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Abstract This paper obtains exact travelling wave
solutions of five various forms of the generalized
nonlinear Klein—Gordon equations using Jacobi ellip-
tic functions. Topological and non-topological soliton
solutions are obtained as well as Jacobi elliptic func-
tion solutions. It is acquired constraint conditions for
the existence of solitons.

Keywords Klein—Gordon equation - Jacobi elliptic
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1 Introduction

The theory of solitons plays a vital role in various areas
of Physics and Engineering. It has very wide appli-
cations in nonlinear optics, fluid dynamics, nuclear
physics, biophysics, plasma physics and many more
[1-25]. A soliton is usually associated with solution
of a nonlinear evolution equation which represents a
wave of permanent form. Because of that the study
of nonlinear evolution equations has become a very
important area in the fields of physics, mathematics and
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engineering. There are many newly developed tech-
niques to carry out integration of these equations. These
methods include exponential function method, G’/G
method, sine-cosine method, tanh-coth method, Ado-
mian decomposition method, Wadati trace method and
many more.

The Klein—Gordon equation (KGE) is a very impor-
tant equation in the study of nonlinear evolution equa-
tions which has wide applications in the field of Quan-
tum Physics [1-14]. This paper focuses five various
generalized forms of this equation. It is obtained topo-
logical and non-topological soliton solutions as well
as Jacobi elliptic function solutions of the generalized
KGEs in this study.

2 Governing equation

The gKGE that will be considered in this study is given
by [1]

("), =¥ (¢"),, + F@) =0 (1)
where k is a real number, m is a positive integer and
m > 1. In the case of m = 1, the gKGE reduces
the regular KGE [10,12]. In (1), g (x, #) represents the
quantized field describing the particle, and F(g) is a
continuous nonlinear function and it can be written as
Fg)=-2Y @)

dq

where U (q) is a potential function. The function F'(q)
will be addressed as five various forms in this paper as
follows:
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F(q) = aq™ — bg™" 3)
F(q) = ag™ — bg™" @)
F(q) = aq™ — bq" %)
F(q) = aq™ — bq" + cq™ ™" (6)
F(q) =aq™ —bq"™" +cq"™" (7)

Here, a, b and c are real-valued constants for above-
mentioned five forms.

3 Form-I

In this case considering Egs. (1) and (3), the generalized
form of the quadratic nonlinear KGE is given by

(a"), — k? (qm)” +aq™ — bg*" = 0. (8)
We first introduce the following hypothesis

q (x,1) = Asn? (1, 0), )
where

T=B(@x—vt). (10)

Here, ¢ is the modulus of Jacobi elliptic function and
it is defined as 0 < £ < 1. A represents the ampli-
tude, B represents the inverse width of the soliton, v is
the soliton velocity and the unknown index p will be
determined. It is obtained from the Eq. (9)

(¢™),, = A™B* (mp — 1) mpv>sn™ 72 (z, £)
_AmB2mpv2 (mp +E _£2 +mpE2)
x sn™P (1, 4)
+ A" B*mpv*t (1 + mp€) sn™"*? (1, 0) ,

(11)
(qm)xx = AmBz (mp — l)mpsnmp—Z (7, 0)

— A" B%mp (mp +0—0+ mpzz)
x sn™P (1, 4)
+A" B> mpt (1 + mpt) sn™*2 (t , £) (12)
Substituting (11) and (12) into (8) yields
A"™B% (mp — 1)mp (v2 — k2) sn™P 2 (1, 0)
— A" Bmp (mp Fo— 02t mpez)
X (v2 — k2> sn™P (, £)
+ A" B2mpv2e (1 + mpt) <v2 - kz) sn™P+2 (7, )
+aA™sn™ (t,0) — bA?sn®"P (t,£) = 0. (13)
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Now, from (13) matching the exponents mp + 2 and
2mp, one needs to have

mp + 2 = 2mp, (14)

which leads to

p=". (15)
m

Equating coefficients of them and setting coefficients

of sn™P¥Ji (z,0), for j = —2,0, to zero in (13), as
these are linearly independent functions, yields
1
£(14+2¢ "
A= at (1+20) (16)
b(2+¢€+¢%)
and
a
B = 17
\/2(2+£+£2)(v2—k2) a7

From (17), it is important to note that
a <v2 - k2> >0

and if m is even, ab > 0 in (16). Thus, Jacobi elliptic
function solution of (8) is given by

[ ata+20
g0 = [b(2+e+z2)s"

{\/2 (2+€+€Z)(v2 ey e”

(18)

If the modulus £ — 1 in Eq. (18), we get following
topological soliton solution

(x,1) = 3at h? a — vt "
q(x, = Ean m(x U)

19)

Now, to get other solutions of (8), we use the assump-
tion as

q (x,1) = Acn? (1, 0), (20)
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Thus, one obtains

(¢™), = —A"B*(mp — lymp
X (Zz —1) vZen™ 2 (t,£) — A" BZmpv?
x(mp+€(—1)— 2mp£2) cn™ (1, 0)
—A" B2 mpv?t (1 + mpl) cn™+? (1, 0),
(2D
(¢™),, = —A"B*(mp — 1) (> = 1) en™" 2 (7, 0)
—A"Bmp (mp +€(¢ — 1) — 2mpt?)
xen™P (T, 0)

—A"Bmpt (1 + mp) cn™? (1, £). (22)
So, Eq. (8) reduces
—A"B2 (mp — 1)ymp (zz - 1)
X <v2 - k2> en™P 2 (¢, 0) — A" B?
xXmp (mp +L—-1) — 2mp€2) <v2 — k2>
xen™P (1, 4) — A" B>mpv*t
x (1 +mp¥t)
x <v2 _ k2> en™P2 (7, 0) + a A" en™P (z, €)

— bAP"en®™ (7, 0) = 0. (23)

Matching the exponents mp + 2 and 2mp gives the
same value of which is in (15). Equating coefficients of

them and setting coefficients of cn™P*/ (1, £) to zero
for j = —2, 0, one gets

B at(1+20) |
A= [b(—2+z+3z2)} @4
and
B = a (25)
o 2(2-€-362) (v2 - k)

It is important to note that
a(2—£—3£2) (vz—k2> >0
in (25) and also

ab(—2+£+3£2> =0

if m is even in (24). So, another Jacobi elliptic function
solution of (8) is given by

| et
RN 7Y 0 Sy V)

2 a .
xcn {\/2(2—2—362)(v2—k2) (x—vt),(”
(26)

From (26), if the modulus £ — 1, we get following
1-soliton solution of (8).

1
3a 1 a "
q(x,t) = [% sec h? {E (kz——vz) (x — vt)}:|
(27)

where a (v2 — k%) > 0 and if m is even ab > 0.

Remark 1 1-soliton solution (27) is identical to solu-
tion in [1].

4 Form-II

Taking into consideration Eqgs. (1) and (4) together
gives

(qm)tt _ kZ (qm)xx +aqm _ bq?ym —=0.

This equation is the generalized form of the phi-four
model. In order to get solutions of this equation, we
use the same starting assumption as given by (9).
Substituting (11) and (12) into (28) yields

(28)

A"™B% (mp — 1) mp (vz — k2) sn™P 2 (1, )
—A" B> mp
X (mp +e—0+ mpﬁz) (v2 — k2> sn™P (T, 0)
+A" B> mpv*e (1 + mpt)
x (1)2 — k2> sn"P¥2 (2, 6) + aA"sn™P (1, €)
—bAYsn3P (1, 0) = 0. (29)

For the exponent of sn in the third and last terms to
match up, one needs to have

mp + 2 = 3mp, (30)
which yields
1
p=—. 31)
m
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Equating coefficients of this third and last terms and

setting coefficients of sn™MPtJ (r,0),for j = —2,0,t0
zero in (29) yields
1
A= [%} o (32)
b
and
B = \/ S — (33)
(14 0) (v2 —k?)

Equations (32) and (33) naturally introduce the con-
straints ab > 0 and a (v> —k?) > 0, respectively.
Thus, Jacobi elliptic function solution of (28) is given

by
1
2 + J—
{\/(l +0) (v2 — k2) = o), Z”

q(x,1)
(34)

al
= —sn
b

If the modulus ¢ — 1 in Eq. (34), we get following
topological soliton solution

a a g
qx, 1) = I:\/;tanh { o) (x — vt)” (35)

Now, to get other solutions of (28), we use the
assumption as given by (20). Insertingthisassumption
into (28), we obtain

—A"B% (mp — 1) mp (Zz — 1) <v2 — kz)
xcn™ 72 (T, £)
—A™B%mp (mp Yo —1)— 2mp€2) (1)2 — k2>
xcn™P (t,0)
— A" B2 mpv* (1 4 mpt) <v2 - k2) P2 (1, 0)
+aA™cn™ (z,0) — bAYcn®P (1,0) = 0.  (36)

Equating the exponents mp +2 and 3mp gives the same
value of which is in (31). The functions cn™?*/ (1, £),
j = —2,0, in (36) are linearly independent. So, their
respective coefficients must vanish. Thus, one gets

1
B ag(l_’_g) 2m
_[b(—1+z+e2)} 7)

and

B:\/(l—e—eg) (v2 —k2) 58
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Equations (37) and (38) gives the constraints
ab(—2+€+3£2> >0
and

a(1-t-) (=) >0

respectively. So, another Jacobi elliptic function solu-
tion of (28) is given by

~ al(1+0
.1 = [ b(—1+e+e2)"

x {\/(1—5—13;; (Uz_kz)(x—vt),Z”

(39)

From (39), if the modulus £ — 1, we get following
1-soliton solution of (28).

1
2a a "
q(x,t): ?sech{ m(x—vt)} (40)

with the conditions a (v2 — kz) > 0 and ab > 0.

Remark 2 1-soliton solution (40) is identical to solu-
tion in [1].

5 Form-III

In this case, considering Egs. (1) and (5) gives

(4" =K (") +ag™ = bg" =0. 1)
This is known as generalized form of the nonlinear
KGE. The special case m = 1 and n = 3 is called the
#°® model that appears in solid state physics, condensed
matter physics and quantum field theory [11]. We use
the same starting assumption as given by (9) to find the

solutions of this equation. Substituting (11) and (12)
into (41) yields

A"B% (mp — V)ymp (v2 - k2) sn™P72 (1, 0)
— A" B%’mp (mp +0— 0+ mpéz) (vz — k2)
x sn™P (1, £)
+ A" B mpv*e (1 + mpl) <v2 - kz) sn"™P+2 (7, ¢)
+aA"sn™P (t,£) — bA"sn"P (7, £) = 0. 42)

Now, from (42), for the exponents of s# in the third and
last terms to match up, we take

mp + 2 = np, 43)
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which leads to
2

n—m

p= (44)

Equating coefficients of them and setting coefficients
of sn™P¥J (z,£) (j = —2,0) to zero in (42) yields

B al (n —m + 2¢m) e
A= |:b[2m+(n—m) (6—22)+2£m]] )
and
B— a(n— m)2
~V2m[2m + (n —m) (€ — €2) + 2¢m] (v - k2)
(46)

From (46), it is important to note that

a [Zm + (n—m) (Z — 52) + 2£m] <v2 — k2> > 0,

and also from (45)

ab (n — m + 26m) [Zm +(n—m) (z - 52) + 2zm]
> 0,

if n —m is even. Thus, Jacobi elliptic function solution
of (41) is given by

1) = al (n —m + 24m)
T = b 2m + (= m) (€= &) + 2tm]

Now, to get other solutions of (41), we use the
assumption as given by (20). Puttingthenecessary
derivativesinto (41), we have

A" B2 (mp — 1)ymp (ﬁ - 1) (v2 — kz)
x cn™P 2 (1, 0)
— A"Bmp (mp FO(0—1)— 2mp€2) <v2 _ k2>
x cn™ (z,£)
— A" BZmpv*e (1 + mpt) <v2 - k2) en™P T2 (¢, 0)
+aAmcn™P (t,0) — bA"cn™ (t,€) = 0. (49)

Doing similar operations as above, one gets

1

A al (m —n — 20m) e
o b[2m(1—202) + e — 1) (n —m)]

(50)
and
B— a(n— m)2
SV [2m(1=-22) + e 1) (n—m)] (v2 —k2)
D

It is important to note that

1

a(n —m)2

2
o {\/2m[2m+(n—m)(ﬁ—£2)+2£m

] (v2 — k2) (x —vt), Z}j| 47)

If the modulus £ — 1 in Eq. (47), we get following
topological soliton solution

q(x, 1)

_ a(n+m) sln—m a _ =
_|: A tanh: . (v2—k2) (x vt)]]

(48)

providing a (v2 — kz) > 0.

a[2m (1 —252) FO— 1)(n—m)] (vz—k2> >0
in (51) and also
ab (m — n — 26m)

[Zm(l —252) Foe— 1)(n—m)] =0

if n —m is even, in (50). So, we have following solution
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1) = al (m —n — 20m)
T = b am (1= 22) + (L — 1) (n — m)]

1

an —m)2

2
o {\/[Zm 2@ 1D —m] (=1

(x — 1), e” (52)

From (52), if the modulus ¢ — 1, we get following
1-soliton solution of (41).

q(x,1) = [% sec h?
1

n—m a nem
{W i ”)” oY

where a (v2 — k?) > 0 and if n — m is even, ab > 0.

Remark 2 1-soliton solution (53) is identical to solu-
tion in [1].

6 Form-1V

In this part, considering Eqs. (1) and (6) gives

(¢"), =K (4"),., +aq" —bg" +cg™" " =0.
(54)

Equation (54) known as the generalized form of the
second type nonlinear KGE [10,12]. In order to get
solutions of this equation, we take the starting assump-
tion as

q(x,t) = A[D +sn(z, )]’ (53)

where D is a constant. From (55) yields

(¢"),, = —A"B2mpv> (1 + p) (1+ €D?)
x (1 + DZ) (D + sn (z, £)]"P2
+ A" B?mpv? [—D (1 +2p+L+ 2p€2)
D3 (1 + 3¢+ 4pz)]
[D + sn (7, O~ + A" B>mpv?
x [p—£+zD2(1 .y, —3p£)]
[D + sn (7, )" — A" B> mpv?
x [3151) — D+ 4p)]

@ Springer

[D + sn (t, )"+ + A" B>mpv*e
x (1= p&)[D + sn (z, £)]"P*? (56)
(@"),, = —A"B’mp (1 + p) <1 + EZDZ) (1 + D2>
X [D + sn (1, £)]""?
+ A" B%mp [—D (1 +2p+L+ 2p£2>
—eD3(1 4+ 3¢+ 4pe)]
[D +sn(r, )"~ + A" B?mp
x [p—£+wz(1 —25—31:@)]
[D + sn (7, )" — A" B’mp
x [Sw —pa +4p)]
[D + sn (r, )"+ + A" B2mpt (1 — pt)
x [D + sn (z, £)]"P+? (57)
Substituting (56) and (57) into (54) yields
—A"B2mp (1 + p) (1 + 2202) (1 + 1)2)
x <v2 _ k2) (D + sn (z, £)]"P2
+ A" B2 mp [—D (1 F2p4l 2pz2)
—¢D¥(1 430+ 4pe)] (v2 - k2)
x [D + sn (t, )"~}
A" B2mp [p e eD>(1 20— 3p€):|
x (1)2 — k2> (D + sn (z, O)]"P
— A" B2mp [3@0 —e2pd+ 4p)] (v2 - k2)
x [D + sn (t, £)]"P*!
+ A" B mpt (1 — pl) (v2 - k2)
X [D + sn (t, O)1"PT? + aA™ [D + sn (t, 0)]"P
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—bA"[D + sn (1, O)]"P + cA?™™

x [D + sn (z, 0)]?"~™P = (. (58)

Now, from (58), matching the exponents mp 4 1 and
np gives
1

n—m

P= (59)
which is also obtained matching the exponents mp +
2 and (2n — m) p. Equating coefficients of them and
setting the coefficients of [D + sn (t, £)]™*/ to zero,
for j = -2, —1,0, in (58) yields

1

A= alD[3(n—m)—(n—m—4)¢] =
T b1 =€ —m) + €D (n —m) (1 - 21) — 3¢] '

(60)

B = a(n— m)2
T\ m[l—€m—m)+ED%(n—m) (1 —20) —3¢] (k2 - v?)
(61)

and

Now, to get other solutions of (54), we use the

assumption as
q(x,1)=A[D+cn(zr,0]", (68)

Thus, one obtains

(™), =A"B*mpv* [¢* — 1 4+ D*> (2> — 1)
x (1= p)+D*(1—p)+p(1-¢%)]
x [D + cn (z, O)1""~% — A" B>mpv>D
x[1+e+6+2(p—1 (202 -1)
+ED* (1 + (5 — 4p)][D + en (z, )17
+ A" B*mpv* x [¢D* (=1 + 50 — 6pL)
+e(1 -0+ p22-1)]
x [D +cn (z, )™
+ A" B2mpv*tD 3+ £ (=1 +4p)]
x [D + cn (z, 0)]"P+H!

P2mn—m+0[Lmn—m)—1]

D = 5 (62)
B —mt O [(n—m) (I —20) —3] —cal3n—m) — (n—m —4) €]

where radicands are positive. Thus, finally, the Jacobi — A" B*mpv*t (1+ pb)

elliptic function solution of (54) is given by x [D + cn (z, £)]"P+2 (69)

g, 1) = A[D +sn (B (x —vt), £)]77 (63)

where the amplitude A, the inverse width B and the
constant D are, respectively, given by (60) ,(61) and
(62) . From (63), if the modulus £ — 1, we get follow-
ing topological soliton solution of (54).

g(x.0) = A*[D* tanh B (r —w)]7F  (64)
where
AF — 2aD (n —m + 2)
B b[l+m—n+D2(m_n_3)](k2_v2)
(65)
B* _ a(n—m)2
T\ m[l+m—n+D2m—n—-3)] K -2
(66)

and

. Pun-—m+1)m—m—1)
TNV BR2(m—m+ 1) (m—n—3)—4ca(n —m+2)>
(67)

(¢"), =A"B*mp[¢* — 14 D> (20> — 1) (1 — p)
+D* A - p)+p(1-07)]
x [D +cn (z, O""~% — A" B>mpD
x[I+e+6 +2(p—1 (202 -1)
+¢D*(1+¢(5—4p))]
x [D + cn (7, O~ + A" B*mp
x [¢D* (=1 +5¢—6pe) + € (1 —0)
+p (262 —1)]
x [D +cn (z, )™
+ A"B%mptD [3 + £ (—1 4 4p)]
x [D + cn (z, 0)]"PH!
— A"B’mpt (1 + pl) [D + cn (t, £)]"P+?
(70)

So, Eq. (54) reduces
A™ B2mp [42 — 14 D2 (2132 - 1) (1 - p)

LD —p)+p (1 - 132)]
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x[D +cn (r, )]~ — A" B*mpD [1 +e+ 02 Here,
+2(p—1) (2@2—1) +€D2(l—|—£(5—4p))] A — 2aD (m —n—2) o
b[2D2 2 (n —m) —3) + 1] (kK> — v?)
x [D +cn (z, 0)]"P~! o
A" B2mp [w2 (—145¢ — 6pl) 5
B* = a (}’l B m)
+e (=0 +p (22 = 1)|[D+en(z. O \/m [2D2 Q2 —m)—3) + 1] (k2 — v?)
+A"B2mptD[3 4 € (—1 +4p)] (78)
and

x [D +cn (r, )" — A" B2 mpt (1 + pt)

x [D + cn (z, O™ aA™ [D + cn (7, £)]"™
—bA"[D+cn(z, 07

+ A" D + en (1, £)]PMP = 0. (71)

Equating the exponents mp + 1 and np gives the same
value of which is in (59). This value is also obtained
equating the exponents mp +2 and (2n — m) p. Equat-
ing coefficients of them and setting the coefficients of
[D + cn (u&, m)I"™"+I (j = =2, —1, 0) to zero gives

* b2 (m —n— 1)
TV 22 (m—n—1) Q20 —m)—3) —ca@m —2n — 4)*
where radicants are positive.

7 Form V

The generalized form of the quadratic nonlinear KGE
is given by

alD[l(n—m—4)—3(m —m)] .
= , (72)
[b[uﬂ{(n—m)(sz—1)—615}+£(1—z)(n—m)+2z2—1]]
. a(n—m)2 73)
C\Vm[ED2{(n—m) (5¢—1) — 6L} + € (1 — £) (n —m) + 202 — 1] (k2 — v2)
and
2 o _ _ _ 2 _
:\/ b2 (m—n—0) (1 -0 ®n—m)—20—1] a0

b2 m—n—0[n—m)L—1)—6l]—call(n—m—4)—3n—m)]?

where radicands are positive. Thus, finally, we obtain

G, 1) = A[D +cn {B (x — vi), £)]77 (75)

where the amplitude A, the inverse width B and the
constant D are, respectively, given by (72) ,(73) and
(74). From (75), when the modulus £ — 1, we get
following 1-soliton solution of (54).

q(-xs t) = A* [D* + SeChB* (x — Ut)] nlm (76)
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_ qu—n +cqn+m =0.
(79)

It is necessary to have n > 0 and n # 2, 4 for soli-
tons to exist. In order to solve (79), we introduce the
same assumption as in (9). Putting necessary deriva-
tives into (79) and then setting the exponents and the
coefficients sn™”~2 (¢, £) and sn™~™P (¢, ¢) and also
sn™P2 (7, £) and sn""P (1, £) equal to one another
yields

(@), =+ (@), +aq"

(80)

1+ %) +n£(1—£)]:|

1)

a(2m —n)

2
n
|:b [2m (
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and i

a_|? [2m (1 —20%) +nt (£ — D] | 86)
B an? N a@m—n) (€2 -1)

2m [2m (14 £2) +nt (1 — 0)] (v2 — k?) q
82) an
an?

Furthermore, the constraint relation between the non- B = i om (1 =282 N T2
linear coefficients a, b, ¢ and the exponents m and n m [ mn ( -2 ) +nt (- )] (v - )
given by (87)

a*t 2m — n) (n + 2me)

= n’ch [Zm (1 n 22) el — e)]2 (83)
From (82), it is important to note that
a [Zm (1 +e2) el —e)] (u2 —k2) =0

and from (81) the radicant is positive, if n is even. So
Jacobi elliptic function solution of (79) is given by

2 _
SOt — [b[zm (1+63) +nt(1—-0)]
a(m —n)

In addition, it is obtained the following constraint rela-
tion

a® 2m —n) (n + 2me) (zz _ 1)

an?

xon’ {\/2m [2m (1 + £2)

+nt(1-0] (-

= cb [Zm (1 —zz) el —ﬁ)]2 (88)
From (87), it is important to note that
a [Zm (1 - 252) b0 — 1)] (1)2 - k2) =0
%
= (x —v1), e” (84)

If the modulus £ — 1 in Eq. (84), we get following
topological soliton solution

[ p[2m (1 -20%) +ne - 1]
g 1) = [ am —n) (€2 —1)

and from (86) the radicant is positive, if n is even. So,
we have

an?

xen’ {\/2m [2m (1 - 202)

+ne -] -

(89)

1
k2) (x — vt),Z}:|

tanh?
a(2m —n) an

qx,t) = [

X L( — t) '
sz(vz—kz) T

where a (v> — k?) > Oandif n is even ab (2m — n) >
0.

Now, to get other solutions of (79), we use the
hypothesis given by (20). Doing similar operations, one
gets the same value of p which s in (80) and also yields

(85)

If the modulus £ — 0 in Eq. (89), we get 1-soliton
solution as

0 1) = [ 2mb 2

———cos
a(n—2m)

X
{ 4m?

an? "
2=
where a (v2 — k?) > Oandif n is even ab (n — 2m) >
0.

(90)
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8 Conclusion

This paper considers the gKGE with five different
forms of nonlinearity. Jacobi elliptic functions are used
to get soliton solutions of each of these cases. The
necessary constraint conditions are presented for the
existence of solitons. We use sn and cn Jacobi elliptic
functions to obtain soliton solutions of this equations. It
needs to be noted that by using the rest of Jacobi elliptic
functions, and it is possible to obtain other travelling
wave solutions of the gKGE. Furthermore, other non-
linear evolution equations in the literature can be solved
by using this technique.
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