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Abstract In this paper, a finite-time controller is pro-
posed for the quadrotor aircraft to achieve hovering
control in a finite time. The design of controller is
mainly divided into two steps. Firstly, a saturated finite-
time position controller is designed such that the posi-
tion of quadrotor aircraft can reach any desired position
in a finite time. Secondly, a finite-time attitude track-
ing controller is designed, which can guarantee that the
attitude of quadrotor aircraft converges to the desired
attitude in a finite time. By homogenous system theory
and Lyapunov theory, the finite-time stability of the
closed-loop systems is given through rigorous mathe-
matical proofs. Finally, numerical simulations are given
to show that the proposed algorithm has a faster conver-
gence performance and a stronger disturbance rejection
performance by comparing to thePDcontrol algorithm.

Keywords Quadrotor aircraft · Finite-time control
algorithm · Hovering control

1 Introduction

Thequadrotor aircraft is a kindof small-scale unmanned
aerial vehicles, which can performs different tasks in a
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dangerous or unaccessible environment, e.g., surveil-
lance, investigation, film making, and search-and-
rescue missions. The quadrotor aircraft can be widely
used in various fields due to it has many special supe-
riorities, such as structure simple, low cost, small size,
hovering capability, vertical take-off and landing [1,2].
Over the past few years, with the rapid development of
microprocessor, microelectromechanical system, new
material, power battery, sensing technique, and com-
munication technology, the performance of quadrotor
aircraft has been greatly improved from many aspects
[3,4]. From the control viewpoint, many efforts have
been made to design and improve the control perfor-
mance for quadrotor aircraft system. The main objec-
tive of this paper is to employ the finite-time con-
trol method (a kind of nonlinear control methods) to
improve the aircraft’s control performance.

The control problem of quadrotor aircraft has been
investigated by many researchers and many different
nonlinear control tools have been employed. Usually,
the control problem of quadrotor aircraft can be divided
into two parts, one is the position control and the other
one is the attitude control. With the developments and
applications of nonlinear control methods [5–9], many
kinds of nonlinear controllers have been designed to
improve the control performance of quadrotor aircraft.
By using slidingmode control technique, the work [10]
proposed a sliding mode controller for the quadrotor
aircraft. Based on the adaptive control method and non-
linear feed-forward compensations control method, the
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work [11] designed a new trajectory tracking controller
for the quadrotor aircraft. To achieve trajectory tracking
for quadrotors in the presence of uncertainties, thework
[12] designed a robust decentralized and linear time-
invariant controller to improve the closed-loop systems
robustness. Usually, the attitude control for quadrotor
aircraft is more complicated than the position control.
To this end, many different attitude controllers have
been proposed only for the attitude loop of quadrotors
in the literature. In [13], the quaternion-based feedback
controllerwas designed to achieve attitude stabilization
and the experiment results were presented. In [14], the
attitude stabilization controller was designed based on
the quaternion feedback for the quadrotor aircraft. Con-
sidering the parameters uncertainties and the external
disturbance (e.g., gravity and other environmental fac-
tors), in [15], an adaptive control law was proposed to
address parameters uncertainties.

It is noted that the most of proposed control algo-
rithms for quadrotor aircraft only guarantee that the
closed-loop systems are asymptotically stable, that is
to say that the quadrotors’ position/attitude asymp-
totically converge to the desired signals. To further
improve the convergence rate for the closed-loop sys-
tems, this paper will employ a recent developed nonlin-
ear control method (called finite-time control method
[16]) to design control algorithms for quadrotors.
Besides of the convergent performance, the quadrotor
aircraft is easily influenced by various external distur-
bances (e.g., wind force) in the actual flight. So it is
important to have better disturbance rejection perfor-
mance for the aircraft control system. Actually, some
theoretical and experimental results [17–25] have been
shown that the finite-time control method has better
disturbance rejection properties.

Because of the above advantages about finite-time
control algorithm, this paperwill use it to design control
scheme for the quadrotor aircraft. Although the works
[26–28] employed the finite-time control technique to
design control algorithms for aircraft. However, differ-
ent from the above papers, the quadrotor model con-
sidered in this paper is more complex, especially for
the attitude control part, which is based on quaternion
model. Specifically, the design procedure of finite-time
controller in this paper is divided into three steps. At the
first step, for the position subsystem, a saturated finite-
time position controller is designed to ensure quadro-
tor aircraft can reach any desired position in a finite
time. Then, for the attitude control subsystem, based on

the model characteristic of the aircraft attitude system
described by quaternion, a new fast finite-time attitude
tracking control algorithm is designed. By skillfully
constructing Lyapunov function, and based on finite-
time stability theory, it can be proven that the aircraft
attitude will converges to the desired attitude in a finite
time. Finally, the controller for the motor’s speed is
given. The numerical simulation results are given to
demonstrate the efficiency of the proposed method.

The remainder of this paper is organized as follows:
Sect. 2 introduces the operating principle of quadrotor
aircraft and its mathematical model. Some useful defi-
nitions and lemmas are also given. In Sect. 3, the main
results about the design of finite-time controllers are
presented. Section 4 provides the numerical simulation
results. Finally, the conclusion is provided in the last
section.

2 Preliminaries and problem formulation

2.1 Control principle for quadrotor aircraft

The quadrotor aircraft usually consists of a rigid cross
frame equipped with four rotors. By regulating the
speed of four rotors, the quadrotor aircraft can com-
plete position motion in space [29].

Let n = {nx , ny, nz} be a right-hand inertial frame,
where nz denotes the vertical direction downwards into
the earth. Let b = {bx , by, bz} be a right-hand body
fixed frame for the airframe as shown in Fig. 1. The
positive direction of quadrotor aircraft is same with the
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Fig. 1 The structure diagram for quadrotor aircraft
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bx axis in the body coordinate frame, where the angles
rotated around bx , by, bz axis are, respectively, denoted
by the roll angle φ, pitch angle θ , and yaw angle ψ .
In addition, the rotation direction is based on the right-
hand rule. The fi = bω2

i and Qi = κω2
i presents the

lift and the reactive torque generated by rotor i in free
air, respectively, where κ and b both are positive real
coefficient denoted by blades, i ∈ {1, 2, 3, 4}.

Usually, the description of a rigid body requires six
degree-of-freedom information. For the quadrotor air-
craft, the coordinates are given by

(x, y, z, φ, θ, ψ)T ∈ R6, (1)

where p = (x, y, z)T ∈ R3 denotes the position of the
center of mass of the quadrotor aircraft with respect to
an inertial coordinate frame, and η = (φ, θ, ψ)T ∈ R3

denotes the three Euler angles for the description of
aircraft attitude with respect to the inertial coordinate
frame.

Although the quadrotor aircraft has six degree-of-
freedom, there are only four inputs, that is the speed of
four motors:

(ω1, ω2, ω3, ω4)
T ∈ R4. (2)

Therefore, the quadrotor aircraft is a typical under-
actuated system.

2.2 System model for quadrotor aircraft

The mathematical model for the quadrotor aircraft is
mainly composed of two parts. One part is position
dynamical equation describing the translational charac-
teristics of quadrotor aircraft, and the other part is atti-
tude dynamical equation describing the rotational char-
acteristic of quadrotor aircraft. The attitude dynami-
cal equation is relatively independent, and the posi-
tion dynamical equation is coupled with the attitude
information.According to the above characteristics, the
position subsystem is often defined as outer-loop, and
attitude subsystem is defined as inner-loop.

2.2.1 Position dynamical equation

As that in [12], the dynamical equation for the quadro-
tor aircraft’s position is given as follows:

ẍ = −T

m
(cosφ sin θ cosψ + sin φ sinψ),

ÿ = −T

m
(cosφ sin θ sinψ − sin φ cosψ),

z̈ = −T

m
cosφ cos θ + g, (3)

wherem is themass of the aircraft, g is the gravitational
acceleration, T is the total thrust generated by the four
rotors.

2.2.2 Attitude dynamical equation

In the literature, there are many ways to describe the
dynamical equation for the quadrotor aircraft’s attitude.
In order to avoid the singularity by using Euler angle,
the quaternion is used to describe the aircraft’s attitude
globally as that in [30,31]. The quaternion q ∈ R4 is a
four dimensional vector defined as:

q = [q0, q1, q2, q3]T = [q0, qT
v ]T, (4)

whereq0 is the scalar part,qv = [q1, q2, q3]T is the vec-
tor part. The quaternion satisfies the constraint equa-
tion ‖q‖ = qTq = 1. The transformation relationship
between the quaternion and the Euler angles is given
as follows:

q0 = cos(ψ/2) cos(φ/2) cos(θ/2)

+ sin(ψ/2) sin(φ/2) sin(θ/2),

q1 = sin(ψ/2) cos(φ/2) cos(θ/2)

− cos(ψ/2) sin(φ/2) sin(θ/2),

q2 = cos(ψ/2) sin(φ/2) cos(θ/2)

+ sin(ψ/2) cos(φ/2) sin(θ/2),

q3 = cos(ψ/2) cos(φ/2) sin(θ/2)

− sin(ψ/2) sin(φ/2) cos(θ/2), (5)

and

φ = arctan

(
2(q0q1 + q2q3)

1 − 2(q2
1 + q2

2 )

)
,

θ = arcsin (2(q0q2 − q1q3)) ,

ψ = arctan

(
2(q0q3 + q1q2)

1 − 2(q2
2 + q2

3 )

)
. (6)
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As that in [32], based on quaternion, the dynamical
equation for quadrotor aircraft’s attitude is described
as follows:

JΩ̇ = −Ω× JΩ + τ,

q̇ = 1

2
E(q)Ω, (7)

where J ∈ R3× 3 denotes a symmetric positive-definite
constant inertia matrix, Ω ∈ R3 denotes the angular
velocity of the aircraft in three directions express in
the body coordinate frame, τ ∈ R3 denotes the torque
generated by the motor rotation. The matrix E(q) is
defined as follows:

E(q) =
( −qT

v

q×
v + q0 I3

)
, (8)

where I3 denotes the 3×3 identity matrix. For any vec-
tor v = [v1, v2, v3]T ∈ R3, the symbol (·)× represents
a 3 × 3 skew-symmetric matrix, which is defined as
follows:

v× =
⎛
⎝ 0 −v3 v2

v3 0 −v1
−v2 v1 0

⎞
⎠ . (9)

2.2.3 Motor’s speed equation

From the previous Sects. 2.2.1 and 2.2.2, the control
inputs for quadrotor aircraft are the total thrust T ∈
R and the torques τ = (τ1, τ2, τ3) ∈ R3. However,
for the quadrotor aircraft, the direct control inputs are
four motors’ speed (ω1, ω2, ω3, ω4)

T. The transform
relationship between motor speed and motor torque is
given in the following form as that in [29]:

⎛
⎜⎜⎝

T
τ1
τ2
τ3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

b b b b
0 db 0 −db

db 0 −db 0
κ −κ κ −κ

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ω2
1

ω2
2

ω2
3

ω2
4

⎞
⎟⎟⎠ , (10)

where d is the distance from the rotors to the center of
the mass of the quadrotor aircraft, κ and b are motor
torque-speed coefficient and motor lift-speed coeffi-
cient, respectively, which both are positive real param-
eters.

2.3 Some assumptions

As that in [11,12,33,34], some assumptions are given
in this section.

Assumption 1 The pitch , roll, and yaw angles satisfy
that |φ| < π/2, |θ | < π/2,|ψ | < π/2.

Assumption 2 The exact dynamic models of quadro-
tor are known.

2.4 Some useful definitions and lemmas

Definition 1 Denote function

sigα(x) = sign(x)|x |α, (11)

where α ≥ 0, x ∈ R, sign(·) is a standard sign func-
tion. If x = [x1, x2, . . . , xn]T ∈ Rn is a vector,
then sigα(x) = [sigα(x1), sigα(x2), . . . , sigα(xn)]T.
Clearly, if α is a ratio of two positive odd integers,
then sigα(x) = xα .

Definition 2 Define a class of saturation functions

satα(x) =
{
sign(x), for |x | > 1,
sigα(x), for |x | ≤ 1.

(12)

where 0 ≤ α ≤ 1, x ∈ R. If x = [x1, x2, . . . , xn]T ∈
Rn is a vector, then

satα(x) = [satα(x1), satα(x2), . . . , satα(xn)]T.

Lemma 1 [16] The second-order system

ẍ = u, (13)

can be globally stabilized in a finite time under the
feedback control law

u = −k1sig
α1(x) − k2sig

α2(ẋ), (14)

with k1, k2 > 0, α1 ∈ (0, 1), α2 = 2α1/(1 + α1).

Lemma 2 [20] Consider the following nonlinear sys-
tem ẋ = f (x), f (0) = 0, x ∈ Rn, where f (·) :
Rn → Rn is a continuous function. Suppose that there
exists a positive-definite continuous function V (x) such
that V̇ (x)+c(V (x))α ≤ 0,where c > 0andα ∈ (0, 1).
Then V (x) approaches 0 in a finite time. In addition, the

finite convergence time T satisfies that T ≤ V (x(0))1−α

c(1−α)
.
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Lemma 3 [35] If 0 < p ≤ 1 and is a ratio of two odd
integers, then |x p − y p| ≤ 21−p|x − y|p.

Lemma 4 [35] Let c, d > 0. For any γ > 0, the fol-
lowing inequality holds for ∀x, y ∈ R : |x |c|y|d ≤
c/(c + d)γ |x |c+d + d/(c + d)γ −c/d |y|c+d .

Lemma 5 [36] For ∀xi ∈ R, i = 1, . . . , n, and a real
number p ∈ (0, 1], (|x1|+· · ·+|xn|)p ≤ |x1|p +· · ·+
|xn|p.

3 Controller design for quadrotor aircraft

In this section, the main objective is to design a finite-
time controller for the hovering control of the quadrotor
aircraft, which can control the movement of quadrotor
aircraft to any desired position in a finite time. From
the mathematical viewpoint that is, for a given desired
position (xd , yd , zd), the control objective is to design
a control law for motor speed (ω1, ω2, ω3, ω4), such
that the quadrotor aircraft’s position (x, y, z) can reach
the desired position (xd , yd , zd) in a finite time. Specifi-
cally, the design of controller is divided into three steps.

Step 1 For the position subsystem (3), based onfinite-
time control theory, a saturated finite-time
position controller is designed to ensure the
quadrotor aircraft can reach any fixed-point in
a finite time.

Step 2 For the attitude subsystem (7), based on the
finite-time control theory, an attitude con-
troller is designed for the attitude torque τ ,
which can guarantee that the desired attitude
can be tracked in a finite time.

Step 3 By using the motor’s speed equation (10), the
controller formotor’s speed (ω1, ω2, ω3, ω4)

T

is obtained.

Figure 2 shows the control block diagram for
quadrotor aircraft.

Remark 1 Note that in [8,37], based on the terminal
sliding mode control method, some finite-time con-
trol algorithms for quadrotor aircraft were also pro-
posed. Actually, in the literature, there are usually three
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Fig. 2 The control block diagram for quadrotor aircraft

kinds of design methods for finite-time controller [38],
i.e., the homogeneous theory-based method, adding a
power integrator-basedmethod, terminal slidingmode-
based method. Here, in this paper, in order to design
finite-time controllers for quadrotor, the design pro-
cedure is mainly divided into two steps, i.e., the first
step is about the position-loop control, and the second
step is about the attitude-loop control. For the position-
loop control system, its dynamics is relatively simple
(second-order system), so we employ the homogenous
theory-based method to design a simple second-order
finite-time controller. For the attitude-loop control sys-
tem, its dynamics is relatively complex, so we employ
the adding a power integrator-basedmethod to design a
finite-time attitude controller. Here, we do not employ
the method of terminal sliding mode control, the main
reason is that there are usually singularity and discon-
tinuous control in the terminal sliding mode controller.
Although the nonsingular terminal sliding mode con-
trol can be used to avoid singularity, it will lead to
certain complexity.

3.1 Design of a saturated finite-time position
controller

For the position subsystem (3) of the quadrotor aircraft,
define the following virtual variables

ẍ = − T

m
(cosφ sin θ cosψ + sin φ sinψ) := μx ,

ÿ = − T

m
(cosφ sin θ sinψ − sin φ cosψ) := μy,

z̈ = − T

m
cosφ cos θ + g := μz, (15)

where μx , μy, μz are the virtual control inputs in three
channels.

Assume that the desired position for the quadrotor
aircraft (xd , yd , zd)T is a constant.

Theorem 1 For the position motion model (15) for
quadrotor aircraft, if the position controller is designed
as follows:

μx = K px satα1(xd − x) + Kdx satα2(−ẋ),

μy = K pysatα1(yd − y) + Kdysatα2(−ẏ),

μz = K pzsatα1(zd − z) + Kdzsatα2(−ż), (16)
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then the quadrotor aircraft can reach desired position
in a finite time, i.e., (x, y, z) → (xd , yd , zd) in a finite
time, where 0 < α1 < 1, α2 = 2α1/(1 + α1), K px >

0, K py > 0, K pz > 0, Kdx > 0, Kdy > 0, Kdz > 0.

Proof Without loss of generality, we only provide the
proof for the position system along x-axis. Let ex =
xd − x . It follows from (15) and (16) that

ëx = −K px satα1(ex ) − Kdx satα2(ėx ). (17)

Theproof is divided into two steps, i.e., globally asymp-
totically stable and locally finite-time stable.

Step 1 Proof of global asymptotical stability
A candidate Lyapunov function for system (17) is

chosen as follows:

V = K px

∫ ex

0
satα1(ρ)dρ + 1

2
ė2x . (18)

Since
d

∫ ex
0 satα1 (ρ)dρ

dt = satα1(ex )ėx , then

V̇ |(17) = K px satα1(ex )ėx + ėx ëx (19)

Substitute (17) into (19) leads to

V̇ |(17) = − Kdx satα2(ėx )ėx , (20)

Due to

ėx satα2(ėx ) =
{ |ėx |, for |ėx | > 1;

|ėx |1+α2 , for |ėx | ≤ 1,
(21)

then one concludes that

V̇ ≤ 0. (22)

Define set Ψ = {(ex , ėx )|V̇ ≡ 0}. It follows from
(20) that V̇ ≡ 0 means ėx ≡ 0, and ëx ≡ 0. By (17)
one obtains that

−K px satα1(ex ) ≡ 0. (23)

Note that, K px > 0, then ex ≡ 0. Based on
LaSalle’s invariant principle [9], it can be concluded
that (ex , ėx ) → 0 as t → ∞. That is to say that the
system (15) is globally asymptotically stable under the
controller (16).

Step 2 Proof of local finite-time stability

Since system (15) is globally asymptotically stable,
then the systemstate (ex , ėx )will converge to the region
|ex | ≤ 1, |ėx | ≤ 1 in a finite time and stay there for ever.
After then, the system (17) can be rewritten as:

ëx = −K px sig
α1(ex ) − Kdx sig

α2(ėx ). (24)

Basing on Lemma 1, it can be concluded that system
(24) is finite-time stable, i.e., system (17) is locally
finite-time stable.

Therefore, it can be concluded from [39,40] that the
system (15) under the controller (16) is globally finite-
time stable since it is globally asymptotically stable and
locally finite-time stable. The proof is completed. 
�
Remark 2 Note that in the proposed virtual control
input (16), the saturation constraint is taken into
account. The main aim is to guarantee that g − μz is
always positive (by choosing K pz + Kdz < g) such
that there is no indetermination/discontinuity when we
calculate θd from (26) in the next section.

3.2 Design of a finite-time attitude controller

As that in [12], the desired attitude is generated by the
position dynamical equation (3), i.e.,

μx = −Td

m
(cosφd sin θd cosψd + sin φd sinψd),

μy = −Td

m
(cosφd sin θd sinψd − sin φd cosψd),

μz = −Td

m
cosφd cos θd + g, (25)

which results in

Td = m
√

μ2
x + μ2

y + (g − μz)2,

φd = arcsin
(

− m
μx sinψd − μy cosψd

Td

)
,

θd = arctan
(

− μx cosψd + μy sinψd

g − μz

)
. (26)

From (26), it can be found that the variable ψd is a
free variable. For the convenience of analysis during
the hovering control, the desired yaw angle is chosen
as ψd = 0.

Basedon the transformation equation (5), the desired
attitude quaternion for the quadrotor aircraft can be
obtained, which is denoted by
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qd = [qd0, qd1, qd2, qd3]T = [qd0, qT
dv]T ∈ R4. (27)

The desired attitude quaternion and desired angular
velocity Ωd ∈ R3 satisfies the following relation.

q̇d = 1

2
E(qd)Ωd . (28)

In order to achieve the attitude tracking, as that in
[30], the error between the desired attitude qd and the
attitude q is defined e = [e0, eTv ]T ∈ R4, which is
called the quaternion error:

e0 = qd0q0 + qT
dvqv,

ev = qd0qv − q×
dvqv − q0qdv. (29)

Based on quaternion error, the dynamical equation for
quadrotor aircraft’s attitude is given as follows:

JΩ̇e = −Ω× JΩ + J (Ω×
e CΩd − CΩ̇d) + τ,

ė = 1

2
E(e)Ωe, (30)

where Ωe = Ω − CΩd denotes angular velocity error,
C = (1−2eTv ev)I3 +2eveTv −2e0e×

v . The matrix E(e)
satisfies:

E(e) =
( −eTv

e×
v + e0 I3

)
. (31)

Based on the informations of relative quaternion
error e and angular velocity error Ωe, next we will
design a finite-time attitude controller to achieve finite-
time attitude tracking.

Theorem 2 For the error system (30), if the control
torque τ is designed as:

τ = − β2 J (Ω
1/r2
e + β

1/r2
1 ev)

r3

+ Ω× JΩ − J (Ω×
e CΩd − CΩ̇d), (32)

then the attitude error will converge to zero in a finite
time, i.e., (q0, q1, q2, q3) → (qd0, qd1, qd2, qd3) in a
finite time, where β1, β2 are proper position gains, and
r2 = 1 + r, r3 = 1 + 2r , r ∈ (− 1

2 , 0) is the ratio for a
positive even integer and a positive odd integer.

Proof For the convenience of writing, denote

f = Ωe,

τ̄ = J−1
[
τ − Ω× JΩ + J (Ω×

e CΩd − CΩ̇d)
]
. (33)

Step 1 Construct a candidate Lyapunov function as:

V1 = (e0 − 1)2 + eTv ev = 2 − 2e0, (34)

whose derivative along system (30) is

V̇1|(30) = eTv f = eTv f ∗ + eTv ( f − f ∗). (35)

By backstepping design, design a virtual control f ∗ ∈
R3 as:

f ∗ = −β1er2
v , (36)

where r2 = 1+r , r ∈ (− 1
2 , 0) is the ratio for a positive

even integer and a positive odd integer, and a constant
gain β1 > 0. Under this virtual control law, it follows
from (35) that

V̇1|(30) ≤ − β1(e
1+r2
1 + e1+r2

2 + e1+r2
3 ) + eTv ( f − f ∗).

(37)

Step 2 Take the error between the real state f ∗ and
the virtual f as a new state. Define

ξ = f 1/r2 − f ∗1/r2 ∈ R3. (38)

Choose the Lyapunov function

V2 = V1 +
3∑

j=1

∫ f j

f ∗
j

(s1/r2 − f j
∗1/r2)2−r2ds. (39)

With (37) in mind, the derivative of V2 along system
(30) is

V̇2|(30) ≤ − β1(e
1+r2
1 + e1+r2

2 + e1+r2
3 ) + eTv ( f − f ∗).

+
3∑

j=1

ξ
2−r2
j τ̄ j

+
3∑

j=1

d[− f j
∗1/r2 ]

dt

∫ f j

f ∗
j

(s1/r2 − f j
∗1/r2 )1−r2ds.

(40)
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First, it follows from Lemma 3 and 4 that

eTv ( f − f ∗) =
3∑

j=1

e j ( f j − f ∗
j )

≤
3∑

j=1

|e j | ·
∣∣∣( f 1/r2

j )r2 − ( f ∗1/r2
j )r2

∣∣∣
≤ 21−r2

3∑
j=1

|e j | · |ξ j |r2

≤
3∑

j=1

(1
2
|e j |1+r2 + c1|ξ j |1+r2

)
. (41)

for a positive constant c1.
Second, it follows (36) and (30) that

∣∣∣d[− f j
∗1/r2 ]

dt

∣∣∣ = β
1/r2
1 |ė j |

≤ β
1/r2
1

2

3∑
j=1

| f j |

= β
1/r2
1

2

3∑
j=1

∣∣∣ξ j + f j
∗1/r2

∣∣∣r2 . (42)

By Lemma 3, we further obtain

∣∣∣d[− f j
∗1/r2 ]

dt

∣∣∣ ≤ β
1/r2
1

2

3∑
j=1

(
|ξ j |r2 + | f j

∗|
)

= β
1/r2
1

2

3∑
j=1

(
|ξ j |r2 + β1|e j |r2

)
. (43)

Meanwhile, by Lemma 3, we obtain

∣∣∣ ∫ f j

f ∗
j

(s1/r2 − f j
∗1/r2)1−r2ds

∣∣∣ ≤ |ξ j |1−r2 | f j − f ∗
j |

≤ 21−r2 |ξ j |. (44)

As a matter of fact, it follows from (43) and (44), and
Lemma 4 that

3∑
j=1

d[− f j
∗1/r2 ]

dt

∫ f j

f ∗
j

(s1/r2 − f j
∗1/r2)1−r2ds

≤
3∑

j=1

(1
2
|e j |1+r2 + c2|ξ j |1+r2

)
. (45)

for a positive constant c2.
Finally, it follows from (40), (41), and (45) that

V̇2|(30) ≤ − (β1 − 1)
3∑

j=1

e1+r2
j +

3∑
j=1

(c1 + c2)|ξ j |1+r2

+
3∑

j=1

ξ
2−r2
j τ̄ j . (46)

Thus, under the proposed controller (32), we obtain

τ̄ ∗
j = −β2ξ

r3
j with a constant β2 ≥ 1 + c1 + c2,

(47)

where r3 = 1 + 2r . Under this controller, it can be
concluded from (46) that

V̇2|(30) ≤ −
3∑

j=1

e1+r2
j −

3∑
j=1

ξ
1+r2
j . (48)

Hence, the states (ev, ξ) → 0 asymptotically as
t → ∞. Note that ev → 0 means that e0 → ±1
and the equilibrium (−1, 0, 0, 0)T is unstable whose
proof/explanation can be found in [41,42]. So there is
a finite-time instant t∗ such that e0(t) ≥ 0 for all t ≥ t∗.
By the definition of V1, we conclude that

V1 = (1 − e0)
2 + eTv ev

≤ (1 − e0)(1 + e0) + eTv ev

= 2eTv ev = 2
3∑

j=1

e2j . (49)

In addition, it follows from Lemma 3 that

3∑
j=1

∫ f j

f ∗
j

(s1/r2 − f j
∗1/r2 )2−r2ds ≤

3∑
j=1

|ξ j |2−r2 | f j − f ∗
j |

≤
3∑

j=1

21−r2ξ2j . (50)
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which means that

V2 ≤ ρ
( 3∑

j=1

e2j +
3∑

j=1

ξ2j

)
. (51)

whereρ = max{2, 21−r2}. Noticing that 1+r2 = 2+τ ,
and using Lemma 5, it follows from (48) and (51) that

V̇2 + ρ− 2+τ
2 V

2+τ
2

2 ≤ 0. (52)

By Lemma 2, it can be concluded from (52) that V2 will
converge to zero in afinite time.Theproof is completed.

As for the controller of the motor’s speed, it can
be easily obtained based on the Eq. (10) with T =
Td . Note that in certain cases, some elements ωi , i =
1, 2, 3, 4 of resulting from (10) might be negative. As
pointed out that in [29], this case will lead to a reversal
of the rotors direction.

Remark 3 For the proposed finite-time position con-
troller (16) and the finite-time attitude controller (32), if
the fractional powers are chosen as α1 = α2 = 1, r2 =
r3 = 1, the controllers are reduced to the classical
PD controllers. Compared with the PD controller, the
finite-time controller in this paper will show faster con-
vergence rate and stronger disturbance rejection perfor-
mance, which is demonstrated in the simulation part.

4 Numerical examples and simulations

Consider the hovering control problem for the quadro-
tor aircraft described by system (3) and (7). The refer-
ence position is given as follow:

(xd , yd , zd) =
{

(2, 2,−3), 0 ≤ t ≤ 20 s,
(3, 1, 1), 20 s < t.

(53)

For the model of quadrotor aircraft, the system
parameters and the initial values are, respectively, set
as that in [29]: m = 0.468kg; g = 9.81m/s2;
(x, y, z)T = [0, 0, 0]T; (q0, q1, q2, q3)T = [0.8832,
0.3,−0.2,−0.3]T; b = 2.9× 10−5 N/(rad2 s−2); κ =
1.1 × 10−6 Nm/(rad2 s−2); d = 0.225m.

The inertia matrix of aircraft is given as:

J =
⎡
⎣0.0049 0 0

0 0.0049 0
0 0 0.0088

⎤
⎦kgm2.

Table 1 The comparison of the convergence performance

Convergence (s)

x-axis y-axis z-axis

FC controller 3.524 3.931 4.519

PD controller 4.784 5.477 5.810

Improve (%) 26.34 28.23 22.22
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Fig. 3 Response curves of the quadrotor aircraft’s position under
two kinds of controllers in the presence of disturbance

For the finite-time controller (FC) proposed in this
paper, the finite-time position controller (16) is set as:
α1 = 3/4, α2 = 6/7, K px = 4.2, K py = K pz =
4.5, Kdx = Kdy = Kdz = 3.8, and the finite-time
attitude controller (32) is set as:β1 = 6, β2 = 5, r =
−2/7.

To have a comparison, two kinds of control algo-
rithms are employed, i.e., one is the proposed finite-
time control algorithm, the other one is the PD control
algorithm, which is described in Remark R3.

4.1 The case in the absence of disturbance

The convergence time for the quadrotor aircraft under
the finite-time controller and PD controller in the
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Fig. 4 Response curves of the quadrotor aircraft’s attitude under
two kinds of controllers in the presence of disturbance
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Fig. 5 Response curves of the quadrotor aircraft’s control torque
under two kinds of controllers in the presence of disturbance

absence of disturbance are shown in Table 1. It is clear
that the finite-time controller (16) can provide a faster
convergence performance.

4.2 The case in the presence of disturbance

When there is an external disturbance, such aswind dis-
turbance, the disturbance signal is directly act on the
aircraft’s attitude control torque channel, i.e., JΩ̇ =
−Ω× JΩ + τ + d(t). Assume that there is the follow-
ing disturbances: d(t) = [d1(t), d2(t), d3(t)]T ∈ R3,
d1(t) = 0.8sin(1.5t), d2(t) = 0.5sin(2t), d3(t) =
0.2sin(2t).

The response curves of the quadrotor aircraft in the
presence of disturbance are shown in Figs. 3, 4 and 5.
The results show that the finite-time controller (32) pro-
posed in this paper offers a better convergence rate and
a stronger disturbance rejection performance than the
PD control.

5 Conclusion

The hovering control problem for quadrotor aircraft
based on finite-time algorithm has been investigated in
this paper. By finite-time control theory, the controllers
have been designed for position subsystem and attitude
subsystem, respectively. Compared to the classical PD
control, it has been shown that the finite-time control
can improve the closed-loop system’s dynamical per-
formances.
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