with respect to the
above transformation. However, the phenomenon of
antimonotonicity and reverse period doubling do occur
(see Fig. 9). Consequently, the above criterion by Bier
and Boutis [75] is not a necessary condition for the
occurrence of antimonotonicity in a nonlinear system.

4 Experimental study

According to the theoretical analysis developed above,
it is predicted that the novel memristive jerk circuit
under consideration can experience extremely rich and
complex bifurcation structures. This section aims to
verify the theoretical results obtained previously by car-
rying out an experimental study of the real memristive

oscillator [76–78]. For this purpose, the circuit diagram
of Fig. 1 is realized on a breadboard (see Fig. 11). The
circuit consists of TL084 op. amplifiers chip powered
by a symmetric ±15V dc voltage supply. The same
values of electronics components used for the numer-
ical investigations are kept here to enable the compar-
ison process. The following set of circuit parameters
is used: Rm = 1 k�, Rδ = 10 k�, R = 10 k�,C1 =
C2 = C3 = C = 10 nF,Cm = 100 nF (see caption
of Fig. 1). Experimental results are obtained by slowly
increasing Rα (i.e. decreasing parameterα) and record-
ing phase space trajectories (X1, X2) using a dual-trace
oscilloscope in the XY mode. When slowly adjusting
the control resistor Rα , various types of bifurcations
are observed in the experimental memristive jerk cir-
cuit. In particular, for Rα = 185� a period-1 limit
cycle is observed. When Rα is gradually increased,
the complete sequence of bifurcation reported during
the numerical analysis is observed. Some tiny domains
of regular oscillations sandwiched within the chaotic
zones are also noted in experiment. This is clearly high-
lighted by the experimental phase portraits in Figs. 11
and 12 showing the real behavior of the novel memris-
tive jerk circuit proposed in this work. In light of the
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Fig. 12 Experimental
phase portraits (right)
obtained from the circuit
(with Rm = 1 k�,

Rδ = 10 k� and
R = 10 k�) using a
dual-trace oscilloscope in
the XY mode; the
corresponding numerical
phase portraits are shown in
the left. Output voltages
−X2 and X3 are fed to the
X and Y input, respectively:
a period-1 for Rα = 185�,
b period-2 for
Rα = 284.56�, c period-4
for Rα = 313.65�,
d single-band chaos for
Rα = 357.7�,
e single-band chaos for
Rα = 587.5�,
f double-band chaotic
attractor for Rα = 0.9 k�,
g single-band chaos for
Rα = 1.54 k�, h period-4
for Rα = 1.7 k�, i period-2
for Rα = 2.14 k�,
j period-1 for Rα = 2.54 k�
The scales are
X = 0.2V/div and
Y = 0.5V /div
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Fig. 12 continued
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Fig. 13 Coexistence of
multiple solutions for
Rα = 331�. Both periodic
and chaotic attractors appear
randomly in experiment
when switching on and off
the power supply. The
scales are X = 0.2V/div
and Y = 0.5V /div for all
pictures

Fig. 14 Coexistence of
multiple solutions for
Rα = 366�. Four chaotic
attractors appear randomly
in experiment when
switching on and off the
power supply. The scales
are X = 0.2V/div and
Y = 0.5V /div for all
pictures

pictures in Fig. 12, it can be seen that the real memris-
tive jerk circuit experiences the same bifurcation sce-
narios as predicted during the theoretical analysis.

To experimentally demonstrate the coexistence of
multiple attractors in the experimental memristive jerk
circuit, the values of the control resistor are fixed to
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Rα = 331�.When switching on and off the power sup-
ply (and thereby randomly altering initial conditions),
either a regular period-3 limit cycle or a single-band
chaotic one can be found. As expected (owing to the
fractal structure of basin boundaries), jumps between
various competing attractors are observed in experi-
ment. The four experimental coexisting attractors are
shown in Fig. 13. Similarly, four different coexisting
asymmetric chaotic solutions for Rα = 366� are also
depicted in Fig. 14. Once more, a very good simi-
larity can be captured between numerical and experi-
mental results. However, a slight discrepancy that may
be attributed to the precision on the values of elec-
tronic components as well as the simplifying assump-
tions considered during themodeling process (i.e. ideal
diode model, ideal op. amplifier) can be noted between
numerical and experimental results.

5 Conclusions

In summary, the dynamics of a novel memristive jerk
circuit obtained by replacing the single semiconduc-
tor diode in the original jerk circuit of [17] with a
first-order memristive diode bridge has been detailed
in this work. The modification yields a relatively sim-
ple jerk circuit/system [79] with a symmetric nonlin-
earity capable of rich and interesting varieties of non-
linear phenomena such as period-doubling bifurcation,
antimonotonicity, chaos and coexistingmultiple attrac-
tors. By exploiting classical nonlinear analysis tools
such as bifurcation diagrams, graph of Lyapunov expo-
nents, equilibria and stability, phase space trajectories
and frequency spectra, the dynamics of the system has
been characterized with respect to its parameters. As
a major result of this work, it is shown that the novel
proposed memristive jerk circuit exhibits the unusual
feature of multiple attractors (i.e. coexistence of four
disconnected non-static attractors depending only on
the selection of initial sates) for various ranges of cir-
cuit parameters. The novel memristive jerk circuit uses
only off-the-shelf electronic components and may be
re-scaled over a wide range of frequencies. To the best
of authors’ knowledge, the jerk circuit introduced in
this paper represents one of the simplest electrical cir-
cuits reported to date, capable of exhibiting such form
of multistability [23–25,41]. A very good agreement is
observed between theoretical and experimental results.
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