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Abstract Adaptive infinite impulse response filters
have received much attention due to its utilization in
a wide range of real-world applications. The design
of the IIR filters poses a typically nonlinear, non-
differentiable and multimodal problem in the estima-
tion of the coefficient parameters. The aim of the cur-
rent study is the application of a novel hybrid opti-
mization technique based on the combination of cellu-
lar particle swarm optimization and differential evolu-
tion called CPSO–DE for the optimal parameter esti-
mation of IIR filters. DE is used as the evolution rule
of the cellular part in CPSO to improve the perfor-
mance of the original CPSO. Benchmark IIR systems
commonly used in the specialized literature have been
selected for tuning the parameters and demonstrating
the effectiveness of the CPSO–DE method. The pro-
posed CPSO–DE method is experimentally compared
with two new design methods: the tissue-like mem-
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brane system (TMS), the hybrid particle swarm opti-
mization and gravitational search algorithm (HPSO–
GSA), the original CPSO-outer and CPSO-inner, and
classical implementations of PSO, GSA and DE. Com-
putational results and comparison of CPSO–DE with
the other evolutionary and hybrid methods show sat-
isfactory results. The hybridization of CPSO and DE
demonstrates powerful estimation ability. In particular,
to our knowledge, this hybridization has not yet been
investigated for the IIR system identification.

Keywords Parameter estimation · Hybrid search
method · Cellular automata · Particle swarm optimiza-
tion · Differential evolution · IIR filters

1 Introduction

Adaptive infinite impulse response (IIR) filters have
received much attention in recent years due to its cur-
rent utilization in a wide range of real-world applica-
tions such as signal processing, control, communica-
tions, parameter identification, image processing and
dynamical system modeling [37]. In general, IIR fil-
ters are able to model plants more accurately than finite
impulse response (FIR) filters [23]. Besides, the IIR fil-
ter needs a lesser number of parameters to approximate
the dynamical behavior of an unknown plant.

IIR filters are those where the poles and zeros of
the transfer function can be adjusted by the coefficient
change in the polynomials defining the numerator and
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denominator [4]. In contrast to the FIR filter, the IIR
filter has the advantage that its output is a function of
the previous input and output values.

The design of the adaptive IIR filter poses an inter-
esting challenge involving the estimation of the coeffi-
cient parameters by a search algorithm [12,44].

Nevertheless, this design commonly employs a
mean square error function (MSE) between the desired
response and the output estimated by the filter. MSE is
typically nonlinear, non-differentiable and multimodal
[24]. Algorithms based on gradient-step methods have
been employed in the design of adaptive IIR filters and
are able to determine efficiently the optimal solution
for unimodal objective functions. However, these can
easily fall into local minima and do not converge into
the global minimum for multimodal cases [3,32].

One alternative in the design of adaptive IIR filters
are evolutionary and metaheuristic algorithms. These
methods have been successfully applied in the math-
ematical optimization of non-differentiable, nonlinear
and multimodal functions. Therefore, there is a sig-
nificant increase of research in the utilization of these
algorithms for the design of adaptive IIR filters.

A number of methods have been proposed for the
optimization of adaptive IIR filter design using bio-
inspired techniques. For instance, genetic algorithms
[13,21,26,42,43], cat swarm optimization [27], ant
colony optimization [14], modified firefly algorithm
[33], particle swarm optimization (PSO) [2,8,11,17,
19] and differential evolution (DE) [20]. From these
works, PSO and DE show better performance. In order
to avoid a premature convergence into local minima
and improve the variety of solutions, some hybrid algo-
rithms have been presented combining different tech-
niques [1,12,28,44].

Cellular particle swarm optimization (CPSO) is a
recent proposal combining the features of PSO with
the neighborhood behavior of cellular automata (CA)
[35]. CPSO has been tested on a variety of optimization
problems, for instance inmilling process [6], the layout
of truss structures [10], and the job shop scheduling
problem [7], among others. The obtained results have
indicated that compared to the existing evolutionary
algorithms, the method shows three advantages: better
convergence, stronger robustness and a better balance
between exploration and exploitation.

The hybridization study of PSO and CA has shown
powerful optimization ability for solving complex
problems. In particular, to our knowledge, CPSO has

not yet been investigated for the problem of IIR system
identification.

Based on the above consideration, the motivation of
the current study is the application of a novel hybrid
optimization technique based on the combination of
PSO, CA and DE (CPSO–DE) in the optimal parame-
ter estimation for adaptive IIR system identification. In
particular, DE is used as the evolution rule of the cel-
lular part of CPSO to execute a local search in order to
improve each particle of the swarm. This hybridization
improves the performance of the original CPSO in the
parameter estimation.

The paper is organized as follows: Sect. 2 describes
the preliminaries of adaptive IIR filters. Section 3
explains the basics of PSO, DE and the two variants of
CPSO. Section 4 presents the hybrid algorithm CPSO–
DE proposed in this paper for the optimal design of
adaptive IIR filter. Section 5 shows the computational
results and comparison of CPSO–DE with other evo-
lutionary and hybrid methods, obtaining satisfactory
results. The last section gives the concluding remarks
of the paper.

2 Adaptive IIR filter

The transfer function in Z of a IIR filter is defined by:

Y (z)

U (z)
= b0 + b1z−1 + · · · + bN z−N

1 + a1z−1 + · · · + aMz−M
(1)

where Y (z) and U (z) are the output and the input,
respectively, of the IIR filter, a1 a2 . . . aM and
b0 b1 . . . bN are the real coefficients of the polyno-
mials, and N and M express the corresponding order
of the numerator and the denominator. The difference
equation for Eq. 1 is defined by:

y(k)+· · ·+aM y(k−M) = b0u(k)+· · ·+bNu(k−N )

(2)

If Eq. 2 is represented using a summation notation:

y(k) = −
M∑

j=1

a j y(k − j) +
N∑

i=0

biu(k − i) (3)
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Fig. 1 Identification of a unknown IIR system by means of an
adaptive filter

the difference equation is rewritten as:

y(k) = ΘφT (k) (4)

where Θ = [−a1,−a2, . . . ,−aM , b0, b1, . . . , bN ]
and φ = [y(k − 1), . . . , y(k − M), u(k), u(k −
1), . . . , u(k − N )].

For an adaptive IIR filter, Θ is a vector whose ele-
ments must be adjusted in order to obtain a desired
output y(k). Thus, the output of the IIR filter is a func-
tion of Θ . Figure 1 presents the block diagram for an
adaptive IIR filter, which is a classic scheme to identify
unknown dynamical systems.

u(k) is the input signal for the unknown system and
the adaptive IIR filter, and d(k) is the output signal
of the unknown system. v(k) is a noise signal added to
d(k); then, y(k) is an output signal of the unknown sys-
tem with noise. ŷ(k) is the estimate output signal from
the adaptive IIR filter; e(k) is the deviation between the
outputs of both systems; and ΔΘ(k) is a rate change
in the coefficients of the adaptive IIR filter introduced
by the evolutionary algorithm to minimize e(k).

Therefore, the identification of the coefficients in Θ

can be handled as an optimization problem:

minE(Θ) = min
1

L

N∑

k=1

(d(k) − y(k))2 (5)

where E(Θ) is the MSE produced by the proposed
coefficients for the IIR filter, and L is the number of
input samples.

3 Particle swarm optimization and differential
evolution

Particle swarm optimization (PSO) is a population-
based random search method originally developed
from studies of social behavior of birds flocks [16].
Since its inception in 1995 by Eberhart and Kennedy
[15,34], it has becomeone of themost important swarm
intelligence-based algorithms. PSO is easy to imple-
ment, requires little computational resources and few
control parameters [5,9].

PSO starts with an initial population of randomly
generated particles. Each particle is represented as a
candidate solution to a problem in a D-dimensional
space. We denote the ith particle as Xi = (xi1, xi2,
. . . , xiD), and its velocity as Vi = (vi1, vi2, . . . , vi D).
During the search process, each particle is attracted by
its own previous personal best position (Pi ) and the
global best position discovered by the swarm (Pg). At
each time step t, the velocity Vi and the position Xi of
particle i are updated as follows:

V t+1
i = wt V t

i + c1r1(P
t
i − Xt

i ) + c2r2(P
t
g − Xt

i ) (6)

Xt+1
i = Xt

i + V t+1
i (7)

where i = 1, 2, . . . , Q is the particle index and Q is the
population size, c1 and c2 are the cognitive and social
acceleration parameters, respectively, and r1 and r2 are
two uniform distributed random numbers within[0, 1].
Each velocity Vi is bounded between Vmin and Vmax.
Parameter w is the inertial weight used to balance
the global and local search [34]. The inertial weight
decreases linearly as:

wt = wmax − t

(
wmax − wmin

T

)
(8)

where wmax and wmin define the range of the inertial
weight, t = 1, 2, . . . , T is the iteration number and T
is a predefined maximum number of iterations.

3.1 Differential evolution

Differential evolution (DE) is a population-based
stochastic method for global optimization introduced
by Ken Price and Rainer Storn [29,38–41].

Similar to PSO, DE starts with an initial population
X randomly generated with Q members searching in a

123



2374 P. Lagos-Eulogio et al.

D-dimensional space. The basic operators of DE are:
mutation, crossover and selection.

The most common scheme “DE/rand/1” creates a
new solution Oi = (oi1, oi2, . . . , oiD) from original
solutions in the population as below :

Oi = Xr1 + c3(Xr2 − Xr3) (9)

where r1, r2, r3 ∈ {1, 2, . . . , Q} are randomly chosen
integers, distinct from each other and also different
from i . Factor c3 is a real value between [0, 2] used
to scale the differential variation (Xr2 − Xr3).

The crossover is introduced to increment the popula-
tion’s diversity by creating a trial vector Hi = (hi1, hi2,
. . . , hiD):

hi j =
⎧
⎨

⎩

oi j , if ri j ≤ Cr or j = jrand,

xi j , otherwise,
(10)

where ri j is an uniformly distributed random number
within [0, 1], Cr ∈ [0, 1] is the crossover probability
factor and jrand ∈ {1, 2, . . . , D} is a randomly chosen
index, which ensures that Hi copies at least one compo-
nent from Oi . The selection operation is employed to
decide which element (oi j or xi j ) should be a member
of the next generation by

X ′
i =

⎧
⎨

⎩

Oi , i f f (Oi ) ≤ f (Xi ),

Xi , otherwise,
(11)

where X ′
i is the ith new population individual and f ()

is the objective function used to compute the fitness
values.

3.2 Cellular particle swarm optimization

Cellular particle swarm optimization (CPSO) is a vari-
ant of PSO proposed by Shi, Liu, Gao and Zhang [35].
CPSO explores how a particle swarm works similar to
cellular automata (CA) [22]. Cellular automata ideas
lead to two versions of CPSO, namely, CPSO-inner
and CPSO-outer. In the CPSO-inner, each particle is
updated by using the information inside the swarm.
Meanwhile CPSO-outer exploits the information out-
side the swarm during the updating process. Particles

in the swarm (smart-cells) communicate with cells out-
side the swarm in order to improve their fitness value.
The cellular automata elements used in the PSO algo-
rithm are:

(a) configuration: (Q particles or smart-cells);
(b) cell space: the set of all cells;
(c) cell state: the particle’s information at time t , Sti =

[Pt
i , P

t
g, V

t
i , Xt

i ];
(d) neighborhood: Φ(i) = {i + δ j }, 1 ≤ j ≤ l (l is the

neighborhood size).
(e) transition rule: St+1

i = ϕ(Sti ∪ StΦ(i))

3.3 CPSO-inner

In CPSO-inner, all information is derived from the cells
inside the swarm. The communication between cells is
limited locally to neighborhoods according to three typ-
ical lattice structures (cubic, trigonal and hexagonal).
The lattice contains the same number of grids that the
swarm size.

InCPSO-inner, the transition rule defines a new state
Si (PΦ) for every cell i as:

St+1
i (PΦ) = ϕ

(
f
(
Sti (Pi )

)
, f

(
Sti+δ1

(
Pi+δ1

))
, . . . ,

f
(
Sti+δl

(
Pi+δl

)))
(12)

where in this case ϕ returns the neighbor with best
fitness value.

In order to integrate CA with PSO, the velocity Vi ,
position Xi and personal best state Si (Pi ) of the ith
particle are combinated as below:

V t+1
i = wt V t

i + c1r1(S
t
i (Pi ) − Xt

i )

+c2r2(S
t+1
i (PΦ) − Xt

i ) (13)

Xt+1
i = Xt

i + V t+1
i (14)

3.4 CPSO-outer

InCPSO-outer, the generalizedCAstrategy is extended
by two types of particles: “ smart-cell ” and “cell .” A
smart-cell represents a particle of PSO; on the other
hand, a cell represents a candidate solution not sam-
pled yet in the search space. The ith particle’s position
Xt
i defines the cell state Sti = Xt

i . Every smart-cell
constructs its neighborhood by the next function:
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Φ( j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xt
i + f (Pt

g)

f (Xt
i )
R j ◦ V t

i f (Xt
i ) �= 0, f (Pt

g) ≥ 0

Xt
i +

∣∣∣ f (Xt
i )

f (Pt
g)

∣∣∣ R j ◦ V t
i f (Xt

i ) �= 0, f (Pt
g) < 0

Xt
i +

(
e f (Ptg )

e f (Xti )

)2

R j ◦ V t
i f (Xt

i ) = 0, f (Pt
g) ≥ 0

Xt
i +

(
e f (Xti )

e f (Ptg )

)2

R j ◦ V t
i f (Xt

i ) = 0, f (Pt
g) < 0

(15)

where R j is the 1 × D vector of direction coefficients
composed of D uniform random numbers in [−1, 1]
for 1 ≤ j ≤ l and “◦” is the Hadamard product.

At the early iterations, Eq. 15 produces small
changes, when the difference between the fitness value
of particles with that of the Pg is relatively large. Then,
when the particles converge at a point, Eq. 15 provokes
larger changes to improve the search. The transition
rule in CPSO-outer is similar that the defined in Eq. 12.
In this case, the ith particle is replaced by its neighbor
with the best fitness values. CPSO-outer gives to par-
ticles the ability to make a wise jump, to improve the
exploring of the search space in a local competition and
enhance the diversity of the swarm.

4 Hybrid cellular particle swarm optimization and
differential evolution

In this work, a type of hybridization is presented
between CPSO and DE. To achieve this, we are using
the key concepts of CPSO-inner and CPSO-outer as
base structure, and the idea is to improve the gener-
ation of new local information applying DE over the
swarm.

CPSO-inner is a kind of local search model, and
take the information inside the swarm according to a
type of CA lattice structure. For this reason, its opti-
mization capability varies sharply. On the other hand,
CPSO-outer has better performance because every par-
ticle is able to generate new information from outside
the swarm in order to jump from local optima to better
positions.

Our proposal (called CPSO–DE) consists of taking
the best of both versions, where every particle gener-
ates locally new and better information from inside the
swarm by an improved transition rule based on DE.

In CPSO–DE, the i th particle’s position Xt
i is the

cell state Sti . We define “smart-cells” and “cells” as
well. First, only smart-cells participate in the updating
process using the PSO algorithm as follows:

V t+1
i = wt V t

i + c1r1(P
t
i − Sti ) + c2r2(Pg

t − Sti )

(16)

St+1
i = Sti + V t+1

i (17)

In CPSO-outer, the transition rule generates random
cells within an arbitrary radius from a smart-cell. In
CPSO–DE, however, the inception of new cells is more
complex because each smart-cell uses the stochastic
optimization method DE in order to produce its neigh-
borhood.

The operators used for determining the neighbor-
hood of each smart-cell are mutation and crossover.
Mutation is achieved by the basic schema according
to Eq. 9 that calculates a mutated vector Oi for each
particle’s neighbor as follows:

Ot
i,k = Str1 + c3(S

t
r2 − Str3) (18)

where k = 1, 2, . . . , l enumerates every neighbor and
l is the neighborhood size. Str1 , S

t
r3 and Str3 are updated

for eachneighbor. The crossover followsEq. 10 in order
to create l trial vectors Hi,k combining the information
of the current smart-cell with each one of the l mutated
vector. The advantage of applying differential evolution
is to improve the diversity of neighbors instead of a
simple l random variations of the smart-cell, obtaining
a better jumping ability provided by the swarm. Finally,
Eq. 12 is applied over the trial vectors to update the state
of the current smart-cell:

St+1
i (PΦ) = ϕ( f (St+1

i ), f (Hi,1),

f (Hi,2), . . . , f (Hi,l)) (19)

The transition rule in Eq. 19 means that the cell in
the neighborhood (include the same smart-cell) with
best fitness value is chosen for updating the smart-cell
state.

Figure 2 illustrates the CPSO–DE mechanism. A
two-dimensional space is considered and divided by
infinite virtual grids. Every grid contains only one solu-
tion.Among these grids, smart-cells aremarkedbygray
circles and available neighbors by circles with gray
dots. The smart-cell Sti is updated to St+1

i by the PSO
algorithm according to Eqs. 16 and 17. Then, three ran-
dom smart-cells (Str1 , S

t
r2 , S

t
r3 ) are selected to generate

the mutated vector Ot
i,k with Ec. 18. Finally, the possi-

ble neighbor is determined by crossover process; thus,
the neighbor can be: Hi,k(α2, β1), Hi,k(α1, β2), Ot

i,k

and even St+1
i . The process is repeated l times for each

smart-cell.
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Fig. 2 Schematic drawing for CPSO–DE

The proposed CPSO–DE method is described in
Algorithm1.First, the algorithmsets the control param-
eters; xmin, xmax, vmax, Q, l, D, wmin, wmax, c1, c2, c3,
Cr and T . Next, the velocity, best local position and
state (S) are randomly initialized for each cell as in the
PSO method. Then, each particle is evaluated and the
best global position is identified. In line 11, the process
halts according to the stopping criteria of iteration and
convergence. Otherwise, the velocity and state of ith
cell is updated in lines 13 and 14, respectively. Later,
following the DE method, the neighborhood of size l
is generated for each cell. Each neighbor is defined by
a mutation vector calculated from 3 random cell states
(Sr1 ,Sr2 and Sr3 ) in line 18. The crossover process in
line 19 determines the final neighbor. The transition
rule inspired in CA behavior is applied in line 27 to
determined the new cell state. Finally, the best local
and global position are updated in lines 31 and 34,
respectively. The process is repeated by each cell and
neighbor. This method will be tuned and tested with
the identification of IIR filters in the next section.

4.1 Computational complexity analysis

We briefly analyze the time complexity of the pro-
posed method. The identification method consists of
four main steps: initialization, local search with differ-
ential evolution, swarm evolution with PSO and halt-
ing judgment. Note that the CPSO–DE has Q “ smart-
cells ” and each one generates l new particles by differ-
ential evolution. Let T be the maximum iteration num-
ber. Initialization step contains a single loop (Q times),
so its time complexity is O(Q). For local search, there
are triple loop (Q, l and T times); therefore, its time
complexity is O(QlT ). The swarm evolution step con-

Algorithm 1 proposed CPSO–DE algorithm
1: //** Initialization
2: Set the control parameters: xmin , xmax , vmax , Q, l, D, wmin ,

wmax , c1, c2, c3, Cr , T ;
3: for i = 1 to Q do
4: initialize Si ∈ (xmin, xmax ) randomly;
5: initialize Vi ∈ (−vmax , vmax ) randomly;
6: Pi = Si ;
7: end for
8: Evaluate each particle;
9: Identify the best global position Pg ;
10: //**Loop
11: while stopping criterion t < T is not satisfied do
12: for i = 1 to Q do
13: V t+1

i = wt V t
i + c1r1(Pt

i − Sti ) + c2r2(Pgt − Sti );
14: St+1

i = Sti + V t+1
i ;

15: //Generate l neighbors using DE method
16: for k = 1 to l do
17: // Mutation
18: Ot

i,k = Str1 + c3(Str2 − Str3 );
19: for d = 1 to D do
20: //Crossover
21: if rand ≤ Cr or d = jrand then
22: Ht

k,d = Ot
k,d ;

23: else
24: Ht

k,d = St+1
i,d ;

25: end if
26: end for
27: if f i tness(Ht

k ) < f i tness(St+1
i ) then

28: St+1
i = Ht

k ;
29: end if
30: end for
31: if f i tness(St+1

i ) < f i tness(Pt+1
i ) then

32: Update Pt+1
i ;

33: end if
34: if f i tness(Pt+1

i ) < f i tness(Pt+1
g ) then

35: Update Pt+1
g ;

36: end if
37: end for
38: end while

tains double loop (Q and T times), so its time complex-
ity is O(QT ). For halting step, its time complexity is
O(1). Therefore, the time complexity of the proposed
method is O(QlT ).

5 Simulation results and comparison

5.1 Sensitivity analysis of population and
neighborhood size

The performance of CPSO–DE depends mainly on
the population and neighborhood sizes. Thus, five
different benchmark examples with the actual order
and reduced order of the plants have been used for
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tuning these parameters. For the sake of simplicity,
the possibles values of the population size Q and
the number of neighbors l are selected from the set
{20, 30, 40, 50, 60, 70, 80, 90, 100} and {5, 10, 15, 20,
25}, respectively. Results are obtained taking the aver-
age over 50 independent runs. To overcome the prob-
lem caused by the differences of the MSE values for
different plants, a normalized function is implemented
as follows:

Ψκ(τ) = f i tκ(τ ) − f i tmin(τ )

f i tmax(τ ) − f i tmin(τ )
, ∈ [0, 1] (20)

where τ denotes different benchmark plants (τ =
Example 1: Case 1,. . .,Example 5: Case 1, Example 1:
Case 2,. . ., Example 5: Case 2).

κ represents the combination between population
and neighborhood; in this way, κ = 2i j+m(1− i)− j ,
where i and j represents the group index of different
parameters Q and l (seemingly, i = 1, 2, . . . , 9 and
j = 1, 2, . . . , 5), respectively. m is the neighborhood
group size (m = 5). f i tκ(τ ) is average MSE fitness
under the κth combinations (ith, jth). f i tmin(τ ) and
f i tmax(τ ) denote theminimumandmaximumMSEfit-
ness under all κth combination for plant τ , respectively.
It is evident from the results that the performance of the
CPSO–DE is severely affected in twoways. First, all the
populations smaller than 30 individuals (κ ≤ 10) have
bad performance, as shown in Figs. 3 and 4 (exam-
ples with full order and reduced order, respectively).
Second, neighborhood sizes greater than 5 individuals
have good performance, as shown in Fig. 4.

In conclusion, theCPSO–DEhas better performance
with population greater than 30 individuals and more
than 5 neighbors. It is clear in Fig. 4 that the best results
are obtained when population and neighborhood size
are fixed at 100 and 25, respectively. Run time, how-
ever, is an important issue; therefore, the first point of
convergence in the full-order cases (κ = 12) is chosen
for our computational simulations. Hence, a popula-
tion size of Q = 40 particles and a neighborhood size
l = 10 are a reasonable choice for the proposed algo-
rithm in the following comparative analysis.

5.2 Parameters settings

In the next experiments, five benchmark IIR systems
reported in [18,25,27,36] and [31] have been selected
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Fig. 3 Normalized average MSE values with different sizes of
population and neighborhood for full-order IIR filters
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Fig. 4 Normalized average MSE values with different sizes of
population and neighborhood for reduced-order IIR filters

to demonstrate the applicability and effectiveness of the
CPSO–DE method. For all the cases, the input signal
x(k) is a white noise with zero mean, unit variance and
uniform distribution, the noise v(k) is absent and the
data samples length L = 200. Formaintaining stability,
the search space of adaptive IIR filter coefficient used
for each case is restricted in the range (−2, 2) and 50
independent runs are carried out for all algorithms.

To evaluate the effectiveness and efficiency of the
proposed CPSO–DEmethod, it is experimentally com-
pared with two new design methods: the TMS [44],
and the HPSO–GSA [12]. The CPSO-outer and CPSO-
inner presented in [35] are also applied. The original
PSO [34], GSA [30] and DE [40] have been used as
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well. Population size Q = 40 was chosen for the
seven algorithms and a maximum number of iterations
T = 500 was taken for all the experimental simula-
tions. The parameters of CPSO, TMS and HPSO–GSA
were obtained from [35,44] and [12], respectively. For
PSO, standard velocity model was used, with learning
factors c1 = c2 = 1.49491 and the inertial weight was
linearity decreased from1.4 to 0.6.DEused the original
crossover and selection operations reported in [40] and
the mutation “DE/rand/1.” The parameters for GSA
were configured as recommended by [12] and [30].
Input parameters of CPSO–DEwere defines as: l = 10,
c1 = c3 = 0.5, c2 = 2, Cr = 0.9, wmax = 0.75,
wmin = 0.15.

All optimization programs were executed on a Mac
OS environment using Intel Core Xeon, 3.5GHz, 32G
RAM memory, and the codes were developed using
MATLAB 7.14.

5.3 Description of IIR system identification problems
and parameter settings

In order to prove our proposal, we have taken five
classical benchmark identification problems reported
in [18,25,27,36] and [31]. Each unknown plant is esti-
mated by an IIR filter in two modes, with the same
order and with reduced order.

Example 1 The transfer function of a second-order
plant is defined by Eq. 21. This has been considered
in the works, [25,36] and [27].

Gp(z) = 0.05 − 0.4z−1

1 − 1.1314z−1 + 0.25z−2 (21)

Case 1The transfer function of a second-order IIRfilter
to model the second-order plant is defined by Eq. 22

Gp(z) = b0 − b1z−1

1 − a1z−1 − a2z−2 (22)

Case 2 Equation 23 is a reduced-order filter used for
identify the dynamics of the second-order plant in
Eq. 21.

Gp(z) = b0
1 − a1z−1 (23)

Example 2 The transfer function of a third-order plant
is defined by Eq. 24. This has been considered in [27].

Gp(z) = −0.2 − 0.4z−1 + 0.5z−2

1 − 0.6z−1 + 0.25z−2 − 0.2z−3 (24)

Case 1 The transfer function of a third-order IIR filter
to model the third-order plant is defined by Eq. 25.

Gp(z) = b0 + b1z−1 + b2z−2

1 − a1z−1 − a2z−2 − a3z−3 (25)

Case 2 Equation 26 defines a reduced-order filter used
to identify the dynamics of the third-order plant in
Eq. 24.

Gp(z) = b0 + b1z−1

1 − a1z−1 − a2z−2 (26)

Example 3 The transfer function of a fourth-order
plant is defined by Eq. 27. This has been considered
in [27].

Gp(z) = 1 − 0.9z−1 + 0.81z−2 − 0.729z−3

1 + 0.04z−1 + 0.2775z−2 − 0.2101z−3 + 0.14z−4

(27)

Case 1 The transfer function of a fourth-order IIR filter
to model the fourth-order plant is defined by Eq. 28.

Gp(z) = b0 + b1z−1 + b2z−2 + b3z−3

1 − a1z−1 − a2z−2 − a3z−3 − a4z−4 (28)

Case 2 Equation 29 describes a third-order IIR filter
used to identify the dynamics of the fourth-order plant
in Eq. 27.

Gp(z) = b0 + b1z−1 + b2z−2

1 − a1z−1 − a2z−2 − a3z−3 (29)

Example 4 The transfer function of a fifth-order plant
is defined by Eq. 30. This has been considered in [27]
and [18].
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Gp(z) = 0.1084 + 0.5419z−1 + 1.0837z−2 + 1.0837z−3 + 0.5419z−4 + 0.1084z−5

1 + 0.9853z−1 + 0.9738z−2 − 0.3854z−3 + 0.1112z−4 + 0.0113z−5
(30)

Case 1 The transfer function of a fifth-order IIR filter
to model the fifth-order plant is defined in Eq. 31.

Gp(z) = b0 + b1z−1 + b2z−2 + b3z−3 + b4z−4 + b5z−5

1 − a1z−1 − a2z−2 − a3z−3 − a4z−4 − a5z−5

(31)

Case 2 Equation 32 describes a reduced-order filter
used to identify the dynamics of the fifth-order plant in
Eq. 30.

Gp(z) = b0 + b1z−1 + b2z−2 + b3z−3 + b4z−4

1 − a1z−1 − a2z−2 − a3z−3 − a4z−4

(32)

Example 5 The transfer function of a sixth-order plant
is defined by Eq. 33. This has been considered in [27]
and [18].

Gp(z) = 1 − 0.4z−2 − 0.65z−4 + 0.26z−6

1 − 0.77z−2 − 0.8498z−4 + 0.6486z−6

(33)

Case 1 The transfer function of a sixth-order IIR filter
to model the sixth-order plant is defined by Eq. 34.

Gp(z) = b0 + b2z−2 + b4z−4 + b6z−6

1 − a2z−2 − a4z−4 − a6z−6 (34)

Case 2 Equation 35 describes a reduced-order filter
used to identify the dynamics of the sixth-order plant
in Eq. 33.

Gp(z) = b0 + b1z−1 + b2z−2 + b3z−3 + b4z−4 + b5z−5

1 − a1z−1 − a2z−2 − a3z−3 − a4z−4 − a5z−5

(35)

5.4 Simulation results and comparison

The results obtained in all the simulations are shown in
the next tables and figures in terms of the convergence
characteristics, mean square error (MSE) and elapsed
times for both full and reduced order of the IIR plants.
The actual and estimated parameters are also provided
for full-order plants. The best results obtained by the
algorithms are bold-faced in the respective tables. Each
run stopswhen an error zero is reached or themaximum
number of iterations is computed.

Example 1: A second-order plant. Two cases with
the same-order and reduced-order IIR filters are imple-

Table 1 Parameter estimation for Example 1, Case 1

Parameter Actual values CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

b0 0.0500 0.0500 0.0500 0.0500 0.0561 0.0500 0.0500 0.0500 0.0500

b1 −0.4000 −0.4000 −0.4000 −0.4000 −0.4377 −0.4000 −0.4000 −0.4000 −0.4000

a1 −1.1314 −1.1314 −1.1314 −1.1314 −1.0285 −1.1314 −1.1314 −1.1314 −1.1314

a2 0.2500 0.2500 0.2500 0.2500 0.1558 0.2500 0.2500 0.2500 0.2500

Table 2 Statistical results of MSE values for Example 1, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 6.1231e−21 1.1603e−12 1.2517e−18 1.7082e−03 0 5.4758e−19 0 0

Worst 4.0588e−17 3.4341e−01 7.4226e−15 5.9335e−02 0 1.5217e−03 6.1145e−32 0

Average 2.2155e−18 2.7972e−02 3.7011e−16 2.3943e−02 0 9.3607e−05 2.0335e−32 0

Median 3.7351e−19 1.7342e−04 6.6197e−17 2.2454e−02 0 1.4113e−05 1.7304e−32 0

SD 6.4647e−18 8.0281e−02 1.1364e−15 1.1162e−02 0 2.3627e−04 1.7132e−32 0
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Table 3 Statistical results of elapsed time (sec) for Example 1, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.4985e+01 1.3109e+01 3.0125e+00 3.7504e+00 3.8981e+00 9.5980e+00 3.8703e+01 3.4199e+00

Worst 3.6536e+01 1.3876e+01 3.1821e+00 3.9211e+00 4.5659e+00 9.9825e+00 4.2480e+01 3.9368e+00

Average 3.5268e+01 1.3287e+01 3.1023e+00 3.8361e+00 4.2736e+00 9.6949e+00 4.0694e+01 3.6193e+00

Median 3.5203e+01 1.3265e+01 3.1058e+00 3.8343e+00 4.2754e+00 9.6774e+00 4.0798e+01 3.6198e+00

SD 2.6566e−01 1.1314e−01 3.4323e−02 2.9345e−02 1.5228e−01 6.5540e−02 5.9698e−01 1.2880e−01

Table 4 Statistical results of MSE values for Example 1, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 1.3758e−01 1.4694e−01 1.4207e−01 1.4513e−01 1.3730e−01 1.3847e−01 1.3713e−01 1.3260e−01

Worst 1.5388e−01 3.1550e−01 1.6186e−01 2.4482e−01 2.5462e−01 1.5550e−01 1.4918e−01 1.4828e−01

Average 1.4672e−01 1.8042e−01 1.5489e−01 1.8750e−01 1.5555e−01 1.4926e−01 1.4394e−01 1.4267e−01

Median 1.4728e−01 1.5976e−01 1.5537e−01 1.9886e−01 1.5148e−01 1.5001e−01 1.4430e−01 1.4304e−01

SD 3.1392e−03 4.6353e−02 4.6679e−03 2.8213e−02 2.1957e−02 3.6831e−03 2.8522e−03 3.4111e−03

Table 5 Statistical results of elapsed time (sec) for Example 1, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.1068e+01 1.2292e+01 2.6652e+00 3.3500e+00 5.1384e+00 7.8470e+00 3.6710e+01 4.1215e+01

Worst 3.1695e+01 1.2615e+01 2.7813e+00 3.5428e+00 5.2856e+00 8.3355e+00 3.7279e+01 4.1889e+01

Average 3.1352e+01 1.2465e+01 2.7329e+00 3.4114e+00 5.1880e+00 7.9617e+00 3.7046e+01 4.1570e+01

Median 3.1365e+01 1.2462e+01 2.7317e+00 3.4142e+00 5.1768e+00 7.9276e+00 3.7068e+01 4.1588e+01

SD 1.3526e−01 7.2901e−02 2.7718e−02 2.7178e−02 3.6489e−02 1.0487e−01 1.3075e−01 1.3715e−01

mented to validate the performance of CPSO–DE. The
estimated parameters values of different algorithms for
Case 1 are listed inTable 1. From the table,CPSO-inner
(CPSO-I), CPSO-outer (CPSO-O), PSO, DE, HPSO–
GSA, TMS and CPSO–DE are capable to estimate the
coefficients better than GSA. Tables 2 and 3 provide
a quantitative assessment of the performance of all
the algorithms considered in terms of MSE values and
elapsed times. It is clear thatDEandCPSO–DEprovide
the best results with respect to MSE values. However,
CPSO–DE requires higher elapsed times in comparison
with PSO, and less run times than CPSO-O, CPSO-I,
GSA, DE, HPSO–GSA and TMS in terms of average
times. This is because that theCPSO–DE requiresmore
steps than the PSO to update solutions.

In Case 2, a first-order IIR filter is used to model
the second-order plant. The statistical results of MSE
values and elapsed times are shown in Tables 4 and
5. Table 4 shows that the CPSO–DE obtains the best

average results in terms of theMSE values, and the best
elapsed times are obtained by PSO.

The convergence behaviors of the best MSE values
of two cases using different algorithms are shown in
Fig. 5. For Case 1, it is observed that CPSO–DE, DE
and TMS obtain the best MSE fitness zero with dif-
ferent number of iterations without any abrupt oscil-
lations. HPSO–GSA shows similar convergence prop-
erties; however, they present different solution qual-
ity. CPSO-O shows a final convergence value similar
to HPSO–GSA but with a slower convergence. The
other algorithms are trapped in local minima. More-
over, CPSO–DE rapidly converges to the minimum fit-
ness compared with other algorithms. For Case 2, it
can be seen that algorithms fall into local optimum,
but CPSO–DE, TMS, DE and HPSO–GSA are able
to improve their optima with very similar convergence
curves. CPSO-O reaches as well a similar final conver-
gence value but with a slower convergence. Generally,
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Fig. 5 Convergence behaviors for Example 1: a Case 1, b
Case 2

CPSO–DE is successful in finding the minimum MSE
solution among the reported methods and can obtain
higher-quality estimated coefficients with better con-
vergence property.

Example 2: A third-order plant. In the first case,
the full-order IIR filters is considered. The conver-
gence behaviors in Fig. 6a indicate that CPSO–DE
and DE obtain the best MSE fitness zero with dif-
ferent number of iterations without any abrupt oscil-
lations. TMS shows similar convergence properties;
nevertheless, withminor quality.Moreover, CPSO–DE
rapidly converges to the minimum fitness compared
with other algorithms. Table 6 shows that CPSO-O,
PSO, GSA, DE, HPSO–GSA, TMS and CPSO–DE are
capable to estimate the coefficients better than CPSO-
I. Tables 7 and 8 indicate that DE and CPSO–DE give
the best results with respect to MSE values. CPSO–DE

Fig. 6 Convergence behaviors for Example 2: a Case 1, b
Case 2

demands higher elapsed times in comparison with PSO
and GSA and less run times than CPSO-O, CPSO-I,
DE, HPSO–GSA and TMS, in terms of average times.

In Case 2, a second-order IIR filter is used to model
the plant. The convergence behaviors in Fig. 6b show
that TMS and CPSO–DE have very similar conver-
gence curves. The other algorithms obtain almost iden-
tical values but with a slower convergence. Table 9
shows that the TMS obtains the best average results
in terms of the MSE values, but CPSO–DE is very
close to it; besides of having the best MSE value. The
best elapsed time in average is obtained by PSO from
Table 10. In conclusion, CPSO–DE is successful in
finding the minimum or close to minimumMSE values
with better convergence property.

Example 3: A fourth-order plant. The first case eval-
uates the full-order IIR filter. The convergence behav-
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Table 6 Parameter estimation for Example 2, Case 1

Parameter Actual values CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

b0 −0.2000 −0.2000 −0.2002 −0.2000 −0.2000 −0.2000 −0.2000 −0.2000 −0.2000

b1 −0.4000 −0.4000 −0.4004 −0.4000 −0.4000 −0.4000 −0.4000 −0.4000 −0.4000

b2 0.5000 0.5000 0.4967 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000

a1 −0.6000 −0.6000 −0.5951 −0.6000 −0.6000 −0.6000 −0.6000 −0.6000 −0.6000

a2 0.2500 0.2500 0.2530 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500

a3 −0.2000 −0.2000 −0.1973 −0.2000 −0.2000 −0.2000 −0.2000 −0.2000 −0.2000

Table 7 Statistical results of MSE values for Example 2, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 1.3286e−19 3.2187e−06 3.9259e−16 2.4275e−19 0 6.6785e−20 7.8059e−29 0

Worst 6.4198e−17 8.5203e−03 7.4410e−03 4.2993e−03 0 5.1980e−03 3.3664e−27 0

Average 1.0050e−17 2.8657e−03 2.5290e−03 1.2504e−03 0 1.2485e−03 6.8046e−28 0

Median 5.2314e−18 2.2941e−03 2.7871e−03 9.5153e−04 0 8.0069e−04 5.7170e−28 0

SD 1.3888e−17 2.4653e−03 1.9392e−03 1.1652e−03 0 1.3216e−03 6.7944e−28 0

Table 8 Statistical results of elapsed time (sec) for Example 2, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.5150e+01 1.3200e+01 3.0243e+00 3.9006e+00 4.8372e+00 1.0992e+01 4.0936e+01 4.7529e+00

Worst 3.5800e+01 1.3461e+01 3.1933e+00 4.1964e+00 5.3646e+00 1.1135e+01 4.1566e+01 5.3095e+00

Average 3.5443e+01 1.3329e+01 3.1129e+00 4.0098e+00 5.0913e+00 1.1054e+01 4.1295e+01 5.0645e+00

Median 3.5446e+01 1.3337e+01 3.1136e+00 3.9837e+00 5.0817e+00 1.1049e+01 4.1303e+01 5.0791e+00

SD 1.5490e−01 6.1022e−02 3.9756e−02 7.1057e−02 1.3290e−01 3.2553e−02 1.2514e−01 1.3350e−01

Table 9 Statistical results of MSE values for Example 2, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 5.6373e−03 7.0325e−03 6.9571e−03 6.1915e−03 6.4920e−03 6.2770e−03 5.4848e−03 5.2547e−03

Worst 8.1895e−03 1.0810e−02 9.0487e−03 8.4107e−03 8.6226e−03 8.6013e−03 7.5852e−03 7.3868e−03

Average 6.9910e−03 8.5101e−03 7.9862e−03 7.5741e−03 7.4975e−03 7.3323e−03 6.8151e−03 6.8208e−03

Median 6.9463e−03 8.4443e−03 7.9752e−03 7.6058e−03 7.4198e−03 7.3146e−03 6.8690e−03 6.8892e−03

SD 4.4897e−04 7.5835e−04 5.1656e−04 3.9766e−04 4.4614e−04 4.2733e−04 3.8320e−04 3.5659e−04

Table 10 Statistical results of elapsed time (sec) for Example 2, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.1407e+01 1.2351e+01 2.6795e+00 3.4547e+00 5.1545e+00 9.2299e+00 3.7207e+01 4.2563e+01

Worst 3.3001e+01 1.3744e+01 2.8642e+00 3.5860e+00 5.3361e+00 9.4689e+00 3.9060e+01 4.2989e+01

Average 3.1722e+01 1.2563e+01 2.7656e+00 3.5196e+00 5.2416e+00 9.3024e+00 3.7508e+01 4.2764e+01

Median 3.1670e+01 1.2529e+01 2.7674e+00 3.5194e+00 5.2404e+00 9.2954e+00 3.7473e+01 4.2762e+01

SD 2.5942e−01 2.3855e−01 3.4053e−02 2.8486e−02 4.1664e−02 4.0600e−02 2.6007e−01 9.6326e−02
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Fig. 7 Convergence behaviors for Example 3: a Case 1, b Case
2

iors in Fig. 7a show that CPSO–DE rapidly converges
to the minimum MSE fitness zero with the least num-
ber of iterations without any abrupt oscillations. DE,
GSA and TMS have similar convergence properties;
however, they present minor solution quality. CPSO-

O improves its convergence in the last iterations. The
other algorithms are trapped in local minima. Table 11
shows that CPSO-O, GSA, DE, TMS and CPSO–DE
are capable to estimate the coefficients better than the
other algorithms. Tables 12 and 13 show that CPSO–
DE gives the best results with respect to MSE val-
ues requiring higher elapsed times in comparison with
PSO, GSA and DE; and less run times than CPSO-O,
CPSO-I, HPSO–GSA and TMS in terms of average
times.

In Case 2, a third-order IIR filter is used to model
the fourth-order plant. The convergence behaviors in
Fig. 7b show that algorithms fall into local opti-
mum, but DE, CPSO–DE, TMS and HPSO are able to
improve their optima with similar convergence curves.
CPSO-O reaches as well a similar final convergence
value but with slower convergence. Tables 14 and 15
show that the CPSO–DE obtains the best average MSE
value, and the best elapsed time is obtained by PSO.

Example 4: A fifth-order plant. The first case evalu-
ates the full-order IIR filter. The convergence behaviors
in Fig. 8a show that CPSO–DE falls into a local mini-
mum, but rapidly improves and obtains the best MSE
fitness zero without abrupt oscillations. The other algo-
rithms are trapped in local minima. Table 16 shows that
CPSO–DE is able to estimate the coefficients better
than all the other algorithms. Tables 17 and 18 show
that CPSO–DE provides the best results with respect
to MSE values requiring higher elapsed times in com-
parison with all the other algorithms, except for TMS,
because of its complexity.

In Case 2, a fourth-order IIR filter is used to model
the fifth-order plant. The convergence behaviors in
Fig. 8b show that CPSO–DE rapidly converges to the
bestMSE fitness value without abrupt oscillations. The
other algorithms fall into local optimum, but DE, TMS

Table 11 Parameter estimation for Example 3, Case 1

Parameter Actual values CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

b0 1.0000 1.0000 0.9945 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

b1 −0.9000 −0.9000 −0.9366 −0.8997 −0.9000 −0.9000 −0.9001 −0.9000 −0.9000

b2 0.8100 0.8100 0.7623 0.8099 0.8100 0.8100 0.8100 0.8100 0.8100

b3 −0.7290 −0.7290 −0.7243 −0.7294 −0.7290 −0.7290 −0.7290 −0.7290 −0.7290

a1 0.0400 0.0400 0.0163 0.0402 0.0400 0.0400 0.0400 0.0400 0.0400

a2 0.2775 0.2775 0.2105 0.2778 0.2775 0.2775 0.2775 0.2775 0.2775

a3 −0.2101 −0.2101 −0.2619 −0.2102 −0.2101 −0.2101 −0.2101 −0.2101 −0.2101

a4 0.1400 0.1400 0.1208 0.1398 0.1400 0.1400 0.1400 0.1400 0.1400
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Table 12 Statistical results of MSE values for Example 3, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 2.2965e−17 9.1661e−04 1.7118e−07 8.6246e−19 1.7031e−19 3.9989e−10 1.4150e−15 0

Worst 2.4391e−12 1.5951e+00 1.7571e+00 3.6981e−02 6.6484e−14 1.6632e−02 2.3263e−14 0

Average 5.6765e−14 1.1222e−01 2.0139e−01 2.2445e−03 1.3475e−15 1.4243e−03 8.9766e−15 0

Median 3.5690e−15 3.7672e−02 1.0389e−02 4.0746e−06 6.2446e−18 1.8963e−04 7.8148e−15 0

SD 3.4398e−13 2.8361e−01 3.8855e−01 7.2302e−03 9.3997e−15 3.2158e−03 5.7721e−15 0

Table 13 Statistical results of elapsed time (sec) for Example 3, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.5366e+01 1.3297e+01 3.0559e+00 4.0114e+00 5.5819e+00 1.2373e+01 4.1200e+01 7.6131e+00

Worst 3.6927e+01 1.3601e+01 3.2097e+00 4.3891e+00 5.8553e+00 1.3039e+01 4.1805e+01 8.8820e+00

Average 3.5707e+01 1.3400e+01 3.1384e+00 4.0803e+00 5.6705e+00 1.2490e+01 4.1475e+01 8.2924e+00

Median 3.5666e+01 1.3397e+01 3.1416e+00 4.0727e+00 5.6688e+00 1.2444e+01 4.1474e+01 8.3065e+00

SD 2.3738e−01 5.8139e−02 3.3445e−02 5.5445e−02 4.9860e−02 1.4103e−01 1.4367e−01 3.0243e−01

Table 14 Statistical results of MSE values for Example 3, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.8562e−02 4.7852e−02 4.6200e−02 6.9870e−02 3.7049e−02 4.2816e−02 4.1275e−02 3.6715e−02

Worst 1.2836e−01 4.1386e−01 8.1652e−01 1.3269e−01 1.3920e−01 1.3240e−01 4.7850e−02 4.5797e−02

Average 4.5589e−02 1.2095e−01 1.3822e−01 1.1285e−01 5.2809e−02 9.5739e−02 4.4325e−02 4.2406e−02

Median 4.3882e−02 1.1341e−01 1.2809e−01 1.1897e−01 4.8195e−02 9.8409e−02 4.4662e−02 4.2487e−02

SD 1.2271e−02 6.8288e−02 1.2975e−01 1.6484e−02 2.0860e−02 2.3702e−02 1.6707e−03 1.8811e−03

and CPSO-O are able to improve their optima with
a convergence slower than CPSO–DE. Tables 19 and
20 show that the CPSO–DE obtains the best average
MSE value, and the best elapsed time is obtained by
PSO.

Example 5: A sixth-order plant. The first case eval-
uates the full-order IIR filter. The convergence behav-
iors in Fig. 9a show that CPSO–DE rapidly converges

to best MSE fitness value, with least number of itera-
tions, without any abrupt oscillations. The other algo-
rithms are trapped in local minima. Table 21 shows
that CPSO–DE is able to estimate the coefficients bet-
ter than all the other algorithms. Tables 22 and 23 show
that CPSO–DE provides the best results with respect
to MSE values requiring higher elapsed times, except
for TMS.

Table 15 Statistical results of elapsed time (sec) for Example 3, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.1630e+01 1.2489e+01 2.7075e+00 3.5661e+00 5.2035e+00 1.0635e+01 3.7574e+01 4.1413e+01

Worst 3.3000e+01 1.2739e+01 2.9262e+00 3.7049e+00 5.4134e+00 1.0912e+01 3.9211e+01 4.2141e+01

Average 3.1917e+01 1.2625e+01 2.7896e+00 3.6251e+00 5.2829e+00 1.0713e+01 3.7967e+01 4.1818e+01

Median 3.1880e+01 1.2635e+01 2.7902e+00 3.6264e+00 5.2724e+00 1.0707e+01 3.7953e+01 4.1821e+01

SD 2.3928e−01 5.8722e−02 3.8261e−02 3.0179e−02 4.4839e−02 4.4271e−02 2.4437e−01 1.7772e−01

123



A new design method for adaptive IIR system identification 2385

Fig. 8 Convergence behaviors for Example 4: a Case 1, b Case
2

In Case 2, a fifth-order IIR filter is used to model the
sixth-order plant. The convergence behaviors in Fig. 9b
show that CPSO–DE falls into local optimum, but is
able to improve and converge to the best MSE fitness
value. The other algorithms reach final convergence
values with different quality. Tables 24 and 25 show
that the CPSO–DE obtains the best average results in
terms of the MSE values, and the best elapsed times
are obtained by PSO.

Generally, CPSO–DE is successful in finding the
minimum MSE solution among the reported methods
and can obtain higher-quality estimated coefficients
with better convergence property.

6 Conclusion

This paper has introduced the use of CPSO–DE hybrid
algorithm to develop a novel method for identifying the
optimal set of system coefficients with both full-order
and reduced-order adaptive IIR filter design.

The proposed method has been compared with
seven state-of-the-art evolutionary algorithms. Simula-
tion results show that the proposed method has advan-
tages over PSO,GSA,DE,HPSO–GSA, TMS and both
versions of CPSO in terms of the convergence speed
and the MSE levels.

Incorporation of CPSO optimization with DE local
search brings a remarkable improvement in finding the
optimal set of coefficients. The two mechanism can
enhance the diversity of solutions and balance exploita-
tion and exploration during the process design.

Table 16 Parameter estimation for Example 4, Case 1

Parameter Actual values CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

b0 0.1084 0.1083 0.1024 0.1098 0.1082 0.1086 0.1084 0.1082 0.1084

b1 0.5419 0.4537 0.4196 0.4472 0.4350 0.4798 0.4354 0.4442 0.5419

b2 1.0837 0.6768 0.5400 0.5931 0.5857 0.8000 0.5843 0.6341 1.0837

b3 1.0837 0.3638 0.1388 0.1066 0.1890 0.5845 0.1810 0.2880 1.0837

b4 0.5419 −0.0439 −0.2587 −0.3777 −0.1979 0.1410 −0.2138 −0.1052 0.5419

b5 0.1084 −0.0798 −0.1784 −0.2527 −0.1315 −0.0173 −0.1459 −0.0993 0.1084

a1 0.9853 0.1730 −0.0649 0.0877 0.0021 0.4155 0.0026 0.0860 0.9853

a2 0.9738 0.4848 0.3028 0.0303 0.3266 0.6446 0.3119 0.4349 0.9738

a3 0.3864 −0.1761 −0.4071 −0.3036 −0.2880 −0.0033 −0.3054 −0.2367 0.3864

a4 0.1112 0.0190 0.0152 −0.1857 −0.0303 0.0547 −0.0350 0.0109 0.1112

a5 0.0113 −0.0230 −0.0572 −0.0068 −0.0195 −0.0127 −0.0247 −0.0262 0.0113
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Table 17 Statistical results of MSE values for Example 4, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 2.1999e−06 7.4836e−04 1.6786e−04 1.2450e−05 3.4353e−06 5.3348e−06 3.8633e−06 0

Worst 4.0191e+00 1.1497e+01 4.8704e+00 2.7055e−03 5.1897e−05 6.9642e−03 1.6057e−05 3.9675e−12

Average 8.0534e−02 4.3247e−01 6.5404e−01 3.8463e−04 1.2373e−05 1.1671e−03 7.9513e−06 8.8606e−14

Median 4.3789e−05 2.3032e−02 2.9080e−03 1.9818e−04 8.5143e−06 4.9839e−04 7.6694e−06 7.5459e−22

SD 5.6836e−01 1.7558e+00 1.3100e+00 5.3004e−04 1.0899e−05 1.4853e−03 2.4645e−06 5.6089e−13

Table 18 Statistical results of elapsed time (sec) for Example 4, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.5677e+01 1.3325e+01 3.0990e+00 4.1641e+00 5.6170e+00 1.4506e+01 4.1450e+01 3.8593e+01

Worst 3.6957e+01 1.3625e+01 3.4090e+00 4.3172e+00 5.8445e+00 1.4688e+01 4.3189e+01 4.1342e+01

Average 3.5947e+01 1.3446e+01 3.1797e+00 4.2493e+00 5.7003e+00 1.4571e+01 4.1837e+01 4.0532e+01

Median 3.5924e+01 1.3443e+01 3.1781e+00 4.2420e+00 5.6917e+00 1.4576e+01 4.1830e+01 4.0543e+01

SD 2.3941e−01 7.6531e−02 4.5911e−02 3.2870e−02 3.8589e−02 3.5747e−02 2.6191e−01 3.4734e−01

Table 19 Statistical results of MSE values for Example 4, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 4.9195e−06 6.6119e−04 6.5606e−04 1.4333e−04 4.8512e−06 1.0010e−04 4.5063e−06 4.0005e−06

Worst 9.0648e−04 2.7088e+00 3.4265e+00 6.9707e−03 8.8817e−04 4.6017e−03 6.0816e−06 4.7179e−06

Average 4.0197e−04 9.2550e−02 2.2836e−01 1.4301e−03 8.8873e−05 1.4014e−03 5.4523e−06 4.4581e−06

Median 4.1133e−04 1.4699e−02 6.7667e−03 1.2339e−03 5.7813e−06 1.1563e−03 5.4750e−06 4.4905e−06

SD 2.0441e−04 3.9656e−01 6.8656e−01 1.1492e−03 2.3553e−04 1.0041e−03 2.9333e−07 1.6183e−07

Table 20 Statistical results of elapsed time (sec) for Example 4, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.1814e+01 1.2551e+01 2.7425e+00 3.7244e+00 5.2250e+00 1.2761e+01 3.8107e+01 4.3212e+01

Worst 3.2758e+01 1.2911e+01 2.9249e+00 3.8515e+00 5.4272e+00 1.3329e+01 3.8868e+01 4.3837e+01

Average 3.2173e+01 1.2733e+01 2.8218e+00 3.7921e+00 5.3447e+00 1.2861e+01 3.8480e+01 4.3460e+01

Median 3.2166e+01 1.2739e+01 2.8234e+00 3.7923e+00 5.3442e+00 1.2823e+01 3.8469e+01 4.3447e+01

SD 1.7153e−01 6.7695e−02 3.9925e−02 2.3680e−02 4.4699e−02 1.3830e−01 1.4096e−01 1.3791e−01
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Fig. 9 Convergence behaviors for Example 5: a Case 1, b Case 2

Table 21 Parameter estimation for Example 5, Case 1

Parameter Actual values CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

b0 1.0000 0.9997 0.9819 0.9883 0.9637 1.0000 1.0110 1.0000 1.0000

b2 −0.4000 −0.3605 0.7585 0.3384 0.1156 −0.4002 0.1437 −0.4008 −0.4000

b4 −0.6500 −0.6388 −0.1822 −0.3740 0.1040 −0.6501 −0.2681 −0.6502 −0.6500

b6 0.2600 0.2441 −0.2180 −0.0264 −0.1936 0.2602 −0.0805 0.2603 0.2600

a2 −0.7700 −0.7330 0.4159 −0.0290 −0.2801 −0.7702 −0.2273 −0.7707 −0.7700

a4 −0.8498 −0.8512 −0.8254 −0.8462 −0.2639 −0.8498 −0.6666 −0.8497 −0.8498

a6 0.6486 0.6179 −0.3980 0.0118 −0.3154 0.6488 0.0076 0.6492 0.6486

Table 22 Statistical results of MSE values for Example 5, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 8.4183e−06 3.4101e−03 6.6511e−04 9.7450e−03 3.8979e−09 3.4783e−03 2.0003e−08 0

Worst 1.2697e−02 4.6958e−01 8.9340e−01 2.3120e−02 1.7511e−02 1.4845e−02 7.2892e−06 2.9666e−31

Average 4.6542e−03 4.0849e−02 8.1987e−02 1.3663e−02 1.6406e−03 8.9550e−03 1.0293e−06 1.2868e−31

Median 4.6889e−03 1.8678e−02 1.0554e−02 1.3293e−02 8.3921e−07 8.9943e−03 5.7962e−07 1.7960e−31

SD 4.1387e−03 8.6818e−02 2.2959e−01 2.7166e−03 4.3299e−03 2.6572e−03 1.2722e−06 1.2353e−31

However, the complexity of the CPSO–DE is higher
than that of PSO, GSA, DE and near to that of CPSO-
inner, CPSO-outer, HPSO–GSA and TMS. Neverthe-
less, in all full-order cases, the proposed approach
shows convergence in a fewer number of iterations than
the other algorithms.

The IIR filters considered in this paper are general,
further work should imply the modification of the pro-
posed method to design optimal special filters to solve
special image/signal processing problems. Other alter-
native is to extend the application of the CPSO–DE and
explore other optimization problems.
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Table 23 Statistical results of elapsed time (sec) for Example 5, Case 1

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.6128e+01 1.3395e+01 3.1739e+00 3.9982e+00 5.6369e+00 1.1768e+01 4.1717e+01 1.6483e+01

Worst 3.7135e+01 1.4177e+01 3.3563e+00 4.4065e+00 5.9044e+00 1.2169e+01 4.2366e+01 4.1233e+01

Average 3.6380e+01 1.3589e+01 3.2401e+00 4.0887e+00 5.7374e+00 1.1832e+01 4.2001e+01 3.6894e+01

Median 3.6368e+01 1.3546e+01 3.2307e+00 4.0793e+00 5.7278e+00 1.1826e+01 4.2005e+01 4.0731e+01

SD 1.6912e−01 1.5260e−01 4.0442e−02 5.5647e−02 6.2841e−02 5.6901e−02 1.4013e−01 5.7977e+00

Table 24 Statistical results of MSE values for Example 5, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 1.1216e−03 3.7221e−02 1.5865e−02 1.4501e−02 1.7703e−03 3.4503e−03 1.8074e−03 2.9986e−04

Worst 1.2402e+00 3.6858e+00 7.1201e+00 4.3050e−01 2.3536e−01 3.5547e−01 6.8597e−03 6.1120e−04

Average 4.9205e−02 5.7173e−01 9.1083e−01 1.3597e−01 3.6972e−02 5.9204e−02 3.1728e−03 4.6355e−04

Median 1.1660e−02 2.8886e−01 1.1191e−01 1.1079e−01 1.1407e−02 3.3001e−02 2.8823e−03 4.6702e−04

SD 1.7882e−01 8.7238e−01 1.4734e+00 9.9163e−02 6.3016e−02 6.4647e−02 1.1399e−03 5.8450e−05

Table 25 Statistical results of elapsed time (sec) for Example 5, Case 2

CPSO-O CPSO-I PSO GSA DE HPSO–GSA TMS CPSO–DE

Best 3.2124e+01 1.2597e+01 2.7731e+00 3.8469e+00 5.2689e+00 1.4159e+01 3.8475e+01 4.2211e+01

Worst 3.3608e+01 1.3237e+01 3.0490e+00 4.2288e+00 5.6793e+00 1.4694e+01 4.0129e+01 4.2814e+01

Average 3.2369e+01 1.2755e+01 2.8400e+00 3.9015e+00 5.3786e+00 1.4224e+01 3.8800e+01 4.2593e+01

Median 3.2341e+01 1.2746e+01 2.8354e+00 3.8989e+00 5.3744e+00 1.4213e+01 3.8760e+01 4.2589e+01

SD 2.3730e−01 9.6633e−02 4.8776e−02 5.3071e−02 6.0789e−02 7.3758e−02 2.5985e−01 1.2488e−01
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