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Abstract A solid tetrahedral finite element employ-
ing the absolute nodal coordinate formulation (ANCF)
is presented. In the ANCF, the mass matrix and vector
of the generalized gravity forces used in the equations
ofmotion are constant, whereas the vector of the elastic
forces is highly nonlinear. The proposed solid element
uses translations of nodes as sets of nodal coordinates.
The tetrahedral shape of the element makes it suitable
for modeling structures with complex shapes, and the
small number of the degrees of freedom enables good
performance and versatile application to problems of
structural dynamics. The accuracy and convergence of
the element were investigated using statics and dynam-
ics benchmarks and a practical industry application.
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1 Introduction

Numerical simulation is vital to the design and opti-
mization of modern mechanical systems and struc-
tures, and there is hardly an area of engineering sci-
ence in which virtual experiments are not utilized.
In numerical simulation, a real-life mechanical sys-
tem or structure is represented by a numerical model
and analyzed using various numerical methods. The
broad application of numerical simulation to mechan-
ical systems began with the development of the finite
element method (FEM) [1] in the middle of the twen-
tieth century. Most mechanical systems can be con-
sidered as multibody systems; that is, a combination
of rigid and flexible bodies connected by joints and
subjected to external loads. Very often, mechanical
systems undergo large overall translation and rota-
tion as well as large deformations. Examples of such
structures can be found in many areas. Belt drives,
mooring systems, helicopter blades, caterpillars, pan-
tograph, and vehicle airbags are the types of sys-
tems and structures dealt with in mechanical engi-
neering, whereas biomechanics researchers investi-
gate insect wings, soft tissues, cardiac implants, and
blood vessels. The analysis of such systems necessi-
tates the formulation of equations of motion, which
can be highly nonlinear and require numerical solu-
tion.

There are several methods that can be used for the
numerical simulation of flexible multibody systems.
An example is the floating frame of reference formu-
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lation (FFRF) [20]. In the FFRF, the position of an
arbitrary point on a body is decomposed into a rigid
body motion and small deformation. The rigid body
motion is described in the global reference frame,while
the deformation is defined in a local coordinate sys-
tem. The Coriolis and centrifugal inertia terms pro-
duce a highly nonlinear mass matrix and generalized
gravity forces. The stiffness matrix of the system is
constant for infinitely small deformations and a lin-
ear material. FFRF cannot be used to simulate large
deformations. FFRF is often compared to the abso-
lute nodal coordinate formulation (ANCF), which is
a state-of-the-art finite element technique introduced
by Shabana for simulating the large deformations of
flexible systems accompanied by a large overall motion
[2,3]. In the ANCF, the large displacements of the body
are described in the global reference frame without
the use of any local reference frame, and the abso-
lute coordinates of the nodes and their spatial deriva-
tives are used as sets of the nodal degrees of free-
dom of the element. Rotational degrees of freedom
are not used, and the shape of an element is described
based on global slopes. The nonuse of local reference
frames in the ANCF means that there are no gyro-
scopic effects. Hence, the mass matrix for both linear
and nonlinear problems and the vector of the gener-
alized gravity forces are constant, whereas the cen-
trifugal and Coriolis inertia forces vanish. However,
the vector of the elastic forces remains nonlinear even
when linear strain–displacement relationships are used.
These conditions may cause the expressions defining
the vector of the elastic forces to be quite complex and
cumbersome.

Many finite elements based on the ANCF have been
developed by researchers. The vast majority of the lit-
erature on the ANCF is devoted to the formulation of
beam [4–14] and plate/shell elements [15–25] with dif-
ferent kinematic properties. A detailed review of the
literature on ANCF was undertaken by Gerstmayr et
al. [26]. However, relatively little attention has been
paid to solids. This is not as surprising as it might ini-
tially appear. Although ANCF is rapidly developing, it
is still a relatively newmethod. Its application to beams
and plates has some definite benefits, and most flexible
engineering structures have shapes that fit well with
classical beam and plate/shell assumptions. Indeed,
ANCF beams with the desired kinematic features can
be easily used to represent long flexible structures with
certain cross sections while maintaining the proper-

ties of the real-life mechanical system. This can even
be achieved by means of a relatively small number of
elements in the model, whereas the detailed modeling
of 3D solid structures always requires many elements.
However, until recently, the use of large ANCF mod-
els caused severe computational difficulties, especially
for high-order elements withmany degrees of freedom.
These circumstances, in our opinion, partially explain
why 3D solid ANCF elements have so far not been well
developed.

Nevertheless, the use of ANCF to develop solid
elements is of considerable academic and practical
interest because new elements potentially have broad
applications in various engineering fields. Most con-
ventional finite elements that are of interest for engi-
neering calculations were developed a long time ago
and are well described in the literature [1–3]. It has
been shown that most existing elements can be trans-
formed into ANCF elements [27,28]. They can also
be developed from scratch and used as isoparamet-
ric elements. With the increased computational power
of state-of-the-art computers, the use of the ANCF
versions of some conventional solid elements looks
promising.

Kübler et al. proposed a formulation of multibody
systems wherein flexible bodies are described using
absolute coordinates for isoparametric hexagonal ele-
ments [29]. There is the opinion that, because ANCF
originated from elements with slopes [3], it can be
implicitly assumed that elements without slopes are
not truly ANCF elements. However, in dncm for-
mulation [28], there is not much practical difference
between elements with and without slopes because
all elements can be described by a contiguous and
uniform set of parameters. To the best knowledge
of the authors, there have been only a few stud-
ies that considered “truly ANCF elements.” Among
them is the recent study of the authors on 3D solid
brick elements with slopes [30]. Wei and Shabana
[31] also proposed a new approach for computational
fluid dynamics using ANCF solid finite elements with
slopes.

The purpose of the present study was the devel-
opment of an effective complement to the previously
proposed eight-node solid element [30] by reformu-
lating the simplest tetrahedral element, which uses
translations of the nodes as nodal coordinates, as an
isoparametric ANCF element for use together with
the solid brick element. Several types of tetrahedral
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Coordinate formulation of tetrahedral solid element 2459

elements were considered in [1]. The conventional
tetrahedral element with additional nodes on its faces
was formulated by Argyris [32]. More recent stud-
ies considered conventional tetrahedral elements with
improved properties [33,34]. The selection of the par-
ticular element to be reformulated using ANCF and the
details of its development are presented in the following
sections.

This paper is organized as follows: InSect. 2, the dig-
ital nomenclature codedncm for the systematic descrip-
tion of elements is briefly discussed. This notation was
used throughout the present study because the authors
considered it to be convenient, especially in situations
whenmany different elements had to be described. Sec-
tion3 presents explanation of how the dncm code can
be used for the automated generation of shape functions
for arbitrary 3D solid elements. Furthermore, in Sect. 4,
someof the nuances of the derivation of the equations of
motion are discussed. Finally, Sect. 5 is devoted to the
numerical simulation of statics and dynamics bench-
marks, the validation of the element and illustration of
its performance.

2 Digital nomenclature Dncm to describe finite
elements

Many finite elements are presently used for modeling
and numerical simulation in diverse areas of physics.
Unfortunately, there is no universal system for the des-
ignation of elements to reflect their kinematic proper-
ties. The complete description of an element is tedious
and not convenient for use, and the specification of
the numbers of nodes or degrees of freedom of an ele-
ment is also not sufficient to uniquely describe the ele-
ment. All commercial FEA softwares usually use their
own element names such as BEAM189, PLANE25, or
SOLID164 in ANSYS [35]. Such nomenclatures are,
however, still not sufficiently informative. A universal
naming system that reflects the topological and kine-
matic properties of the elements would be more help-
ful. The introduction of such systematic classification
was attempted byDmitrochenko andMikkola [28]. The
proposed digital nomenclature code denoted by dncm
can be used to describe a wide variety of finite elements
by using four digits:

– digit d is the local dimension of the element: value
d = 1 is used for beams; d = 2 for plates or shells,
and d = 3 for solids;

– digit n shows the number of nodes of the element;
– digit c represents nodal coordinates understood as
the number of derivatives of the field variables vec-
tor r starting from 0th derivative, i.e., variable r
itself; typical values of parameter c used in this
paper are:

c = 1 for any d means that a single value r of
the field variable is used;
c = 2 for case d = 1 corresponds to nodal
variables r, ∂r

∂x ;
c = 3 for case d = 2 corresponds to nodal
variables r, ∂r

∂x , ∂r
∂y ;

c = 4 for case d = 3 corresponds to nodal
variables r, ∂r

∂x , ∂r
∂y ,

∂r
∂z .

– digitm shows themultiplicity of field variables, i.e.,
the number of components in vector r. For elements
with m = 1 the fourth digit can be omitted.

An element described by dncm code has n × c ×m
degrees of freedom. In the present study, the dncm
nomenclature code is mostly used for designating
the elements. The procedure for deriving new ele-
ments using the nomenclature code is described in
[28].

Figure1 represents a few examples of using dncm
nomenclature for different finite elements.We note that
any code dncm corresponds to a certain abstract ele-
ment. However, some of them are outside the practical
interest of structural mechanics.

3 Formulation of 3D element

3.1 Tetrahedral solid element

The solid brick element 3843, which has slopes and
uses an incomplete cubic polynomial, was previously
developed by the authors. This element was derived
as a 3D generalization of 1D beam and 2D plate with
slopes using a straightforward approach [30]. The sim-
ilar development of a tetrahedral element with slopes
encounters certain difficulties.

The element 3443 would be a complete four-node
kinematic analogue of the solid brick element 3843.
However, for the case of four nodes (n = 4) with
the same coordinate sets for all the vertex nodes, and
which includes translations and three spatial deriva-
tives (c = 4), the total number of nodal vectors would
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Fig. 1 Locally d-dimensional n-node elements with c nodal m-vector per node

be n · c = 4 · 4 = 16 terms, while the complete cubic
polynomial should have included 20 terms. This would
lead to degeneration of the element. It is therefore nec-
essary to extend the element kinematics. One way of
doing this is to introduce additional nodes with trans-
lational sets of coordinates on the element faces. How-
ever, we reserve this idea for implementation in a fol-
lowing paper.

The simplest tetrahedral element that possesses
only translational degrees of freedom (Fig. 2b) can be
denoted by 3413 because it has nodes only on its ver-
tices and all the nodes have the same translational set of
coordinates. From practical point of view, this means
that edges and faces of the simplest tetrahedral ele-
ment 3413 remain straight after deformation, while
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Fig. 2 Elements 3443 (a)
and 3413 (b) and examples
of their deformed shapes (c,
d)

the curvature of the edges and faces of a more complex
element 3443 is determined by its slopes. Examples of
the deformed shapes of these elements are presented in
Fig. 2c, d.

It is obvious that the abilities of the element 3413 to
represent deformed shapes are limited, compared to the
element 3443 employing slopes since the slopes facili-
tate the prevention of the shear locking effect in bending
problems andmake amodel comprising a small number
of elements capable to represent large deformations.
This issue was discussed in the study [36], devoted to
the two-dimensional elements 2412 and 2432. At the
same time, one should keep in mind that the ANCF
elements employing slopes and having many degrees
of freedom have very high computational complexity,
which can be justified by the possibility of using a
fewer number of elements in a model. However, for
many problems when nuances of shape require devel-
oping large models, a solid tetrahedral element without
slopes has definite advantages due to its versatility and
higher performance. That is why the element 3413 is
still of a practical interest.

3.2 Numerical computation of shape functions for 3D
solid elements

The interpolation polynomial for the general case of a
3D solid element (d = 3) with n nodes and c coordi-
nates per node can be expressed as follows:

Z3nc(x, y, z) =
D−1∑

k=0

ak+1x
αDk yβDk zγDk =

= {
xαD0 yβD0 zγD0 . . . xαD,D−1 yβD,D−1 zγD,D−1

}
︸ ︷︷ ︸

x(x,y,z)

· {a1 . . . aD }T
︸ ︷︷ ︸

a

= x(x, y, z) · a (1)

In Eq. (1), the exponential coefficients αDk , βDk , and
γDk are used. They should be obtained from the Dth row
of the matrix given in Fig. 3, where D = n × c is the
number of unknown coefficients ak of the polynomial.

The unknown coefficients can be determined from a
systemof linear equations obtained by the evaluation of
the polynomial Z3nc(x, y, z) and its proper derivatives
at the nodal points (xi , yi , zi ). The system of linear
equations can be generally described as follows:
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i = 1, . . ., n; j = 0, . . ., c − 1; l = (i − 1)c + j + 1
∂αDj+βDj+γDj Z3nc(x, y, z)

∂xαDj ∂yβDj ∂zγDj

∣∣∣∣x=xi
y=yi
z=zi

≡
D−1∑

k=0

(αDk)−αDj (βDk)−βDj (γDk)−γDj x
αDk−αDj
i y

βDk−βDj
i z

γDk−γDj
i︸ ︷︷ ︸

Wl,k+1

ak+1 = zlor W · a = z. (2)

The differentiation of the left-hand side of Eq. (2)
results in a reduction in the exponents of the polynomial
terms in Eq. (1) by αDj , βDj , and γDj , as well as in
multiplication of the terms by Pochhammer’s falling
factorial (αDk)−αDj , (βDk)−βDj , and (γDk)−γDj :

(α)−r = α × (α − 1) × . . . × (α − r + 1)︸ ︷︷ ︸
r multiplicands

=
r−1∏

i=0

(α − i) =
{

α!
(α−r)! if α ≥ r;
0 if α < r.

(3)

Equation (2) is a linear system of equations, which
a constant square matrix W, which can be solved for
vector of unknown coefficients a. After substitution of
this vector to Eq. (1), the shape functions of the finite
element take the form:

Z3nc(x, y, z) =
dim E∑

i=1

dim Ei−1∑

j=0

{x(x)}k︷ ︸︸ ︷
D−1∑

k=0

xαDk yβDk zγDk

D∑

l=1

W−1
k+1,l

︸ ︷︷ ︸
s3ncl (x)

Zl ,

(4)

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ ==========

=

=

0;0;30;3;03;0;00;1;20;2;11;0;22;0;11;2;02;1;01;1;10;0;20;2;02;0;00;1;11;0;11;1;00;0;10;1;01;0;00;0;0

1;2;02;1;00;1;20;2;11;0;22;0;10;0;20;2;02;0;00;1;11;0;11;1;00;0;10;1;01;0;00;0;0

0;0;10;1;01;0;00;0;0

2;1;01;2;02;0;11;0;21;1;12;0;00;2;00;0;21;1;01;0;10;1;11;0;00;1;00;0;10;0;0

2;1;01;2;02;0;11;0;22;0;00;2;00;0;21;1;01;0;10;1;11;0;00;1;00;0;10;0;0

2;0;11;0;21;1;12;0;00;2;00;0;21;1;01;0;10;1;11;0;00;1;00;0;10;0;0

2;2;21;1;12;0;00;2;00;0;21;1;01;0;10;1;11;0;00;1;00;0;10;0;0

1;1;12;0;00;2;00;0;21;1;01;0;10;1;11;0;00;1;00;0;10;0;0

2;0;00;2;00;0;21;1;01;0;10;1;11;0;00;1;00;0;10;0;0

2;0;01;1;11;1;01;0;10;1;11;0;00;1;00;0;10;0;0

1;1;11;1;01;0;10;1;11;0;00;1;00;0;10;0;0

2;0;01;1;01;0;11;0;00;1;00;0;10;0;0

1;1;01;0;11;0;00;1;00;0;10;0;0

1;1;11;0;00;1;00;0;10;0;0

1;0;00;1;00;0;0

1;0;00;0;0
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where the row matrix has shape functions s3nc and the
column matrix has nodal coordinates z. Equation (4)
can be written as follows:

Z3nc(x, y, z) = x(x, y, z) · W−1
︸ ︷︷ ︸

s3nc(x,y,z)

·z = s3nc(x, y, z)·z.

(5)

The simplest tetrahedral element 3413 has only four
nodes and employs only nodal positions. The appli-
cation of the above formulas produces the following
shape functions, the so-called volume (or tetrahedral)
coordinates:

s341i,0 (x, y, z) = det

∣∣∣∣∣∣∣∣

1 x y z
1 x j y j z j
1 xk yk zk
1 xl yl zl

∣∣∣∣∣∣∣∣

/
det

∣∣∣∣∣∣∣∣

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y4 z4

∣∣∣∣∣∣∣∣
,

(6)

where the indices i , j , k, and l are given by the cyclic
permutation {i, j, k, l} = �(1, 2, 3, 4).

For more complicated elements, the complexity of
the shape functions makes their explicit expressions
difficult to display. Hence, Eqs. (1)–(5) were imple-
mented as numerical procedures and used in this study
to compute the terms of the equations of motion as
described below. The shape functions were calculated
by using the numerical procedure, which is described
in detail for an arbitrary element in studies [24] and
[28]. For the simplest tetrahedral element considered
in the study, the use of this procedure is not quite jus-
tified because of the simplicity of the element. How-
ever, for 3D solid and plate/shell elements with slopes
the advantage of numerical computation of shape
functions is more obvious. Implementing the numer-
ical procedures for the element 3413 has provided a
background for developing more complex elements,
in particular the element 3443—a tetrahedron with
slopes.

3.3 Numerical computation of structural matrices of
3D solid elements

A continuum mechanics approach is used to calculate
the vector of elastic forces. The energy accumulated in
the volume of the deformed element is determined by
the following integral:

U = 1

2

∫∫∫

V

εT · E · ε dxdydz, (7)

where

ε =
{
r′T
x · r′

x − 1

2
,

r′T
y · r′

y − 1

2
,

r′T
z · r′

z − 1

2
,

r′T
x · r′

y, r′T
y · r′

z, r′T
z · r′

x

}
(8)

is a Voigt representation of the nonlinear Green–
Lagrange strain tensor, and E is a matrix of elastic
constants including Young’s modulus E and Poisson’s
ratio ν:

E = E

(1 + ν)(1 + 2ν)
⎡

⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤

⎥⎥⎥⎥⎥⎥⎦
. (9)

The integral in expression (7) can be calculated
analytically or numerically. For most of the elements
employing the ANCF, the analytical expressions are
extremely cumbersome. This causes additional diffi-
culties and dramatically increases the computational
costs. The vector of the generalized elastic forces Q
can be determined as a gradient of the strain energyU :

Q = ∂U

∂e
, (10)

where e = (rT1 , rT2 , rT3 , rT4 )T is the vector of nodal coor-
dinates of the element.

4 Equations of motion

The equations of motion are formulated as follows:

Më + Q = Qe, (11)

whereM is the mass matrix, ë is the vector of the nodal
accelerations, Q is the vector of the nonlinear elastic
nodal forces, andQe is the vector of the external forces.

The mass matrix can be obtained using the expres-
sion for the kinetic energy of the element, obtained by
integrating all the material point velocities squared in
the volume domain of the undeformed element:

123



2464 A. Olshevskiy et al.

T = 1

2

∫∫∫

V

ρ ṙT · ṙ dxdydz, (12)

where ṙ is the velocity of an arbitrary point in the ele-
ment, and ρ is the material density. The mass matrix is
defined as follows:

M =
∫∫∫

V

ρ ST · S dxdydz, (13)

where S is the matrix of the shape functions. The mass
matrix remains constant under an arbitrary large dis-
placement and rotation of the element.

The vector of elastic forces and mass matrix were
calculated numerically. For integration over the interior
of a tetrahedron, the quadrature rules described in [37]
were used. The final values of the terms of equations of
motion for Eqs. (10) and (13) can be written as follows:

Q = 	

N∑

i=1

wi
∂ε

∂e(i)
·E ·ε(i), M = ρ	

N∑

i=1

wiST(i)S(i).

(14)

In Eq. (14), N is the number of nodes in the quadra-
ture rule, wi is the weight coefficient, 	 is the tetrahe-
dron volume, lower indices (i) refer to matrices asso-
ciated with node i of the quadrature. The generalized
elastic forceswere calculated using a one-point quadra-
ture rule; for the mass matrix, a four-point quadrature
rule was used. This is because the term ∂ε

∂e(i)
is constant

for element 3413, while the term ST(i) is of higher order.
In the simulation of static problems, a damping fac-

tor was introduced into the equations of motion using
a simple approach based on the theory of the vibration
of a system with a single degree of freedom. The mag-
nitude of the damping factor for a non-periodic motion
was determined from the period of the free vibrations,
T , which was preliminarily evaluated for the models.
The equation of motion was then solved in the form

M · ë + D · ė + Q(e) = Qe, (15)

where

D = αM, α = 4π

T
. (16)

This approach seems to be applicable to cases in
which the purpose of the damping is simply to suppress
inexpedient oscillations.A rigid bodymotion that could
be damped out was not observed in these problems.

5 Numerical examples

To validate the performance and accuracy of the ele-
ment, several statics and dynamics benchmarks were
simulated. The numerical solutions were compared
with those obtained by other ANCF finite elements
and commercial CAE software. The MATLAB soft-
ware was used to perform several numerical simula-
tions using ANCF elements. The equations of motion
were integrated using the solver ode45. The solver was
selected based on the Young’s modulus of the model
material according to the recommendations given in
[24].

We note thatMATLAB is only suitable for relatively
simple ANCF simulations using models with small
numbers of elements. For models comprising hundreds
of elements or more, the use of a compiled code instead
of the MATLAB interpreter is highly recommended
because of the computational complexity of the ANCF
problems. In this study, all simulations were performed
on the computer with Intel(R) Core(TM) i5-4570 CPU
@ 3.20GHz with 16 GB RAM under Windows 7.

5.1 Bar tension

This simple statics benchmark was simulated as a
dynamics problem,wherein critical dampingwas intro-
duced into the system as expressed by Eqns. (15) and
(16). The bar, which had a length L = 0.5 m and rect-
angular cross section a× b = 0.1× 0.1 m, was hinged
on its top face and subjected to a large tension. The
Young’s modulus E , Poisson’s ratio ν, and material
density ρ were 2×105 Pa, 0.3, and 7800 kg/m3, respec-
tively. An axial load of 120N was distributed along the
edges of the bottom face of the bar. The displacements
of two cross sections (the bottom face and middle cross
section) were evaluated for models with different num-
bers of elements along the length of the bar (Figs. 4 and
5). In all cases, these displacements were considered as
the displacements of the cross-sections’ centroids and
were calculated as the average displacements of nodes
in the cross-sections’ corners.
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Fig. 4 Displacement of the
middle cross section of the
bar for different FE models

Fig. 5 Displacement of the
free-end cross section of the
bar for different FE models

The solution obtained using ABAQUS software for
this problem using a model with a fine element mesh
comprising 5000 elements of the type C3D8 (a general-
purpose linear brick element, fully integrated) gave the
displacements of –0.038 m for the middle cross section
and –0.069 m for the free-end cross section. For the
middle cross section, the solutions are in good agree-
ment. For the free-end cross section, the difference can
be explained by lower stiffness of the model with a
finer mesh and local singularity at the points of load
application.

5.2 Motion of a falling pendulum

The flexible pendulum is a well-known and frequently
simulated benchmark used for the validation of new

finite elements [16,24,30]. The kinematic scheme of
the pendulum is shown in Fig. 6a. The constraints were
imposed on the translational degrees of freedom at the
nodes on one of the edges of the pendulum as shown in
the figure. The dimensions of the pendulum L × b× h
were 0.5 × 0.1 × 0.1 m, and the Young’s modulus E ,
Poisson’s ratio ν, and material density ρ were 2 MPa,
0.3, and 7800 kg/m3, respectively. The pendulum fell
from its vertical position. A damping factor α of 1 was
used for the as expressed by Eqs. (15), (16). Figure6b
shows the change of the vertical (Z ) coordinate of the
centroid C of the pendulum free-end cross section in
time for different models. The bold continuous curve
represents the results obtained using the model formed
from 69 elements with dncm 3413 (described in this
paper); the thin continuous curve represents the results
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Fig. 6 Kinematic scheme
and Z -coordinate of the
pendulum’s free-end
cross-sectional centroid

Table 1 Models for simulating a flexible pendulum (dncm 3413, see Fig. 7)

Model I II III IV V

Number of elements along pendulum’s length 1 2 4 8 16

Total number of elements 24 48 48 96 507

obtained using the single element 3843 [30]; and the
square markers represent the results obtained using the
two-dimensional model formed from eight 2432 plate
elements [24] in two dimensions.

It can be observed from the figure that the curves
are quite close to each other for the first 0.75 s and are
thereafter slightly diverged. This can be explained by
the absence of slopes in the 3413 elements and their
subjection to the shear locking effect. However, the
large number of elements used in the model mitigated
the effect of locking.

For illustrating the convergence of the element, the
same problem was simulated for the models compris-
ing different numbers of elements. The damping was
not introduced in this simulation. The vertical dis-
placement of point A at the free end of the pendu-
lum was evaluated. Six different models were used.
Five of them were comprised different numbers of ele-
ments 3413 (Table1), whereas the sixth one included
eight elements 3843 [30] and was used for obtain-
ing the reference solution, which is shown in Fig. 7
by the square-marked curve. A typical time required
for MATLAB simulation of 1 second of motion of
the model comprising 96 tetrahedral elements (Model

IV) was about 109 seconds. This gives some represen-
tation about the element efficiency in this particular
implementation.

5.3 Motion of flexible ellipsograph

Themotion of a heavy flexible beamunder the action of
gravity was simulated. The length L of the beam was
1 m, and the height h and width b of its rectangular
cross section were 0.02 and 0.01 m, respectively. The
model parameters were as follows: the density ρ =
3900 kg/m3, the Young’s modulus E = 106 Pa, and the
Poisson’s ratio ν = 0.3. The vertical displacement of
the left end of the beamand the horizontal displacement
of the right end were constrained as shown in the top
left corner of Fig. 8. The motion of the model during
1s was simulated.

The model of the beam comprised 76 tetrahedral
elements (dncm 3413). The solution was compared
with those obtained using two solid brick elements
with slopes (dncm 3843) [30], two plate elements with
slopes (dncm 2432) [24], and forty well-known beam
elements with slopes (dncm 1222) [2], respectively. In

123



Coordinate formulation of tetrahedral solid element 2467

Fig. 7 Vertical (Z )
coordinate of point A on the
pendulum for different
models (see Table1)

Fig. 8 X and Z coordinates of point A in time, calculation
scheme, and the model

Fig. 8, the bottom group of curves represents the ver-
tical (z) coordinate of the centroid of the middle cross
section (point A) of the beam during its motion. The
change in the horizontal (x) coordinate of point A is
described by the upper group of curves.

It can be seen that, despite the significantly larger
number of the simplest tetrahedral elements used for
this simulation, the displacement of the midpoint of the
element 3413 was smaller than that of the higher-order
elements. This fact shows that the element 3413 experi-
enced shear locking and should therefore be used with
definite caution when dealing with bending problems.
Nevertheless, bearing in mind the low computational
complexity in using the element, the results are quite
satisfactory.

5.4 Practical application

The element 3413 was also validated by using it to
solve a practical problem of a real technical object,
namely the elastic polymer block in the center cou-
pler draft gear of a railway vehicle. The block is
identified as part PMKP-110 [38], which was devel-
oped by LLC Diprom. This device is widely used on
railways in the Russian Federation and other coun-
tries of the former USSR. PMKP-110 is mounted
on a railway freight car to absorb impacts during
motion and when coupling cars. The design, CAD
model, and general view of PMKP-110 are presented in
Fig. 9.

The pressing wedge (5), the frictional wedges (4)
that make contact with the support plate (6), the mov-
ing friction plates (3), and the stationary friction plates
(2) with wear-proof metal-ceramic elements are all
assembled in the housing (1). The plate is supported
by a set of five elastic PVC blocks (7 and 8) delim-
ited by the alignment plates (10). The device is held by
the clamp bolt with a nut (9) and has a design stroke
of 110mm. The force from the coupler is transferred
through the pressing plate to the pressingwedge, which
moves together with the side friction wedges (4) and
the support plate (6). In the first stage of an impact, the
central frictional section operates, and frictional forces
are generated on the surfaces of the sidewedges and the
stationary friction plates. When the support plate has
beendisplacedby a certain value, the second stage com-
mences, wherein the movable plates, stationary plates,
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Fig. 9 Design (a), CAD model (b), and general view (c) of PMKP-110

Fig. 10 Design drawing (a) and schematic of the deformation of the polymer block (b) used in PMKP-110

Fig. 11 Force–stroke diagram of the single PVC element obtained by experiment

and side surfaces of the haul start operating, and the
overall resistance to the applied pressure is increased.
The energy spent for the compression of the draft gear is

expended partially for compression of the PVC blocks
and, to a far greater degree, for friction between the
parts.
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Fig. 12 Finite element
model of PVC block (a) and
its deformation under the
load (b)

Table 2 Comparison of
simulated and experimental
stroke–force diagrams

Top face displacement
(stroke) (mm)

Compressive force (kN) Error (%)

Experiment ANCF

10 85 86 −1.18

15 113 115 −1.77

20 140 143 −2.14

25 162 167 −3.09

The key feature of PMKP-110 is the use of five poly-
mer (PVC) blocks (position 8 in Fig. 9a) instead of the
metal spring used in many similar devices. The use of
an elastic polymer block affords better force character-
istic and increases the elastic capacity of the device. In
addition, the damping properties of the polymer signif-
icantly reduce the self-excited frictional vibrations that
follow a shock compression. The design drawing of the
polymer element and a schematic of its deformation by
a normal operation impact are shown in Fig. 10.

The processes that take place in the shock absorber
are too complicated to be described here, and a detailed
simulation of the processes is beyond the scope of the
present study. However, the deformation of a single
polymer block among the set used in the absorber can
beproperly observedby experiments. For test purposes,
a single PVCblockwas subjected to a compressive load
of up to 310 kN Fig. 11a. The stroke–force diagram is
shown in Fig. 11b.

It can be seen that the loading and unloading
branches of the force–stroke diagram are different and
produce a hysteresis loop, which is determined by the
specific properties of the specimen material. A physi-
cally accurate numerical simulation of this test is a chal-
lenging problem because it requires accounting for the
nonlinear properties of the material as well as the sim-

ulation of a step-by-step loading, which are beyond the
purposes of this study. Nevertheless, it was possible to
approximately simulate the test and obtain basic quan-
titative results, particularly themaximum displacement
under the given load. These results validate the possi-
bility of applying element 3413 to real-world problems
involving geometrically nonlinear compression.

5.4.1 Simulation of compression test

A finite element model comprising 234 nodes and 816
tetrahedral elements was developed. Owing to the sym-
metry of the problem, a quarter of the specimen was
considered and the corresponding boundary conditions
were applied (Fig. 12). All three components of the dis-
placement of the nodes of the lower face were con-
strained, but friction between the nodes and the sup-
porting surface was not taken into consideration.

Kinematic loading was used for the simulation to
produce equal displacements of the nodes on the top
face of the model corresponding to the conditions of
the experiment. The vertical coordinate (z) of the nodes
on the top face was gradually varied at time intervals
of T to produce the particular displacement of the top
face corresponding to a given stroke as determined by
experiment (Fig. 11):
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z = z0 − 	z · cos
(

π
t

T

)
, (17)

where z0 is the initial value of the coordinate, 	z is the
displacement of the node, and T is the time interval of
the application of the load. Large displacements of the
top face of the block (greater than 25mm) cause the
closure of the gap between the recess edges, as shown
in Fig. 10. Simulation of this closure requires account-
ing for contact in the solving procedures, which is cur-
rently not implemented in our code. For this reason,
the maximum value of the displacement was limited
by 25mm, which guaranties that the gap will not be
closed. That is, a part of the loading curve was sim-
ulated. The Young’s modulus E and Poisson’s ratio ν

were 6.8 MPa and 0.35, respectively. The stress at each
selected node was then calculated, and the total com-
pressive force corresponding to the displacement was
determined as the product of the calculated stress and
the area of the top face. The comparison of simulated
and experimental results is given in Table2.

The calculated values of the compressive force are in
good agreement with those determined by experiment.
From an engineering point of view, the accuracy of the
results is satisfactory.

6 Conclusion

The simplest solid tetrahedral finite element possess-
ing translations of nodes as sets of nodal coordinates
(dncm code 3413) were reformulated by absolute nodal
coordinate formulation. This tetrahedral shape of the
element makes it versatile for modeling members of
engineering structures with complex shapes. The small
number of the degrees of freedom of the element 3413
enables good performance when applied to problems
of structural dynamics and makes the use of the ele-
ment promising. The accuracy and convergence of the
element were validated by statics and dynamics bench-
marks. The tetrahedral shape of the element makes it
versatile for modeling members of engineering struc-
tures with complex shapes. This was illustrated in sim-
ulation of a practical problem.
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