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Abstract Although chaotic systems with hidden att-
ractors have been discovered recently, there is a few
investigations about relationships among them. In this
work, we introduce a unique simple chaotic flowwhich
can belong to three famous categories of hidden attrac-
tors plus systems with self-excited attractors. This new
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system may help us in better understanding of chaotic
attractors, especially hidden chaotic attractors.
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1 Introduction

Designing chaotic systems with desired properties has
progressed recently by the help of fast computers. Some
examples are designing chaotic systems with different
kinds of symmetry [1–3], with multi-scroll attractors
[4–13], and with simplest equations [14–18]. Those
designs are about the formation of strange attractor,
while some other chaotic systems have been designed
based on the characteristics of their equilibria.

Recently, attractors in dynamical systems have been
categorized as self-excited attractors and hidden attrac-
tors [19–22]. A self-excited attractor has a basin of
attraction that is associated with an unstable equilib-
rium, while a hidden attractor has a basin of attraction
that does not intersect with small neighborhoods of any
equilibrium points. Almost all famous chaotic attrac-
tors are self-excited. Hidden attractors are important
in engineering applications because they allow unex-
pected and potentially disastrous responses to pertur-
bations in a structure like a bridge or an airplane wing
[23–27]. The chaotic attractors in dynamical systems
with no equilibriumpoints [11,28–37],with only stable
equilibria [38–41], with curves of equilibria [42–49],
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Fig. 1 Strange attractor of the system: a projection in x–y plane, b projection in x–z plane, c projection in y–z plane, and d complete
3D attractor

or with surfaces of equilibria [50] are hidden attrac-
tors. That is the reason such systems are rarely found,
and only recently such examples have been reported in
the literature [51–61]. There is a similar definition for
hidden attractors in chaotic maps [62,63].

In this paper, we introduce a new chaotic system
with a very interesting and unique property: accord-
ing to the value of parameters, this new system can
have self-excited attractor and three different families
of hidden attractors; it can have no equilibrium, a line
of equilibria, or only one stable equilibrium. No other
existing system has such property. In the next section,
the theoretical model of the system is introduced and
its dynamical properties are presented.

In the recent years, number of chaos-based engi-
neering applications has increased [64–68], especially

in control [69–73], communication [74], encryption
[65,66], and random number generation [75–79] fields.
The chaotic systems have become very preferable in
encryption and data hiding studies due to their features
such as complexity and sensitivity. The chaos-based
random numbers too are used in many different fields
such as encryption [65,66], modeling [80], artificial
intelligence [81], and genetic algorithm [82].

To use this new chaotic system in engineering appli-
cations, in Sect. 3, a circuital implementation for the
theoretical model is reported. Then in Sect. 4, a ran-
dom number generator (RNG) is implemented and
NIST-800-22 statistical tests which are the top interna-
tional standard are performed on the generated random
numbers. In Sect. 5, a text encryption application is
realized with the random number that passes the tests
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Fig. 2 Bifurcation diagram of the system for 0 ≤ a ≤ 0.002 and b = 0

successfully. Finally, conclusion remarks are given in
Sect. 6.

2 Chameleon: the most hidden chaotic flow

Inspired from the chaotic system LE1 in [42,83] which
is shown in Eq. 1, we propose a new unique chaotic sys-
tem which we call Chameleon (Eq. 2). We will see that
according to the value of parameters, this new system
can have self-excited attractor and three different fam-
ilies of hidden attractors; it can have no equilibrium, a
line of equilibria, or only one stable equilibrium.

ẋ = y

ẏ = −x + yz

ż = −x − 15xy + xz (1)

ẋ = y

ẏ = x + yz + a

ż = −x − 15xy + xz + b (2)

2.1 First scenario: line of equilibrium

After proposing a chaotic system with any number of
equilibria byWang andChen [35] andMolaie et al. [84]

introduced simple chaotic systems with a line of equi-
libria. The strange attractor of these systems is hidden
from a computational point of view, because there are
uncountably many unstable points on the equilibrium
line of which only a tiny portion intersects the basin of
the chaotic attractor.

If a=0 and b=0, obviously Chameleon will be
the original LE1 in [42,83]. The equilibrium will be
(0, 0, z) which is a line. Different projections of the
strange attractor for this case are shown in Fig. 1.

2.2 Second scenario: stable equilibrium

Any chaotic attractor in a systemwith only stable equi-
libria is certainly hidden, since initial conditions near
any stable equilibrium converge to it, instead of help-
ing to find the strange attractor. The first example of
such chaotic flows (with only one stable equilibrium)
was designed by Wang and Chen [85]. Molaie et al.
[38] identified 23 other simple systems with that prop-
erty. Some other new chaotic and hyperchaotic systems
with stable equilibria have been reported in [86–94].
The proposed Chameleon system can adapt itself to
this scenario and show this type of hidden attractors.
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Fig. 3 Strange attractor of the Chameleon for a = 0.002 and b = 0 system a projection in x–y plane, b projection in x–z plane, c
projection in y–z plane, and d complete 3D attractor

If a> 0 and b=0, the only equilibrium inChameleon
will be (a, 0,−1) . Using the Jacobian of Eq. 2, the
eigenvalues for this equilibrium will be:

J =
∣
∣
∣
∣
∣
∣

0 +1 0
−1 z y
(−1 − 15y − z) −15x −x

∣
∣
∣
∣
∣
∣

(x, y, z) = (a, 0,−1)−−−−−−−−−−−−−−→

J =
∣
∣
∣
∣
∣
∣

0 +1 0
−1 −1 0
(−1 − a) −15a −a

∣
∣
∣
∣
∣
∣

|λI − J | = 0−−−−−−−−→
∣
∣
∣
∣
∣
∣

λ −1 0
+1 λ + 1 0
(1 − a) +15a λ + a

∣
∣
∣
∣
∣
∣

→ (λ + a)
(

λ2 + λ + 1
)

= 0 → λ1

= −a, λ2,3 = −1

2
±

√
3

2
i (3)

Since a > 0, the real parts of all of the eigenvalues are
negative. So this equilibrium is a stable focus.

As can be seen in the bifurcation diagram in Fig. 2,
for 0 ≤ a ≤ 0.002, Chameleon shows chaotic behav-
ior. Different projections of the strange attractor for
a = 0.002 and b = 0 are shown in Fig. 3.

2.3 Third scenario: self-excited attractor

A self-excited attractor has a basin of attraction that is
associated with an unstable equilibrium. The classical
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Fig. 4 Bifurcation diagram of the system for −0.02 ≤ a ≤ 0, and b = 0

attractors of Lorenz [95], Rössler [96], Chen and Ueta
[97], Sprott (cases B to S) [18], and otherwidely known
attractors are those excited from unstable equilibria.

If a < 0 and b = 0, the only equilibrium in
Chameleon will be (a, 0,−1). With a similar calcu-
lations to Eq. 3, the eigenvalues for this equilibrium
will be:

λ1 = −a, λ2,3 = −1

2
±

√
3

2
i (4)

Since a < 0, the real part of one of the eigenvalues is
positive. So this equilibrium is an unstable focus.

As can be seen in the bifurcation diagram in Fig. 4,
for−0.02 ≤ a ≤ 0, Chameleon shows a routine period
doubling route to chaos. Different projections of the
strange attractor for a = −0.004 and b = 0 are shown
in Fig. 5.

2.4 Fourth scenario: no equilibrium

Obviously, any chaotic attractor in a system with no
equilibria is hidden, according to the definition of hid-
den and self-excited attractors. The oldest example of
chaotic flowswith no equilibria is the Sprott caseA sys-
tem [18]. Sprott A is a special case of the Nose–Hoover

oscillator [98] and describes many natural phenomena
[99]. This suggests that such systems may have practi-
cal as well as theoretical importance. The first known
dissipative example of this category is Wei system [34]
which is a modification of the Sprott case D system
in [18]. Inspired from those systems, Jafari and Sprott
found seventeen simple chaotic systems with no equi-
librium. Some other new chaotic and hyperchaotic sys-
tems with no equilibrium have been reported in [100–
103]. Speaking about systems with no equilibrium, our
Chameleon camouflages itself between them by setting
the parameter “a” zero.

If a = 0 and b �= 0, there will be no equilibrium in
Chameleon. As can be seen in the bifurcation diagram
in Fig. 6, for −0.02 ≤ b ≤ 0, Chameleon shows a
routine period doubling route to chaos. For positive
values of b, there are still areas of chaotic behavior
separated by a gap of periodic behavior. Two examples
of strange attractors for b = −0.01 and b = +0.01 are
shown in Fig. 7.

3 Circuit design

In this section, we introduce a circuit to illustrate the
feasibility of Chameleon (Eq. 2). Figure 8 shows the
schematic of the designed circuit including operational
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Fig. 5 Strange attractor of the Chameleon for a = −0.004 and b = 0: a projection in x–y plane, b projection in x–z plane, c projection
in y–z plane, and d complete 3D attractor

amplifiers, analogmultipliers, resistors, and capacitors.
In Fig. 8, X,Y, Z refer to the voltages at the outputs of
the operational amplifiers (U1 −U3).

To determine the dynamical equations of the circuit,
we apply Kirchhoff’s circuit laws into the circuit in
Fig. 8. So that we have the following circuital equa-
tions:

Ẋ = 1

R1C1
Y

Ẏ = 1

R2C2
X + 1

R3C210V
Y Z − 1

R4C2Va

Ż = − 1

R5C3
X − 1

R6C310V

Rk1 + Rk2

Rk1
XY

− 1

R7C310V
XZ − 1

R8C3
Vb (5)

The values of components in Fig. 8 are R1 = R2 =
R4 = R5 = R8 = R = 30k�, R3 = R7 = 15k�,
R6 = 5k�, Rk1 = 10k�, Rk2 = 40k�, and C1 =
C2 = C3 = C = 3.3nF. The values of voltages Va, Vb
correspond to the parameters a, b and can be varied
according to three proposed scenarios. For example,
Fig. 9 illustrates phase portraits which are obtained
from the designed circuit for the second scenario. Cir-
cuital results reveal that the circuit generated hidden
chaotic attractors. As it can be seen from the OrCAD-
PSpice outputs in Fig. 9 and oscilloscope outputs in
Fig. 10, the results are similar. Figure 11 shows a pic-
ture of the real designed circuit on the board.
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Fig. 6 Bifurcation diagram of the system for −0.02 ≤ b ≤ 0, and a = 0

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-2

-1.5

-1

-0.5

0

0.5

1a b

X
Y

Z

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-3

-2

-1

0

1

X
Y

Z

Fig. 7 Strange attractor of the Chameleon for a = 0 and a b = −0.01 and b b = +0.01

4 RNG design with chameleon chaotic system

Since the chaotic systems are complex and very sen-
sitive, they are used in random number generation as
a source of entropy. In this section, a random num-
ber generator (RNG) application was realized for the
text encryption application. In the RNG design, the
chameleon chaotic system which is described in the
article was used. The RNG design steps are given in
Fig. 12.

Firstly, the chaotic system is given in the block dia-
gram. In the second step, since the chaotic system is
continuous time, the x, y, and z outputs of the chaotic
system were discretized with RK4 differential equa-
tion solving method which is more sensitive than Euler
and Henon methods, and float-based numbers were
obtained. Then, the obtained float numbers were con-
verted into 32 bits binary format. In the third step,
RNG design was realized for binary number obtained
from x, y and z output of the chaotic system. In the
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Fig. 8 Schematic of the circuit which realizes Chameleon (Eq. 2). There are four operational amplifiers (U1 − U4), three AD633
multipliers (U5 −U7), twelve resistors and three capacitors

Fig. 9 PSpice chaotic attractors in the circuit for Va = −10mVDC, Vb = 0mVDC, a X–Y plane, b X–Z plane, and c Y–Z plane

design, the last 16 bits of the outputs (x, y and z) were
used. A 1Mbit binary sequencewas generated since the
NIST-800-22 randomness tests require a 1Mbit binary
sequence.

To prove the success of the random number genera-
tion results, the NIST-800-22 statistical tests which are
top international standard were performed. The NIST-
800-22 tests consist of 16 different tests such as mono-
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Fig. 10 The state portraits on the oscilloscope

Fig. 11 Experimental realization of the proposed system

bit, runs, and binary matrix rank. In fourth step, the
NIST-800-22 tests were performed on the generated
random numbers. The resultant P values of the test
should be >0.001 in order to be counted as successful.
While the randomnumbers generated from x and y out-
puts successfully passed all the tests, the random num-
bers generated from z output did not. The NIST-800-
22 test results of x and y outputs are given in Table 1.
After the fourth step, the random numbers which pass
all the NIST-800-22 tests can be used in applications
that require high security like encryption and data hid-
ing.

5 A text encryption application with chameleon
system

In this section, a text encryption application with the
random numbers generated from chameleon chaotic
system which passed all the NIST-800-22 tests was
realized. The block diagram of the encryption oper-

Fig. 12 The block diagram of RNG Design

ation is given in Fig. 13. In the encryption application,
a text that consists of 418 characters was used and is
given in Fig. 14. The spaces in the text are also consid-
ered as a character.
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Table 1 RNG NIST-800-22 tests for x and y outputs

Statistical tests P value (X_16bit) P value (Y_16bit) Result

Frequency (monobit) test 0.9776 0.9314 Successful

Block frequency test 0.1388 0.3360 Successful

Cumulative sums test 0.8852 0.7802 Successful

Runs test 0.8149 0.2209 Successful

Longest-run test 0.9505 0.6875 Successful

Binary matrix rank test 0.9965 0.9167 Successful

Discrete Fourier transform test 0.7411 0.6529 Successful

Non-overlapping templates test 0.9216 0.0281 Successful

Overlapping templates test 0.1091 0.3715 Successful

Maurer’s universal statistical test 0.6169 0.3561 Successful

Approximate entropy test 0.0381 0.2786 Successful

Random excursions test (x=−4) 0.9506 0.7133 Successful

Random excursions variant test (x=−9) 0.1956 0.7253 Successful

Serial test 1 0.2484 0.6111 Successful

Serial test 2 0.2707 0.8547 Successful

Linear complexity test 0.0050 0.3026 Successful

As it can be seen in the block diagram in Fig. 13,
the text data in char format are converted into binary
format before the encryption. The data (418∗8 = 3344)
obtained after the conversion process were encrypted
with the random numbers generated from chameleon
chaotic system.

For the encryption, ‘XOR’ operator was used. After
the encryption process (‘XOR’), the encrypted binary
data was converted back to char format. The encrypted
text is given in Fig. 15. Since the encryption process is
done for each bit, the size of the encrypted data is 3344
too.

As it can be seen in the block diagram in Fig. 13,
the randomnumbers generated fromchameleon chaotic
system are needed.With these randomnumbers and use
of ‘XOR’ operator, the original data can be obtained.
The decrypted text data after binary to char conversion
are given in Fig. 16. As it can be seen both comparing
Figs. 14 and 16, there is not any loss or deformation.

In this method, the third parties who want to crack
the encrypted datamust knowexactly all the parameters
and initial values of the chaotic system that is used in
the encryption. Since the chaotic systems are very sen-
sitive, it is not possible to obtain the original data in any
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Fig. 13 Encryption and
decryption block diagram
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Fig. 14 Original text data

Fig. 15 Encrypted text data

Fig. 16 Decrypted text data

case of error. Moreover, the encryption and decryption
operations will be realized in very short times due to
only ‘XOR’ operator is used. The both encryption and
decryption time is 129µs. Thus, the total encryption
and decryption time is 258µs.

6 Conclusion

By modifying a known chaotic system with a line of
equilibrium, we obtained a simple chaotic system with
a very interesting and unique property: according to
the value of parameters, this new system can have self-
excited attractor and three different families of hidden
attractors; it can have no equilibrium, a line of equilib-
ria, or only one stable equilibrium. No other existing
system has such property. Moreover, such new system

is able to display chaos, and implemented by electronic
components, we, therefore, can use it in chaos-based
engineering applications .
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