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Abstract Under investigation in this paper is a gen-
eralized (3+1)-dimensional variable-coefficient BKP
equation, which can be used to describe the propaga-
tion of nonlinear waves in fluid mechanics and other
fields. With the aid of binary Bell’s polynomials, an
effective and straightforward method is presented to
explicitly construct its bilinear representation with an
auxiliary variable. Based on the bilinear formalism, the
soliton solutions and multi-periodic wave solutions are
well constructed. Furthermore, the tanhmethod and the
tan method are employed to construct more traveling
wave solutions of the equation. Finally, the asymptotic
properties of the multi-periodic wave solutions are sys-
tematically analyzed to reveal the connection between
periodicwave solutions and soliton solutions. It is inter-
esting that the periodic waves tend to solitary waves
under a limiting procedure. Our results can be used to
enrich the dynamical behavior of higher-dimensional
nonlinear wave fields.
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1 Introduction

It is well known that to investigate the integrable prop-
erties and construct exact solutions for the nonlinear
evolutions equations (NLEEs) play a pivotal role in
many nonlinear science fields such as nonlinear optics,
fluid dynamics, plasma physical, biology and many
other fields. There exist lots of ways to look for special
solutions of NLEEs, such as inverse scattering transfor-
mation (IST) [1], Lie group method [2], Hirota bilin-
ear method [3], Darboux transformation (DT) [4] and
the tanh-coth method [5,6]. The bilinear method is a
canonical and effective way to consider the integrabil-
ity and exact solutions of NLEEs. However, themethod
is depended on a appropriate variable transformations,
while it is difficult to find such transformations for dif-
ferent equations. Up to now, there is no a effective and
convenient method to get such transformations for dif-
ferent equations. Based on above methods, there are
plenty of works to be consider for studying integrable
properties and exact solutions of NLEEs [7–28].

In the early 1980s, with help of Hirota’s bilinear
method and the Riemann theta functions, a success-
ful and effective way [29] is proposed by Nakamura
to derive a kind of quasiperiodic solutions of NLEEs.
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Based on the Bell polynomials [30], a lucid and sys-
tematic way [31,32] is presented by Lambert to investi-
gate bilinear BTs and Lax pairs of integrable equations.
More recently, there are a number of works to investi-
gate quasiperiodic solutions of NLEEs [33–47].

In recent years, as a part of the KP-type equations,
the (3+1)-dimensionalB-typeKadomtsev–Petviashvili
(BKP) equations have attracted intensive attention
since they can exactly describe the propagation of non-
linear waves in fluid mechanics and other fields. In the
present paper, we would like to investigate a gener-
alized (3+1)-dimensional variable-coefficient B-type
Kadomtsev–Petviashvili (VC-BKP) equation

(
ux + uy + uz

)
t + αuxxxy + β

(
uxuy

)
x

+ γ (uxx + uzz) = 0, (1)

where u = u(x, y, z, t), α = α(t), β = β(t) and
γ = γ (t) are all the real differentiable functions, andα,
β satisfy the relation α/β = constant. If taking α = 1,
β = χ ,γ = −1,Eq. (1) canbe reduced to the following
(3+1)-dimensional BKP equation

(
ux + uy + uz

)
t + uxxxy + χ

(
uxuy

)
x

− (uxx + uzz) = 0, (2)

which can bewidely used to describe the propagation of
nonlinear waves in fluid dynamics. Its multiple-soliton
solutions and conservation laws have been discussed
with some specific parameters in [48,49].

To the best of authors’ knowledge, much research
has been studied for the special cases of Eq. (1)., but
the multi-periodic wave solutions of Eq. (1) with gen-
eral form have not been considered before. The main
purpose of the present paper is to construct the soli-
ton solutions, periodic wave solutions, traveling wave
solutions of Eq. (1), respectively. Furthermore, three
crucial theorems are presented to succinctly show a
relationship between periodic wave solutions and soli-
ton solutions.

The structure of this paper is given as below. In
Sect. 2, the bilinear representations and N -soliton solu-
tions of Eq. (1) will be derived. In Sect. 3, we will con-
struct the multi-periodic wave solutions of Eq. (1). In
Sect. 4, more traveling wave solutions of Eq. (1) will be
presented. In Sect. 5, the relationship between soliton
solutions and periodic wave solutions is strictly estab-

lished . Some conclusions and appendix are presented
in the last section.

2 The bilinear representation and soliton solution

To begin with, let us introduce the following transfor-
mation

u = dqx , (3)

in which d is a constant. Substituting (3) into Eq. (1)
and integrating the obtained equation with respect to x ,
we obtain

E(q) = qxt + qyt + qzt + α
(
qxxxy + 3qxxqxy

)

+ γ (qxx + qzz) = 0, (4)

under the following constraint

d = 3α/β = constant. (5)

With the use of the results presented in [43–47], we
obtain

E(q) = Pxt + Pyt + Pzt + αPxxxy

+ γ (Pxx + Pzz) = 0. (6)

The expression (6) leads to the following bilinear form
((

Dx + Dy + Dz
)
Dt + αD3

x Dy

+ γ
(
D2
x + D2

z

))
F · F = 0, (7)

with the aid of the following transformation

q = 2 ln (F) ⇔ u = d(t)qx = 6α

β
[ln (F)]x . (8)

Summing up the above detailed analysis, the follow-
ing Theorem is easily established.

Theorem 2.1 Substituting the following transforma-
tion

u = 6α

β
[ln(F)]x (9)

into Eq. (1), the VC-BKP equation (1) can be linearized
into
((

Dx + Dy + Dz
)
Dt + αD3

x Dy + γ
(
D2
x + D2

z

))

F × F = 0, (10)

if and only if 3α/β is a constant.

Once the bilinear representation in hand, the N -
soliton solutions of Eq. (1) can be easily derived by
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u = 6α

β
[ln(F)]x ,

F =
∑

ρ=0,1

exp

⎛

⎝
N∑

j=1

ρiηi +
∑

1≤i< j≤N

ρiρ j Ai j

⎞

⎠ ,

ηi = μi xi + νi yi + 	i z + ωi t + δi ,

ωi = −αμ3
i νi + γ

(
μ2
i + 	2

i

)

μi + νi + 	i
, (11)

with

exp(Ai j )

=
[(

μi − μ j
) + (

νi − ν j
) + (

	i − 	 j
)] (

ωi − ω j
) + α

(
μi − μ j

)3 (
νi − ν j

) + γ
[(

μi − μ j
)2 + (

	i − 	 j
)2]

[(
μi + μ j

) + (
νi + ν j

) + (
	i + 	 j

)] (
ωi + ω j

) + α
(
μi + μ j

)3 (
νi + ν j

) + γ
[(

μi + μ j
)2 + (

	i + 	 j
)2] ,

(12)

where μi , νi , 	i , δi (i = 1, 2, . . . , N ) are arbitrary
real constants,

∑
ρ=0,1 is the summation that takes

over all possible combinations of ρi , ρ j = 0, 1(i, j
= 1, 2, . . . , N ).

In view of the above expression (12), the VC-BKP
equation (1) satisfies the following one-soliton solution

u = 6α

β

[
ln(1 + eη)

]
x , (13)

in which η = μx +νy+	z− αμ3ν+γ
(
μ2+	2

)

μ+ν+	
t +δ, and

μ, ν, 	, δ are arbitrary constants.
In the same process, the two-soliton solution of Eq.

(1) admits the following explicit form

u = 6α

β

[
ln

(
1 + eη1 + eη2 + eη1+η2+A12

)]

x
,

exp(A12)

=
[
(μ1 − μ2) + (ν1 − ν2) + (	1 − 	2)

]
(ω1 − ω2) + α (μ1 − μ2)

3 (ν1 − ν2) + γ
[
(μ1 − μ2)

2 + (	1 − 	2)
2]

[
(μ1 + μ2) + (ν1 + ν2) + (	1 + 	2)

]
(ω1 + ω2) + α (μ1 + μ2)

3 (ν1 + ν2) + γ
[
(μ1 + μ2)

2 + (	1 + 	2)
2] ,

(14)

where ηi = μi x+νi y+	i z− αμ3
i νi+γ

(
μ2
i +	2i

)

μi+νi+	i
t+δi (i =

1, 2).
In a similar way, three-soliton solution of Eq. (1)

admits the following explicit form

u = 6α

β

[
ln

(
1 + eη1 + eη2 + eη3 + eη1+η2+A12 + eη1+η3+A13 + eη2+η3+A23 + eη1+η2+η3+A12+A13+A23

)]

x
,

exp(Ai j )

=
[(

μi − μ j
) + (

νi − ν j
) + (

	i − 	 j
)] (

ωi − ω j
) + α

(
μi − μ j

)3 (
νi − ν j

) + γ
[(

μi − μ j
)2 + (

	i − 	 j
)2]

[(
μi + μ j

) + (
νi + ν j

) + (
	i + 	 j

)] (
ωi + ω j

) + α
(
μi + μ j

)3 (
νi + ν j

) + γ
[(

μi + μ j
)2 + (

	i + 	 j
)2] ,

(15)
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where ηi = μi x + νi y + 	i z − αμ3
i νi+γ

(
μ2
i +	2i

)

μi+νi+	i
t +

δi (i, j = 1, 2, 3, i < j).

3 Multi-periodic wave solutions

In order to find multi-periodic wave solution of Eq.
(1), to begin with, let us consider the following multi-
dimensional Riemann theta function

ϑ(ξ) = ϑ(ξ, τ )=
∑

n∈ZN

exp (π i〈nτ, n〉+2π i〈ξ, n〉) ,

(16)

in which the vector n = (n1, n2, . . . , nN )T ∈ ZN and
variables ξ = (ξ1, . . . , ξN )T ∈ C

N and −iτ is a real-
valued and positive-definite symmetric N × N matrix.

If the VC-BKP equation (i.e., Eq. 1) holds the
nonzero asymptotic condition u → u0 as |ξ | → 0,
the solution of Eq. (1) has the following form

u = u0y + 6α

β
(ln ϑ(ξ))x , (17)

where u0y is a solution of Eq. (1), and ξ = (ξ1, ξ2, . . . ,

ξn)
T , ξi = ki x + li y + ri z + Mi t + εi , i = 1, . . . , n.
By inserting (17) into Eq. (1), and by integrating

with respect to x , Eq. (10) is obtained as follows

Q(Dt , Dx , Dy, Dz)ϑ(ξ) · ϑ(ξ)

=
((

Dx + Dy + Dz
)
Dt + αD3

x Dy + 3αu0D
2
x

+ γ
(
D2
x + D2

z

)
+ C

)
F · F = 0, (18)

in which C = C(y, z, t) is an integral constant.
In the following, one-periodic wave solutions, two-

periodic wave solutions and three-periodic wave solu-
tions will be strictly derived by using Ref. [43].

3.1 One-periodic waves

If we take N = 1, the Riemann theta function (16)
reduces to the following Fourier series

ϑ(ξ) = ϑ(ξ, τ ) =
∑

n∈ZN

exp(π in2τ + 2π inξ), (19)

with the phase variable ξ = kx+ly+r z+Mt+ε, and
the parameter Im(τ ) > 0. With the help of Theorem 1
in [43], the following expressions should be satisfied

+∞∑

n=−∞
Γ [4nπ i(k, l, r,M)]e2n2π iτ = 0,

+∞∑

n=−∞
Γ [2nπ i(2n − 1)(k, l, r,M)]e(2n2−2n+1)π iτ = 0.

(20)

The expressions (20) can be rewritten as a linear system
by using (18)

+∞∑

n=−∞

[
−

(
16n2π2k + 16n2π2l + 16n2π2r

)
M

+ 256αn4π4k3l

−γ
(
16n2π2k2 + 16n2π2r2

)
+ C

]
e2n

2π iτ = 0,

+∞∑

n=−∞

[
−

(
4π2(2n − 1)2k + 4π2(2n − 1)2l

+ 4π2(2n − 1)2r
)
M

+ 16απ4(2n − 1)4k3l−γ
(
4n2π2k2+4n2π2r2

)

+ C] e(2n2−2n+1)π iτ = 0, u0 = 0. (21)

It is not hard to know that system (21) is equivalent to
the following matrix equation
(
a11 a12
a21 a22

) (M
C

)
=

(
b1
b2

)
, (22)

where

a11 = −
+∞∑

n=−∞

(
16n2π2k + 16n2π2l + 16n2π2r

)
A 2n2 ,

a12 =
+∞∑

n=−∞
A 2n2 ,

a21 = −
+∞∑

n=−∞

(
4π2(2n − 1)2k

+ 4π2(2n − 1)2l + 4π2(2n − 1)2r
)
A 2n2−2n+1,

b1 =
+∞∑

n=−∞

[−256αn4π4k3l

+ γ
(
16n2π2k2 + 16n2π2r2

)]
A 2n2 ,

a22 =
+∞∑

n=−∞
A 2n2−2n+1,

b2 =
+∞∑

n=−∞

[−16απ4(2n − 1)4k3l
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+ γ
(
4(2n − 1)2π2k2 + 4(2n − 1)2π2r2

)]
A 2n2−2n+1,

A = eπ iτ . (23)

By taking the above system, one-periodic wave of Eq.
(1) can be determined by

u = u0y + 6α

β
(ln ϑ(ξ))x , (24)

where the vector (M, C)T is obtained by using the
Cramer’s rule

M =

∣∣∣∣
b1 a12
b2 a22

∣∣∣∣
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣

, C =

∣∣∣∣
a11 b1
a21 b2

∣∣∣∣
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣

, (25)

and the other parameters k, l, r, τ, u0 are free.
Summing up the above analysis in detail, the follow-

ing Theorem is easily hold.

Theorem 3.1 Supposing that ϑ(ξ, τ ) is one Riemann
theta function with N = 1 and ξ = kx + ly + r z +
Mt+ε, the VC-BKP equation (1) admits the following
one-periodic wave solution

u = u0y + 6α

β
∂x ln ϑ(ξ), (26)

where the expression satisfies conditions (23) and (25).

3.2 Two-periodic waves

In order to seek two-periodic wave solutions of Eq.
(1). If we take N = 2, the Riemann theta function (16)
reduces to the following from

ϑ(ξ1, ξ2, τ ) =
∑

n∈Z2

exp(π i〈τn, n〉 + 2π i〈ξ, n〉), (27)

in which n = (n1, n2) ∈ Z2, (ξ1, ξ2) ∈ C2, ξi = ki x+
li y + ri z + Mi t + εi , (i = 1, 2). −iτ is a positive-
define and real-valued symmetric 2 × 2 matrix, which
is of a explicit form

τ =
(

τ11 τ12
τ21 τ22

)
, (28)

where Im(τ11) > 0, Im(τ22) > 0, τ11τ22 − τ 212 < 0.
Based on Theorem 2 in Ref. [43], the parameters

ki , li , ri ,Mi should hold the following expressions

∑

n∈Z2

Γ
[
2π i(〈2n − θ j , ki 〉, 〈2n − θ j , li 〉 ,

〈2n − θ j , ri 〉, 〈2n − θ j ,Mi 〉)
]

exp
[
π i(〈(n − θ j ), n − θ j 〉 + 〈πn, τ 〉] = 0, (29)

where θ j =
(

θ1j
θ2j

)

, θ1 =
(
0
0

)
, θ2 =

(
1
0

)
, θ3 =

(
0
1

)
, θ4 =

(
1
1

)
, j = 1, 2, 3, 4. Linking expres-

sions (18) and (29) arrive at the following expressions

∑

n∈Z2

[
−4π2〈2n − θ j ,M〉 (〈2n − θ j , k〉 + 〈2n − θ j , l〉

+ 〈2n − θ j , r〉
) + 16απ4〈2n − θ j , k〉3〈2n − θ j , l〉

− 12αu0π
2〈2n − θ j , k〉2 − 4π2γ

(
〈2n − θ j , k〉2

+ 〈2n − θ j , r〉2
)

+ C
]
exp

[
π i(〈(n − θ j ), n − θ j )

+ 〈πn, τ 〉] = 0, j = 1, 2, 3, 4. (30)

The above equation can be reduced to a new form of
matrix equation
⎛

⎜⎜
⎝

h11 h12 h13 h14
h21 h22 h23 h24
h31 h32 h33 h34
h41 h42 h43 h44

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

M1

M2

u0
C

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

b1
b2
b3
b4

⎞

⎟⎟
⎠ , (31)

where

H = (hi j )4×4, b = (b1, b2, b3, b4)
T ,

hi1 = −4π2
∑

(n1,n2)∈Z2

(〈2n − θ j , k〉 + 〈2n − θ j , l〉

+ 〈2n − θ j , r〉
)
(2n1 − θ1)Ni (n),

hi2 = −4π2
∑

(n1,n2)∈Z2

(〈2n − θ j , k〉 + 〈2n − θ j , l〉

+ 〈2n − θ j , r〉〉
)
(2n2 − θ2i )Ni (n),

hi3 = −12απ2
∑

(n1,n2)∈Z2

〈2n − θi , k〉2Ni (n),

hi4 =
∑

(n1,n2)∈Z2

Ni (n),

bi =
∑

(n1,n2)∈Z2

[−16απ4〈2n − θi , k〉3〈2n − θi , l〉

+ 4π2γ
(〈2n − θ j , k〉2 + 〈2n − θ j , r〉2

)]
Ni (n),

Ni (n)=A
n21+(n1−θ1i )2

1 A
n22+(n2−θ2i )2

2 A
n1n2+(n1−θ1i )(n2−θ2i )

3 ,

A1 = eπ iτ11 , A2 = eπ iτ22 , A3 = eπ iτ12 , i = 1, 2, 3, 4.
(32)

By taking the above system, two-periodic wave solu-
tion is also given by

u = u0y + 6α

β
(ln ϑ (ξ1, ξ2, τ ))x , (33)
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from which the vector (M1,M2, u0, C)T and theta
functionϑ(ξ1, ξ2, τ ) are obtained by Eq. (27), the other
parameters ki , li , ri , εi are free.

According to the above analysis for the two-periodic
wave solution, the following Theorem is easily con-
structed.

Theorem 3.2 Supposing that ϑ(ξ1, ξ2, τ ) is a Rie-
mann theta function with N = 2 and ξi = ki x + li y +
ri z + Mi t + εi (i = 1, 2). The VC-BKP equation (1)
admits a two-periodic wave solution as follows

u = u0y + 6α

β
∂x ln ϑ(ξ1, ξ2, τ ), (34)

where u0 andϑ(ξ1, ξ2, τ ) fulfill the expression (31) and

(32). Additionally, θ j =
(

θ1j
θ2j

)

, θ1 =
(
0
0

)
, θ2 =

(
1
0

)
, θ3 =

(
0
1

)
, θ4 =

(
1
1

)
( j = 1, 2, 3, 4). The

other parameters ki , li , ri , τi j , εi (i, j = 1, 2) are free.
The figures of the one-periodic wave solution (26)

and two-periodic wave solution (33) are plotted by
choosing the suitable parameters in Figs. 1, 2 and 3,
respectively, which are useful for understanding the
dynamical behaviors of the periodic wave solutions.

In what follows, the characteristics of the one-
periodic wave solution (26) and two-periodic wave
solution (33) will be graphically discussed and sim-
ulated by selecting the appropriate parameters.

Figure 1 shows the 3D space plots and the propaga-
tion of the wave along some axes of the one-periodic
wave (26) by selecting some appropriate parameters.
Figure 1a–c describes the 3D plots of the one-periodic
wave whose widths, amplitudes, velocity, shapes and
density remain unchanged during the propagation. Fig-
ure 1e–g shows the propagation of the wave along x-
axis, y-axis and t-axiswith the same amplitude, respec-
tively. Additionally, it is necessary to point out that
one-periodic wave has only one wave pattern and it
can be seen as a parallel superposition of overlapping
one-solitary waves, placed one period apart separately.
Particularly, in the phase variable ξ , it has two funda-
mental periods 1 and τ , and its speed parameter M is
determined by

M =

∣∣∣∣
b1 a12
b2 a22

∣∣∣∣
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣

. (35)

Figures 2 and 3 show the 3D space plots and the
propagation of the wave along some axes of the two-
periodicwave (33) by selecting some parameters. From
the 3D space plots, it is easy to find that the spread
of the wave is periodic in all directions; however, the
cycle is not the same (see Figs. 2, 3). The veloc-
ity, shapes, density are not same in different spaces
but remain unchanged during the propagation in each
space. From Figs. 2 and 3d–f, we find that two-periodic
possess different spreading shapes in x , y, t-axis, but
they have same amplitude. Furthermore, there are two
phase variables ξ1 and ξ2 (i.e., its surface pattern is
two-dimensional), and it has 2N fundamental periods
(ζi , i = 1, 2, . . . , N ) and (τi , i = 1, 2, . . . , N ) in
(ξ1, ξ2). Besides, a novel phenomenon is demonstrated
in Figs. 2 and 3, it is easy to find that every two-periodic
wave is spatially periodic in two direction, but it do
not need be periodic in t directions. There are varying
degrees of oscillation in the propagation of the wave
along the axes. In general, the wave is not smooth in
the spread process, but the whole periodic wave is peri-
odic along the different axes.

4 Using the tanh method and tan method

In this section, based on the hyperbolic functions, we
will apply other approaches in order to determine more
traveling wave solutions of Eq. (1).

4.1 The tanh method

The tanh method satisfies the use of the tanh equation

u(x, y, z, t) = a0 + a1 tanh (kx + ly + mz − ωt) ,

(36)

as another solution of Eq. (1). In order to determine
a0, a1 and wave speed ω. Substitution of Eq. (36) into
Eq. (1) yields the following relation

ω = −γ
(
k2 + m2

) + 4k3l

k + l + m
, a1 = k, (37)

in which a0 is left as a free parameter. Based on the
above analysis, one obtains the following solitary wave
solution Eq. (1)

u(x, y, z, t) = a0

+ k tanh

[

kx + ly + mz + γ
(
k2 + m2

) + 4k3l

k + l + m
t

]

.

(38)
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(f)(e)(d)

(c)(b)(a)

Fig. 1 (Color online) One-periodic wave via solutions (26)
with parameters: k = 1, l = 1, r = 1, τ = I , u0 = 0,
α = 1, β = 1, γ = 1 and ε = 0. This figure shows that every
one-periodic wave is one-dimensional, and it can be seen as a
superposition of overlapping solitary waves, placed one period

apart. Perspective view of the real part of the periodicwaveRe(u)
with: a z = t = 0. b t = y = 0. c y = z = 0.Wave propagation
pattern of the wave along with: d the x axis. e the y axis. f the t
axis

Replacing tanh by coth in Eq. (37), in a similar way,
we obtain the singular solutions

u(x, y, z, t) = a0

+ k coth

[

kx + ly + mz + γ
(
k2 + m2

) + 4k3l

k + l + m
t

]

.

(39)

4.2 The tan method

The tan method satisfies the use of the tan equation

u(x, y, z, t) = a0 + a1 tan(kx + ly + mz − ωt), (40)

as another solution of Eq. (1). In order to determine
a0, a1 and wave speed ω. Substitution of Eq. (36) into
Eq. (1) yields the following relation

ω = −γ
(
k2 + m2

) − 4k3l

k + l + m
, a1 = −k, (41)

in which a0 is left as a free parameter. Based on the
above analysis, one obtains the following solitary wave
solution of Eq. (1)

u(x, y, z, t) = a0

−k tan

[

kx + ly + mz + γ
(
k2 + m2

) − 4k3l

k + l + m
t

]

.

(42)

Replacing tanh by cot in Eq. (37), in a similar way, we
obtain the singular solutions

u(x, y, z, t) = a0

+ k cot

[

kx + ly + mz + γ
(
k2 + m2

) − 4k3l

k + l + m
t

]

.

(43)

In what follows, the figures of the solitary waves
solutions (38 and 42) and the singular solutions (39
and 43) are plotted by choosing the suitable parame-
ters in Figs. 4 and 5, respectively, which are useful for
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(f)(e)(d)

(c)(b)(a)

Fig. 2 (Color online) Two-periodic wave via solutions (33)
with parameters: k1 = 0.5, k2 = −1, l1 = 0.1, l2 = −2,
r1 = −0.1, r2 = −0.3, τ11 = I, τ12 = 0.5I, τ22 = 2I ,
α = 1, β = 1, γ = 1 and ε1 = ε2 = 0. This figure shows
that every two-periodic wave is almost one-dimensional. Per-

spective view of the real part of the periodic wave Re(u) with:
a y = z = 0. b t = y = 0. c y = x = 0. Wave propagation
pattern of the wave along with: d the x axis. e the z axis. f the t
axis

understanding the dynamical behaviors and physical
structure of the solutions.

5 Asymptotic properties

In this section, the relationship between the periodic
wave solutions and soliton solutions will be established
via three crucial Theorems.

Theorem 5.1 If the vector (M, C)T is a solution of the
system (22) and for one-periodic wave solution (26),
we take

u0 = 0, k = μ

2π i
, l = ν

2π i
,

m = 	

2π i
, ε = δ + π iτ

2π i
, (44)

in which μ, ν, 	 and δ are given by (13). Then we have
the following asymptotic properties

C → 0, ξ → η + π iτ

2π i
,

ϑ(ξ, τ ) → 1 + exp(η) when A → 0. (45)

It shows that the one-periodic wave solution tends
to the one-soliton solution under a amplitude limit
(u,A1) → (u0, 0).

Theorem 5.2 If the vector (M1,M2, u0, C)T is a
solution of the system (31) and for two-periodic wave
solution (33), we set

ki = μi

2π i
, li = νi

2π i
, mi = 	i

2π i
,

εi = δi + π iτ

2π i
, i, j = 1, 2, i < j, (46)

in which μi , νi , 	i and δi are given by (14). Then we
have the following asymptotic properties
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(f)(e)(d)

(c)(b)(a)

Fig. 3 (Color online) Two-periodic wave via solutions (33) with
parameters: k1 = 0.5, k2 = 1, l1 = 0.5, l2 = 1, r1 = 0.5, r2 =
1, τ11 = I, τ12 = 0.5I, τ22 = 2I , α = 1, β = 1, γ = 1 and
ε1 = ε2 = 0. This figure reveals that every two-periodic wave

is almost one-dimensional. Perspective view of the real part of
the periodic wave Re(u) with: a y = z = 0. b t = y = 0.
c y = x = 0. Wave propagation pattern of the wave along with:
d the x axis. e the z axis. f the t axis

u0 → 0, C → 0, ξi → ηi + π iτi j
2π i

, ϑ(ξ1, ξ2, τ )

→ 1 + exp(η1) + exp(η2) + exp(η1 + η2 + A12)

when A1,A2 → 0. (47)

It indicates that the two-periodic wave solution tends
to the two-soliton solution under a amplitude limit
(u,A1,A2) → (u0, 0, 0).

Theorem 5.3 If the vector (M1,M2,M3, u0, C)T is
a solution of the system (63) and for three-periodic
wave solution (see Appendix (66)), we take

ki = μi

2π i
, li = νi

2π i
, mi = 	i

2π i
,

εi = δi + π iτ

2π i
, i, j = 1, 2, 3, i < j, (48)

in which μi , νi , 	i and δi are given by (15). Then we
have the following asymptotic properties

u0 → 0, C → 0, ξi → ηi + π iτi j
2π i

,

ϑ(ξ1, ξ2, τ ) → 1 + exp(η1) + exp(η2) + exp(η2)

+ exp(η1 + η2 + η3) + exp(η1 + η3 + A13)

+ exp(η2 + η3 + A23)

+ exp(η1 + η2 + η3 + A12 + A13 + A23)

when A1,A2,A3 → 0. (49)

It implies that the three-periodic wave solution (see
Appendix (66)) tends to the three-soliton solution under
a amplitude limit (u,A1,A2,A3) → (u0, 0, 0, 0).

According to Ref. [43], we find that the proofs of
Theorems 5.1, 5.2 and 5.3 are similar. In what follows,
as a example, the proof of Theorem 5.2 will be pre-
sented with a detailed derivation.

Proof To begin with, we can expand the periodic wave
function ϑ(ξ1, ξ2, τ ) in a new form
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Fig. 4 (Color online) The solitary waves solution (38) and the
singular solution (39) with parameters: α = 1, β = 1, γ = 1,
k = 1, l = 1, m = 1, a0 = 3. Perspective view of the real part
of the solitary waves solution (38): Re(u) with: a y = z = 0.

b y = z = 2. c y = z = −2. Perspective view of the real
part of the singular solution (39): Re(u) with: e y = z = 0.
f y = z = 2. g y = z = −2

ϑ(ξ1, ξ2, τ ) = 1 +
(
e2π iξ1 + e−2π iξ1

)
eπτ11

+
(
e2π iξ2 + e−2π iξ2

)
eπτ22

+
(
e2π i(ξ1+ξ2) + e−2π i(ξ1+ξ2)

)
eπ(τ11+2τ12+τ22) + · · · .

(50)

In view of Eq. (48), we have

ϑ(ξ1, ξ2, τ ) = 1 + eξ̂1 + eξ̂2 + eξ̂1+ξ̂2−2π iτ12

+ A 2
1 e

−ξ̂1 + A 2
2 e

−ξ̂2 + +A 2
1 A

2
2 e

−ξ̂1
2−ξ̂2−2πτ12

+ · · · → 1 + eξ̂1 + eξ̂2 + eξ̂1+ξ̂2+A12 ,

when A1,A2 → 0, (51)

in which ξ̂i = μi x + νi y + 	i z + ωi t + δi , ωi =
2π iMi (i = 1, 2). In the follows, it is easy to find that

C → 0, ωi → −αμ3
i νi + γ

(
μ2
i + 	2

i

)

μi + νi + 	i
,

ξ̂i → ηi , i = 1, 2, when A1,A2 → 0. (52)

The functions H, (b1, b2, b3, b4) and (M1,M2, u0,
C)T can be transformed into a series form withA1,A2

as follow

H =

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠

+

⎛

⎜⎜
⎝

0 0 0 0
−8π2 (k1 + l1 + r1) 0 −24απ2k21 2

0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠A1

+

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 −8π2 (k2 + l2 + r2) −24απ2k22 2
0 0 0 0

⎞

⎟⎟
⎠A2

+

⎛

⎜⎜
⎝

−32π2 (k1 + l1 + r1) 0 384απ2k21 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠A 2

1

+

⎛

⎜⎜
⎝

0 −32π2 (k2 + l2 + r2) 384απ2k22 2
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟
⎠A 2

2
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Fig. 5 (Color online) The solitary waves solution (42) and the
singular solution (43) with parameters: α = 1, β = 1, γ = 1,
k = 1, l = 1, m = 1, a0 = 3. Perspective view of the real part
of the solitary waves solution (42): Re(u) with: a y = z = 0.

b y = z = 2. c y = z = −2. Perspective view of the real
part of the singular solution (43): Re(u) with: e y = z = 0.
f y = z = 2. g y = z = −2

+

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0

Θ1 −Θ1 Θ2 2

⎞

⎟⎟
⎠A1A2

+

⎛

⎜⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0

Θ3 Θ3 Θ4 2

⎞

⎟⎟
⎠A1A2A3 + o

(
A i

1A
j
2 A

k
3

)
,

i + j + k ≥ 3, (53)

b =

⎛

⎜⎜
⎝

0
Ω1

0
0

⎞

⎟⎟
⎠A1 +

⎛

⎜⎜
⎝

0
0

Ω2

0

⎞

⎟⎟
⎠A2 +

⎛

⎜⎜
⎝

Ω3

0
0
0

⎞

⎟⎟
⎠A 2

1

+

⎛

⎜⎜
⎝

Ω4

0
0
0

⎞

⎟⎟
⎠A 2

2 +

⎛

⎜⎜
⎝

0
0
0

Ω5

⎞

⎟⎟
⎠A1A2

+

⎛

⎜⎜
⎝

0
0
0

Ω6

⎞

⎟⎟
⎠A1A2A3

+ o
(
A i

1A
j
2 A

k
3

)
, i + j + k ≥ 3, (54)

⎛

⎜⎜
⎝

M1

M2

u0
C

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

(M1)
00

(M2)
00

(u0)00

(C)00

⎞

⎟⎟
⎠ +

⎛

⎜⎜
⎝

(M1)
11

(M2)
11

(u0)11

(C)11

⎞

⎟⎟
⎠A1

+

⎛

⎜⎜
⎝

(M1)
21

(M2)
21

(u0)21

(C)21

⎞

⎟⎟
⎠A2 +

⎛

⎜⎜
⎝

(M1)
12

(M2)
12

(u0)12

(C)12

⎞

⎟⎟
⎠A 2

1

+

⎛

⎜⎜
⎝

(M1)
22

(M2)
22

(u0)22

(C)22

⎞

⎟⎟
⎠A 2

2

+

⎛

⎜
⎜
⎝

(M1)
2

(M2)
2

(u0)2

(C)2

⎞

⎟
⎟
⎠A1A2 +

⎛

⎜
⎜
⎝

(M1)
3

(M2)
3

(u0)3

(C)3

⎞

⎟
⎟
⎠A1A2A3

+ o
(
A i

1A
j
2 A

k
3

)
, i + j + k ≥ 3, (55)


�
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in which Λ,Ω are presented as below

Θ1 = −8π2
[
(k1 − k2)

2 + (l1 − l2)
2 + (r1 − r2)

2
]
,

Θ3 = −8π2
[
(k1 + k2)

2 + (l1 + l2)
2 + (r1 + r2)

2
]
,

Θ2 = 32απ4(k1 − k2)
3(l1 − l2),

Θ4 = 32απ4(k1 + k2)
3(l1 + l2),

Ω1 = 8π2
[
−4απ2k31l1 + γ

(
k21 + r21

)]
,

Ω2 = 8π2
[
−4απ2k32l2 + γ

(
k22 + r22

)]
,

Ω3 = 32π2
[
−16απ2k31l1 + γ

(
k21 + r21

)]
,

Ω4 = 32π2
[
−16απ2k32l2 + γ

(
k22 + r22

)]
,

Ω5 = 8π2
[
−4απ2(k1 − k2)

3(l1 − l2)

+ γ
[
(k1 − k2)

2 + (r1 − r2)
2
]]

,

Ω6 = 8π2
[
−4απ2(k1 + k2)

3(l1 + l2)

+ γ
[
(k1 + k2)

2 + (r1 + r2)
2
]]

. (56)

By combining above systems and expression (31) and
by applying for A ∗ X = B, the following relations are
easily obtained

C(00) = C(11) = C(21) = C(2) = C(3) = 0,

Ω1 = −8π2 (k1 + l1 + r1)M00
1 − 24απ2k21u

00
0 ,

Ω2 = −8π2 (k2 + l3 + r3)M00
2 − 24απ2k23u

00
0 ,

Ω3 = −32π2 (k1 + l1 + r1))M00
1 + 348απ2k21u

00
0 ,

Ω4 = −32π2 (k2 + l2 + r2))M00
1 + 348απ2k22u

00
0 ,

Ω5 = Θ1M00
1 − Θ1M00

2 + Θ2u
00
0 ,

Ω6 = Θ3M00
1 + Θ3M00

2 + Θ3u
00
0 , . . . . (57)

By considering u(00)
0 = 0,we have the following results

u0 = o(A1,A2) → 0, C → 0,

2π iM1 = −2π i
−4απ2k31l1 + γ (k21 + r21 )

k1 + l1 + r1
+ o(A1,A2)

→ −−4αμ3
1ν1 + γ (μ2

1 + 	2
1)

μ1 + ν1 + 	1
,

2π iM2 = − − 2π i
−4απ2k32l2 + γ (k22 + r22 )

k2 + l2 + r2
+ o(A1,A2)

→ −−4αμ3
2ν2 + γ (μ2

2 + 	2
2)

μ2 + ν2 + 	2
, as (A1,A2) → (0, 0),

(58)

which shows Eq. (52). Summing up the above analy-
sis, we can obtain the relationship that the two-periodic
solution tends to two-soliton solution under limited
condition (A1,A2) → (0, 0).

6 Conclusions

In thiswork, a generalized (3+1)-dimensional variable-
coefficient BKP equation has been systematically
investigated. The Hirota method is applied to construct
the bilinear form and exact solution of Eq. (1). Based
on the bilinear formalism and Riemann theta func-
tion, the Riemann theta function periodic wave solu-
tions of Eq. (1) are derived with a detailed deriva-
tion. Besides, the tanh method and the tan method
are applied to construct the traveling wave solutions
of Eq. (1), The figures of the solutions are presented
(see Figs. 1, 2, 3, 4, 5). At last, the relation between the
soliton solutions and periodic wave solutions is strictly
established in detailed. According to Theorems 5.1, 5.2
and 5.3, one can see that the N -periodic wave solu-
tion tends to N -soliton solution (11) under the certain
condition.

The paper shows that the effective method provides
a direct and powerful mathematical tool to seek exact
solution of other NLEEs, which should be suitable to
study other models in mathematical physics and engi-
neering. We hope that our results can be used to enrich
the dynamical behavior of higher-dimensional nonlin-
ear wave field.
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Appendix: Riemann theta function periodic waves

In order to consider three-periodic wave solutions of
Eq. (1). By taking N = 3, Riemann theta function
takes the following form
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ϑ(ξ, τ ) = ϑ(ξ1, ξ2, ξ3, τ ) =
∑

n∈Z3

exp(π i〈τn, n〉

+ 2π i〈ξ, n〉), (59)

in which n = (n1, n2, n3)T ∈ Z3, ξ = (ξ1, ξ2, ξ3) ∈
C3, ξi = ki x+li y+ri z+Mi t+εi , (i = 1, 2, 3).−iτ
is a positive-define and real-valued symmetric 2 × 2
matrix, which is of explicit form

τ =
⎛

⎝
τ11 τ12 τ13
τ21 τ22 τ23
τ31 τ321 τ33

⎞

⎠ , (60)

in which Im(τi j ) > 0, i = j = 1, 2, 3.

Theorem 6.1 [43–47] Supposing that ϑ(ξ1, ξ2, ξ3, τ )

is a multi-dimensional Riemann theta function as N =
3 and ξi = ki x + li y + ri z + Mi t + εi , then
ki , li , ri ,Mi (i = 1, 2, 3) hold the following expres-
sions

∑

n∈Z3

H (2π i〈2n − θi , ki 〉, . . . , 2π i〈2n − θi ,Mi 〉)

exp [π i(〈τ(n − θi ), n − θi 〉 + 〈τn, n〉] = 0, (61)

in which θi =
⎛

⎝
θ1i
θ2i
θ3i

⎞

⎠ and θ1 =
⎛

⎝
0
0
0

⎞

⎠, θ2 =
⎛

⎝
0
0
1

⎞

⎠,

θ3 =
⎛

⎝
0
1
0

⎞

⎠, θ4 =
⎛

⎝
0
1
1

⎞

⎠, θ5 =
⎛

⎝
1
0
0

⎞

⎠, θ6 =
⎛

⎝
1
0
1

⎞

⎠,

θ7 =
⎛

⎝
1
1
0

⎞

⎠, θ8 =
⎛

⎝
1
1
1

⎞

⎠, i = 1, 2, 3, . . . , 8.

According to the above Theorem 6.1 and Eq. (18),
the parameters ki , li , ri ,Mi should provide the follow-
ing expressions

∑

(n1,n2,n3)∈Z3

[
−4π2 (〈2n − θi , k〉 + 〈2n − θi , l〉

+ 〈2n − θi , r〉) 〈2n − θi ,M〉
+ 16απ4〈2n − θi , k〉3〈2n − θi , l〉
− 12αu0π

2〈2n − θi , k〉2

− 4γπ2
(
〈2n − θi , k〉2 + 〈2n − θi , r〉2

)
+ C

]

exp [π i(〈τ(n − θi ), n − θi 〉 + 〈τn, n〉] = 0. (62)

The above equation can be written in a new form
⎛

⎜⎜
⎜⎜
⎝

h11 h12 h13 h14 h15
h21 h22 h23 h24 h25
h31 h32 h33 h34 h35
h41 h42 h43 h44 h45
h51 h52 h53 h54 h55

⎞

⎟⎟
⎟⎟
⎠

⎛

⎜⎜
⎜⎜
⎝

M1

M2

M3

u0
C

⎞

⎟⎟
⎟⎟
⎠

=

⎛

⎜⎜
⎜⎜
⎝

b1
b2
b3
b4
b5

⎞

⎟⎟
⎟⎟
⎠

,

(63)

where

hi1 =
∑

n∈Z3

−4π2 (〈2n − θi , k〉 + 〈2n − θi , l〉

+ 〈2n − θi , r〉)
(
2n1 − θ1i

)
Ui ,

hi2 =
∑

n∈Z3

−4π2 (〈2n − θi , k〉 + 〈2n − θi , l〉

+ 〈2n − θi , r〉)
(
2n2 − θ2i

)
Ui ,

hi3 =
∑

n∈Z3

−4π2 (〈2n − θi , k〉 + 〈2n − θi , l〉

+ 〈2n − θi , r〉)
(
2n3 − θ3i

)
Ui ,

hi4 =
∑

n∈Z3

−12απ2〈2n − θi 〉2Ui ,

hi5 =
∑

n∈Z3

Ui ,

bi =
∑

n∈Z3

−16απ4〈2n − θi , k〉3〈2n − θi , l〉

+ 4γπ2
(
〈2n − θi , k〉2 + 〈2n − θi , r〉2

)
,

Ui = A
n21+(n1−θ1i )2

1 A
n22+(n1−θ2i )2

2 A
n23+(n3−θ3i )2

3

A
n1n2+(n1−θ1i )(n2−θ2i )

12 A
n1n3+(n1−θ1i )(n3−θ3i )

13

A
n2n3+(n2−θ2i )(n3−θ3i )

23 ,

A1 = eπ iτ11 , A2 = eπ iτ22 , A3 = eπ iτ12 ,

A12 = e2π iτ12 , A13 = e2π iτ13 ,

A23 = e2π iτ23 , (64)

We solve the above system andwe can obtain the three-
periodic wave solution as

u = u0y + 6α

β
∂x ln ϑ(ξ1, ξ2, ξ3, τ ), (65)

in which ϑ(ξ1, ξ2, ξ3, τ ) and (M1,M2,M3, u0, C)T

are known by (59). The other parameters ki , li , ri , εi ,
τi j (i, j = 1, 2, 3) are free.
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Summing up the above analysis for the three-
periodic wave solution, the following assertion is con-
structed.

Theorem 6.2 Supposing that ϑ(ξ1, ξ2, ξ3, τ ) is a Rie-
mann theta function with N = 3 and ξi = ki x + li y +
ri z + Mi t + εi (i = 1, 2, 3). The VC-BKP equation
(i.e., Eq. (1)) admits a three-periodic wave solution as
follows

u = u0y + 6α

β
∂x ln ϑ(ξ1, ξ2, ξ3, τ ), (66)

where u0 and ϑ(ξ1, ξ2, ξ3, τ ) fulfill the expression (63)

and (63). In addition, θi =
⎛

⎝
θ1i
θ2i
θ3i

⎞

⎠ and, θ1i1 = 0,

θ1j1 = 1, with i1 = 1, 2, 3, 4, j1 = 5, 6, 7, 8, θ2i2 = 0,

θ2j2 = 1, with i2 = 1, 2, 5, 6, j2 = 3, 4, 7, 8, θ3i3 = 0,

θ3j3 = 1, with i3 = 1, 3, 5, 7, j2 = 2, 4, 6, 8. The
other parameters ki , li , ri , εi , τi j (i, j = 1, 2, 3) are
arbitrary parameters.
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