
Nonlinear Dyn (2017) 88:2241–2254
DOI 10.1007/s11071-017-3373-9

ORIGINAL PAPER

Routes to bursting in active control system with multiple
time delays

Yue Yu · Chun Zhang · Xiujing Han

Received: 13 March 2016 / Accepted: 21 January 2017 / Published online: 3 February 2017
© Springer Science+Business Media Dordrecht 2017

Abstract This paper investigates the generation of
some novel bursting patterns in active control oscillator
with multiple time delays. We present the bursting pat-
terns, including symmetric codimension one and codi-
mension two bursters with the slow variation of peri-
odic excitation item. We calculate the bifurcation con-
ditions of fast subsystemaswell as its stability related to
the time delay. We also identify some regimes of burst-
ing depending on the magnitude of the delay itself and
the strength of time delayed coupling in the model. Our
results show that the dynamics of bursters in delayed
system are quite different from those in systems with-
out any delay. In particular, delay can be used as a tun-
ing parameter to modulate dynamics of bursting cor-
responding to the different type. Furthermore, we use
transformed phase space analysis to explore the evo-
lution details of the delayed bursting behavior. Time
delay can enhance the spiking performance and obtain
the remarkable spiking dynamics even in a very simple
model, which enriches the routes to bursting dynam-

Y. Yu (B)
School of Science, Nantong University, Nantong 226019,
People’s Republic of China
e-mail: yu.y@ntu.edu.cn

C. Zhang
School of Mathematical Science, Huaiyin Normal
University, Huaiyin 223300, People’s Republic of China

X. Han
Faculty of Science, Jiangsu University, Zhenjiang 212013,
People’s Republic of China

ics. Also some numerical simulations are included to
illustrate the validity of our study.

Keywords Bursting dynamic · Multiple delays ·
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1 Introduction

With the rapid development of active control of vibra-
tion, time delay feedback control has drawn much
attention of researchers in modeling realistic neuronal
networks, physics, mechanics and engineering systems
and so on [1–4]. The existence of time delays may lead
to oscillation, divergence, instability or chaos. There-
fore, the subject of the analysis of dynamical systems
with time delay is of both theory and practical value
and has attracted considerable attention during the past
two decades [5–8].

In recent years, the studies of bursting (mixed-
mode oscillations) have received great attentions [9–
11], which are frequently involved in many dynamical
systems. Bursting oscillations are waveforms that con-
sist of alternating small and large amplitude excursions.
Mathematically, the generation of bursting oscillations
is often associatedwith fast and slow subsystems simul-
taneously [12,13]. Then, bursting oscillations can be
created by the system switching between the coexist-
ing attractors of the fast subsystem corresponding to
the slow current. Two important bifurcations associ-
ated with the bursting, i.e., the bifurcation of the qui-
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Fig. 1 Practical vibration
device. a A mass-spring
oscillator with delayed
spring force related to Eq.
(1). b An active delay
control system related to
Eq. (2)

escent (rest) process that leads to the repetitive spiking
(firing) process and the bifurcation of the spiking (fir-
ing) process back to the quiescent (rest) process, can
be observed [14–16].

Obviously, it is important to investigate the knowl-
edge of both delay control and busting dynamic as
typical dynamical behaviors in nonlinear dynamical
phenomena. However, few publications are concerned
with the effect of time delay on the bursting genera-
tion mechanism, and a variation of remarkable oscilla-
tions, due to the time delay, have not been effectively
revealed especially in the system with multiple time
delays. Moreover, the bifurcation analysis is a very
important nonlinear research approach on various types
of bursting oscillations,which is used to indicate a qual-
itative change under the variation of one ormore param-
eters on which the considered system depends. It can
be shown that the typical properties of different burst-
ing behaviors are related to the bifurcations induced by
delays.

Active control systems are used to control the
response of structures to internal or external excita-
tion [17–19]. Sun et al. [20] studied the bifurcation and
chaotic motion in a Duffing oscillator subjected to an
active control when delay is taken into account. Hu
et al. [21] studied the controlled system with multiple
time delays by singular perturbation method. We begin
our work from the following classical one-degree-of-
freedom system (Fig. 1a),

ẍ(t)+ ẋ(t)− x(t−τ1)+ux3(t−τ1) = F cos(�t) (1)

Yutaka et al. [22] studied the resonance of Eq. (1)
and examined the influence of initial conditions on the
steady state solution by means of integral curves.

As shown in Fig. 1a, which has a positive mass,
viscous damping and a restoring force expressed by the

function of f (x) = ux3 (t − τ1)− x (t − τ1), where u
is the coefficient which represents a deviation from the
linear restoring force, τ1 is the constant of nonlinear
time delay and x (t) is displacement and t is the time.
System (1) is also excited by the external excitation
item of F cos (�t), where F is amplitude and � is
the forcing frequency. The free vibration of Eq. (1) is
investigated by using the method of center manifold
reduction [23,24].

In order to avoid divergence behavior related to the
original delay system (1), a delayed state feedback
vx (t − τ2) is introduced into Eq. (1), and the active
controlled device can be illustrated in Fig. 1b, so that
the closed loop can be described by the following mul-
tiple delay active control system (MDACS), which is
written as

ẍ(t) + ẋ(t) − x(t − τ1) + ux3(t − τ1)

+vx(t − τ2) = F cos(�t) (2)

An essential feature of active control systems is that
external power may affect the control action [25]. In
our study, we assume 0 < � � 1. For the external
frequency, � deviates far from the frequency of self-
excited vibration, i.e., two time scales evolve in the
vector field, bursting oscillations may occur. The main
goal of the paper is to investigate the bursting mech-
anism in this active control oscillator with time delay
feedback, which can be analyzed by the local stability
and divergence. Through bifurcation analysis, differ-
ent types of bursting oscillations with the variation of
parameters and effects of time delays on this bursting
dynamic in active control system can be discussed in
depth.

The rest part of this paper is organized as follows:
In Sect. 2, an analysis of the bifurcations and dynam-
ics is obtained as a function of the magnitude of time
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delay itself as well as its coupling values. In Sects. 3
and 4, bursting phenomena including some codimen-
sion one and codimension two bursters are presented,
and the effects of some parameters including time delay
on such bursting are discussed. Investigations of occur-
rence and mechanism of certain bursting dynamics are
also presented. Finally, Sect. 5 concludes the paper.

2 Stability and bifurcation analysis

With the assumption that the excitation frequency 0 <

� � 1, which is far small comparing to the natural fre-
quency, implying that the excitation term F cos (�t)
changes very slowly with the evolution of the time,
we can regard F cos (�t) as a generalized state vari-
able ρ = F cos (�t). The MDACS of Eq. (2) can be
considered as the coupling of two subsystems, the fast
subsystem of which can be presented as follow:

ẍ(t)+ẋ(t)−x(t−τ1)+ux3(t−τ1)+vx(t−τ2) = ρ (3)

while the slow one can be written as ρ = F cos (�t). It
can be checked that ρ̇ = −F� sin (�t), which forms
the slow subsystem for the far small value of � � 1.
The aim of this section is to find the practical criteria
of delay-independent stability for the damped vibrating
systems governed by Eq. (3), when two time delays
appear in the state feedback. We start our study from
the single delay active control system (SDACS), and
then generalize t to the MDACS.

2.1 Bifurcation analysis of SDACS

Equation (3) can be reduced to the following SDACS,
which is given by

ẍ (t) + ẋ (t) − x (t − τ1) + ux3 (t − τ1) = ρ (4)

Putting ẋ (t) = y (t) into Eq. (4), we can obtain the
equilibrium coordinates of (x, 0), where x is decided
by the following algebraic equation

ux3 − x − ρ = 0 (5)

Fold bifurcation

From Eq. (5), it is easy to see the root discriminant is
Δ = 81 (ρ/u)2−12 (1/u)3, which implies that there is

the unique equilibrium at Δ > 0, there are three equi-
libriums at Δ < 0, and there are two equilibriums at
Δ = 0. Simplify the discriminant, the critical condi-
tion for fold bifurcation can be expressed in the form
of u = 4/27ρ2.

Linear stability analysis

Next, we turn to the local stability and bifurcation of the
stationary solution. Substituting solutions as the form
of x (t) = x0eλt , into the corresponding linearized form
of Eq. (4), where λ is the eigenvalue, λ = δ + ωi ,
δ is the growth or decay rate, ω is the frequency of
oscillations and x0 depends on the initial conditions,
the characteristic equation is

(δ + ωi)2 + (δ + ωi) − e−(δ+ωi)τ1 = 0 (6)

Separating Eq. (5), the real and imaginary parts to yield
the characteristic equations:

δ2 − ω2 + δ − e−δτ1 cos (ωτ1) = 0 (7)

2ωδ + ω + e−δτ1 sin (ωτ1) = 0 (8)

For a given timedelay τ1, Eqs. (7) and (8) have infinitely
many values of δ and ω. The value δ = 0 can corre-
spond to a bifurcation boundary separating stable from
unstable trivial solution. If δ > 0, the system grows
exponentially with time and is unstable; and if δ < 0,
the systemdecays exponentiallywith time and is stable.
To study the critical stability boundaries, we substitute
δ = 0 and ω > 0 into Eq. (6), and yield:

−ω2 + ωi − e−ωiτ1 = 0 (9)

Separating Eq. (9) into real and imaginary parts yields
the following characteristic equations:

ω2 + cos (ωτ1) = 0 (10)

ω + sin (ωτ1) = 0 (11)

The Hopf bifurcation can occur for two complex-
conjugate eigenvalues transversely crossing the imag-
inary axis. Squaring both sides of Eqs. (10) and (11),
adding to each other, then it can be written as:

F (ω) = ω4 + ω2 − 1 = 0 (12)
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Fig. 2 Diagram for the stability and bifurcations in MDACS. a Cusp bifurcation in MDACS with respect to the parameters ρ and v . b
Bistable structure of two equilibrium attractors E± (focuses) separated by the saddle E0

This equation has a pair of real roots. We are interested

in theuniquepositive root, i.e.,ω∗ =
√(

−1 + √
5
)

/2,

which can determine a series of critical time delays

τk = [
arcsin

(−ω∗) + 2kπ
]
/ω∗, k = 1, 2, . . . (13)

The smallest positive critical time delay denoted by τ1
at k = 1 is particularly interested. Denote this value by
τ ∗
1 = (arcsin (−ω∗) + 2π) /ω∗, and differentiate Eq.
(12) with respect to ω for ω = ω∗, we obtain

dF

dω
|ω=ω∗ = 4(ω∗)3 + 2ω∗ > 0 (14)

The condition for the inequality (14) indicates that each
crossing of the real part of characteristic roots at τ ∗

1
must be from left to right. According to the criteria
of stability switches, the characteristic Eq. (6) has at
least a pair of conjugate purely imaginary roots with
positive real parts for τ1 < τ ∗

1 , and it has at least two
pair of conjugate purely imaginary roots with positive
real parts for τ1 > τ ∗

1 . Therefore, the trivial equilibrium
of SDACS is always unstable for any time delay τ1 > 0,
and the following results can be concluded.
Linear solution of SDACS:

(i) The trivial equilibrium of SDACS is always unsta-
ble for any time delay τ1 > 0.

(ii) A fold bifurcation may occur at u = 4/27ρ2.

2.2 Bifurcation analysis of MDACS

Now, we consider the stability and bifurcations of
MDACS under the case of v �= 0. Putting ẋ (t) = y (t)
into Eq. (3), we can obtain the equilibrium coordinates
of (x, 0), where x is decided by the following algebraic
equation

ux3 + (v − 1) x − ρ = 0 (15)

Cusp bifurcation
The numbers and bifurcations of these equilibriums
are also determined by the coupling strength of two
time delays. For the fixed coupling coefficient u = 1,
the equilibrium point curve on double-parameter bifur-
cation set of (v, ρ) related to MDACS is computed
and plotted in Fig. 2a, where CP = (1, 0, 0) means
the supercritical cusp bifurcation point, which implies
the intersection of twofold bifurcation curves. Partic-
ularly taking u = 1, v = −1, ρ = 0, τ1 = 0.2
and τ2 = 0.1, three equilibriums are E0 = (0, 0)

and E± =
(
±√

2, 0
)
, while E0 = (0, 0) is a saddle

equilibrium and E± =
(
±√

2, 0
)
are stable focuses,

implying system is bistable.
To get a clear idea of the distribution of equilib-

rium points of Eq. (3), we plot the phase portraits in
the space of (ρ, x, y) at u = 1, v = −1, correspond-
ing to these equilibriums in Fig. 2b. As ρ increases
(decreases) from the zero, the saddle E0 becomes grad-
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ually far from the sink E± and approaches the other
sink E±. When ρ increases (decreases) through the
fold bifurcation points F1,2, two untrivial equilibriums
E± collide and disappear, leaving the only attractor of
MDACS in the phase space and the system loses its
bistability and becomes stable.

Linear stability analysis
The linearized equation of MDACS is

ẍ + ẋ − x(t − τ1) + vx(t − τ2) = 0 (16)

Substituting solutions as the form of x (t) = x0eλt , into
Eq. (16), where λ is also the eigenvalue, λ = δ + ωi .
The corresponding characteristic equation is

(δ + ωi)2 + (δ + ωi) − e−(δ+ωi)τ1 + ve−(δ+ωi)τ2 = 0

(17)

Obviously, Eq. (17) has zero root for the value of v = 1;
thus we can conclude the steady state bifurcation may
occur at v = 1, which is independent of the delay τ2.
If v < 1, it is easy to see that the trivial equilibrium
of MDACS is always unstable. Therefore, v > 1 is
assumed to be true for the following discussion about
trivial equilibrium point.

Substituting δ = 0 and ω > 0 into Eq. (17) and
separating the real and imaginary parts to yield:

ω2 + cos (ωτ1) = v cos (ωτ2) (18)

ω + sin (ωτ1) = v sin (ωτ2) (19)

Eliminating τ1 from Eqs. (18) and (19), gives

F (ω) =
(
ω2 − v cos (ωτ2)

)2
+ (ω − v sin (ωτ2))

2 − 1 = 0 (20)

Equation (20) gives the frequencies ω of possible non-
hyperbolic solutions. Due to the continuity of the char-
acteristic exponents with respect to changes of param-
eters, the stability analysis can be performed for each
domain described by Eqs. (18) and (19), while the cor-
responding stability and bifurcation boundaries are pre-
sented in delay parameter space of (τ1, τ2) for fixed
v = 2 by employing the numerical computations (see
Fig. 3).

Differentiating the characteristic Eq. (17) with res-
pect to τ1 and τ2 at λ = ωi , we have

Fig. 3 Boundary interface of stability near stationary solution
in MDACS on the delay parameter space (τ1, τ2) at v = 2

d (Reλ)

dτ1

∣∣∣∣
λ=ωi

= Re

( −λe−τ1λ

2λ + 1 + τ1e−τ1λ − τ2ve−τ2λ

)∣∣∣∣
λ=ωi

�= 0

(21)
d (Reλ)

dτ2

∣∣∣∣
λ=ωi

= Re

(
λe−τ2λ

2λ + 1 + τ1e−τ1λ − τ2ve−τ2λ

)∣∣∣∣
λ=ωi

�= 0

(22)

In Eqs. (21) and (22) imply the MDACS obeys the
transversality conditions of Hopf bifurcation theorem
and undergoes a sequence of Hopf bifurcation on the
critical stability boundaries. Furthermore, in the sta-
ble range, the trivial equilibrium is a stable focus,
while with the couple delays crossing the critical val-
ues defined by Eqs. (18) and (19) to unstable region,
a pair of eigenvalues will cross the imaginary axis and
the MDACS occurs Hopf bifurcation, i.e., a family of
periodic solutions bifurcated from trivial equilibrium.
Thus, we have the following results for MDACS.

Linear solution of MDACS
If v and τ1 satisfy the stability conditions, and all the
roots related to Eqs. (17) and (18) are simple, then
there exists exactly a critical time delay of τ ∗

2 (v, τ1)

in MDACS such that:
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(i) A cusp bifurcation may occur at v = 1.
(ii) The trivial equal equilibrium is asymptotically sta-

ble when τ2 ≤ τ ∗
2 (v, τ1), and a Hopf bifurcation

may occur at τ ∗
2 (v, τ1), where τ ∗

2 (v, τ1) ≤ τ ∗
1 .

Limit cycles bifurcated from nontrivial equilibriums
Appearance of limit cycles bifurcated from nontrivial
equilibriums can be discussed similarly. Take equilib-
rium points E± (x±, 0) for example, where x± are non-
zero solutions in Eq. (15). A transformation from E±
to the origin, leads to the following equation.

⎧⎨
⎩
Ẋ (t) = Y (t)
Ẏ (t) = −Y (t) + (X (t − τ1) + x±)

−u (X (t − τ1) + x±)3 − v (X (t − τ2) + x±) + ρ

(23)

Denoting the equilibrium of Eq. (23) as (X0,Y0),
and one can easily find out that (X0,Y0) = (0, 0). The
characteristic equation of Eq. (23) is

det

(
λ −1

−e−λτ1 + ve−λτ2 + 3ux2± λ + 1

)
= 0 (24)

Thus, the corresponding characteristic equation can be
described as

F (λ) = λ2 + λ − e−λτ1 + ve−λτ2 + 3ux2± = 0 (25)

Letting λ = ωi , where ω is real and positive, and sepa-
rating (25) into real and imaginary parts, one can obtain

−ω2 − cos (ωτ1) + v cos (ωτ2) + 3ux2± = 0, and ω

+ sin (ωτ1) − v sin (ωτ2) = 0.

Using the square condition, adding the two equa-
tions and performing some simplification processes,
the Hopf bifurcation can be illustrated in Fig. 4 for
fixed couple delays (τ1, τ2) equal to (0.2, 0.15) and
(0.25, 0.1), respectively. From Fig. 4, we can find that
the two untrivial equilibriums E± will undergo Hopf
bifurcations (H1,2 or H∗

1,2 in Fig. 4) after ρ increases
(decreases) through fold bifurcations (F1,2 in Fig. 4).
When the couple delays are modulated, the critical val-
ues for the two symmetric Hopf bifurcations will have
significant changes.

Fig. 4 Static Hopf bifurcations near two untrivial equilibriums
E± in the parameter plane of (ρ, x, y) for fixed couple delays
(τ1, τ2) equal to (0.2, 0.15) and (0.25, 0.1), where u = 1 and
v = 0.5

3 Bursting phenomena in MDACS

3.1 Burster related to codimension one bifurcation

In this subsection, we discuss the singularity in the
fast system related to Eq. (2) and classify the bursting
dynamic as codimension one periodic burster, namely
that which occurs through codimension one bifurcation
points in the fast subsystem. Spiking formation can be
distinguished by analyzing bifurcation mechanism of
steady state which transits from the quiescence process
to the repetitive spiking process. For the fixed param-
eters u = 1, v = 0.5, F = 2 and � = 0.01, we per-
form a detailed bifurcation analysis for codimension
one burster and explore the properties of some cru-
cial bifurcation points on such bursters, in which the
appropriate time delay itself and the strength of time
delayed coupling must be chosen based on the stability
and bifurcation conditions we have discussed in Sect.
2.

3.1.1 Symmetric burster for fold bifurcation

When the delayed oscillator is subjected to slow para-
metric excitation, complex oscillation patterns can be
obtained. Such oscillations are characterized by a clus-
ter of large amplitude oscillations that alternates with
the line-like small amplitude oscillations, which can be
distinguished by analyzing bifurcation mechanisms of
steady state that transits from the quiescent state to the
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Fig. 5 Diagrams related to
MDACS for u = 1, v = 0.5,
F = 2, � = 0.01, τ1 = 0.2
and τ2 = 0.15. a Portrait
phase on space (ρ, x, y),
where F1,2 are fold
bifurcation points.
b Time series of bursting
trajectories

repetitive spiking process. So the slowmanifold and its
bifurcation diagram can be superimposed to detect the
generation mechanism of bursting oscillations.

At τ1 = 0.2 and τ2 = 0.15, the phase portrait as well
as the time series are presented in Fig. 5, from which
one may find the trajectories of the burster with sym-
metric structure oscillate between two parts associated
with the two equilibrium points via fold bifurcations.
The slow manifold and its bifurcation curve are also
superimposed to detect the generation mechanism.

As shown in Fig. 5a, the transition behavior runs
depending on the slow variable ρ, and the rate of con-
vergence to the quiescent state is relatively weak. The
trajectory in quiescent state disappears via fold bifurca-
tions labeled by points F1,2, while the repetitive spiking
process also terminates by fold bifurcations. The spe-
cificmechanism of this codimension one burster can be
explained as follows. In the bistable region, the system
has three equilibria, two stable focuses and one unsta-
ble saddle. The current state of the system is the rest
state. With the slow variation of ρ, the stable focus is
approached to the unstable saddle, where the fold bifur-
cation occurs. Then the trajectory starts spiking and
evolves to the other stable focus, which is the unique
attractor in the system. Similar situation takes place to

the initial stable branch of the attractor thereby com-
pleting the rest half of the bursting loop.

For the delayed oscillator does not have a limit cycle,
we refer to such codimensiononeburster as “symmetric
fold/fold bursting” of point–point type. We can remark
such hysteresis loops oscillate around two coexisting
stable focuses, i.e., the two stable branches of system
may exhibit similar evolution behaviors.

3.1.2 Symmetric burster for fold and Hopf bifurcation

The variation of time delays will lead the oscillation
interaction between the limit cycles bifurcated from
the Hopf bifurcation near the two untrivial equilibri-
ums, which makes the oscillator occurs another differ-
ent type of bursting. At τ1 = 0.25 and τ2 = 0.1, the
phase portrait as well as the time series are plotted in
Fig. 6, from which one may find the trajectories of the
burster with symmetric structure oscillate between two
parts associated with the two equilibrium points via
fold bifurcations and supercritical Hopf (supH) bifur-
cation, where codimension one bifurcation of interest
here is the Hopf bifurcation.

As shown in Fig. 6a, system (2) runs depending
on the slow variable ρ which controls transitions of
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Fig. 6 Diagrams related to
MDACS for u = 1, v = 0.5,
F = 2, � = 0.01,
τ1 = 0.25 and τ2 = 0.1.
a Portrait phase in space of
(ρ, x, y), where F1,2 are
fold bifurcation points, H1,2
are supercritical Hopf
bifurcation points. b Time
series of bursting
trajectories

the oscillations. The trajectory in quiescent state dis-
appears via fold bifurcations labeled by points F1,2.
Such dynamic behavior does not disappear until the
two coexisting limit cycles are created by Hopf bifur-
cations labeled by points H1,2, which lead to repetitive
spiking process.

The specific mechanism of this codimension one
burster can be explained as follows. In the bistable
region, the system has three equilibriums, two stable
focuses and one unstable saddle. The current state of
the system is the resting state. With the slow variation
of ρ, the stable focus is approached to the unstable
saddle, where the fold bifurcation occurs. Then, the
trajectory starts spiking and evolves to the other stable
focus, which is the unique attractor in the system.With
the further change of ρ, the amplitudes of oscillations
increase gradually because of the influence of Hopf
bifurcations at points of H1,2, i.e., the trajectory starts
to oscillate with large amplitude via supH bifurcation
point caused by the time delay. Thereafter, the system
terminates out of the spiking state and then decreases
to settle down to the equilibrium curve, which forms
the quiescent state. Similar situation takes place to the
initial stable branch of the attractor thereby completing
the rest half of the bursting loop.

The trajectory in quiescent state disappears via fold
bifurcations, while the repetitive spiking process termi-
nates by supH bifurcations. We can refer to such codi-
mension one burster as “symmetric fold/supH burst-

ing” of point-cycle type, since the spiking attractor is
a limit cycle. This fold/supH bursting, also known as
“tapered” bursting and “TypeV”bursting, has beenfirst
observed in the electrical activity of pyramidal cells of
the cat hippocampus or in models of the bursting elec-
trical activity in pancreatic cells [26].

3.2 Burster related to codimension two bifurcation

The codimension two bifurcation points [27,28] can
be the source of more complicated dynamics such as
multistability, quasi-periodicity and chaos. When the
parameters and delays approach critical values of a
Hopf–Hopf bifurcation, a Takes–Bogdanov bifurcation
and a Hopf-fold bifurcation, the fast subsystem of Eq.
(2) has the bursing types of codimension two. In this
subsection, we analyze the bursting dynamics related
to codimension two, which occur through some codi-
mension two bifurcations in MDACS.

In general, these codimension two bifurcation points
cannot easily be solved in a closed form. However,
they can be easily computed numerically. Therefore,
the numerical experiments are given to demonstrate the
behaviors of MDACS in the neighborhood of interac-
tion points of the three types described above. For crit-
ical values of delay itself and delay coupling, a Hopf-
fold bifurcation, a Hopf–Hopf bifurcation and a Takes–
Bogdanov bifurcation can be illustrated for Eq. (2) at
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Fig. 7 Phase trajectories
for Eq. (2) in the
neighborhood of three types
of codimension two
bifurcation points at ρ = 0.
a near the Hopf-fold
interaction for u = 1,
v = −1, τ1 = 0.3 and
τ2 = 0.28; b near the
Hopf–Hopf interaction for
u = 1, v = 2, τ1 = 0.2 and
τ2 = 0.7; c d near the
Takes–Bogdanov
interaction with two
different initial conditions
for u = 1, v = −2,
τ1 = 0.28 and τ2 = 0.26

ρ = 0 inFig. 7. InFig. 7a, two stable limit cycles,which
surrounds the two nontrivial equilibriums, are observed
near the Hopf-fold interaction at u = 1, v = −1,
τ1 = 0.3 and τ2 = 0.28. Figure 7b shows the exis-
tence of a stable 2-tour near the Hopf–Hopf interaction
at u = 1, v = 2, τ1 = 0.2 and τ2 = 0.7. Near the
Takes–Bogdanov interaction, solutions tend to the dif-
ferent nontrivial fixed points which are surrounded by
a large amplitude unstable limit cycle as illustrated in
Fig. 7c, d with two different initial conditions at u = 1,
v = −2, τ1 = 0.28 and τ2 = 0.26.

For the following discussion, we always fix the
parameters of u = 1, and the excited frequency is cho-
sen to be � = 0.05, which is far smaller than the natu-
ral frequency in MDACS. We take suitable parameter
values including the delays and the excitation item to
perform a detailed bifurcation analysis for codimen-
sion two bursters and explore the properties of some
crucial bifurcation points on such dynamics.

3.2.1 Symmetric burster for Hopf-fold bifurcation

Time delay magnitude will not affect the occurrence of
fold bifurcations, but the delay coupling can dramati-

cally affect the generation of the fold bursting. More-
over, we increase the delay across the critical value of
Hopf bifurcation, and the two untrivial equilibriumwill
undergo a supercritical Hopf bifurcation, which leads
to the occurrence of stable limit cycles, and then the fast
manifoldwill intersects with the supercritical threshold
near the Hopf-fold bifurcations, resulting into bursting
attractor existing among a long parameter range.

In order to further reveal the nature of the periodic
bursting of this type, we take the following numeri-
cal case as an example, i.e., the case when we fix the
parameters and delays at v = −1, F = 1.5, τ1 = 0.22
and τ2 = 0.18. The corresponding phase portraits as
well as the time series are presented in Fig. 8, where
the slow manifold is superimposed to the phase dia-
gram to get a clear idea about the dynamics. As shown
in Fig. 8a, a supercritical saddle-node (fold) bifurca-
tion is exhibited at ρ = ±0.82, which is also followed
by two supercritical Hopf bifurcations, where the two
nontrivial equilibrium points E± (bifurcated from fold
bifurcations) lose their stabilities and two coexisting
limit cycle attractors always exist. The trajectory in
quiescent state disappears via Hopf bifurcations, where
limit cycles are created by supHopf bifurcations, which
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Fig. 8 Diagrams related to
MDACS for u = 1,v = −1,
F = 1.5,� = 0.05,
τ1 = 0.22 and τ2 = 0.18.
a Portrait phase in space of
(ρ, x, y), where F1,2 are
fold bifurcation points.
b Time series of bursting
trajectories

lead to repetitive spiking process, while the repetitive
spiking process also terminates by supHopf bifurca-
tions.

The specific mechanism of this burster can be
explained as follows. In the bistable region, the sys-
tem has three equilibria, two stable untrivial equilibri-
ums and one unstable saddle. Meanwhile, due to the
interconnection of time delays, the trajectory starts to
oscillate with large amplitude via supercritical Hopf
bifurcations from two untrivial equilibriums induced
by the time delays. With the slow variation of ρ, the
stable limit cycle is approached to the unstable saddle,
where the fold bifurcation occurs. Then the trajectory
evolves to the other stable branch. Thereafter the sys-
tem terminates out of the spiking state and decreases
to settle down to the equilibrium curve also via Hopf
bifurcation. Similar situation takes place to the initial
stable branch of the attractor thereby completing the
rest half of the bursting loop.

On the other hand, there are two bifurcations: one is
the fold bifurcation that leads to the divergence from
the stable branch E± and the other is the supercritical

Hopf bifurcation that leads to the return to E±. These
two bifurcations from a hysteresis loop,which provides
vital links between rest state and spiking attractor. Such
spiking formations can be classified as the “symmet-
ric supHopf/supHopf” bursting of cycle-cycle type via
hysteresis loop, while the spiking attractors are limit
cycles.

3.2.2 Symmetric burster for Takens–Bogdanov
bifurcation

Basically, from the classification scheme for bursting
behavior, the paths near the singularity of Takens–
Bogdanov bifurcation may induce such different types
of bursting oscillations as Circle/Circle, Circle/
Homoclinic, Saddle-note/Circle, and Saddle-note/
Homoclinic. In fact, in order to control the utmost
possible, the magnitudes of time delay itself and its
coupling value should be chosen near the codimension
two bifurcation curve since the present work focuses
on bursting generation mechanism induced by Takens–
Bogdanov bifurcation, i.e., the existence of the saddle
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Fig. 9 Diagrams related to MDACS for u = 1, v = −2, F = 0.70, � = 0.05, τ1 = 0.18 and τ2 = 0.05. a Portrait phase in space of
(ρ, x, y), where Homo1,2 are the saddle homoclinic bifurcation points. b Time series of bursting trajectories

homoclinic orbit may cause the generation of another
bursting dynamic.

We fix the parameters at u = 1, v = −2, F = 0.70,
� = 0.05, τ1 = 0.18 and τ2 = 0.05. The correspond-
ing phase portraits as well as the time series are pre-
sented in Fig. 9. With the variation of the slow exci-
tation of ρ, the two nontrivial equilibrium points lose
their stabilities and two coexisting limit cycle attractors
appear. Further change of the parameter at ρ = ±0.53,
leading to the occurrence of the saddle homoclinic
bifurcation, causes the merge of the two types of oscil-
lations to form large amplitude oscillations, which is
the connection of the two groups of the cycles associ-
ated with E±.

The specific mechanism of this burster can be
explained as follows. In bistable region, the system
has three equilibriums, two stable untrivial equilibri-
ums and one unstable saddle. Meanwhile, due to the
interconnection of time delays, the trajectory starts to
oscillate with large amplitude via supercritical Hopf
bifurcations from two untrivial equilibriums induced
by the time delays.

With the slow variation of ρ, the stable limit cycle
is approached to the unstable saddle, where the tra-
jectory jumps from the original stable branch to the
other branch of stable periodic orbits. The frequency
of these periodic orbits decreases during the spiking
process until the family of periodic orbits disappears
in a saddle-loop connection (homoclinic orbit bifurca-
tion). This saddle-loop connection, in turn, marks the
end of the spiking state, since near it the trajectory will
jump back to the original stable branch, where the sys-
tem terminates out of the spiking state also via homo-
clinic bifurcation, which completing the rest half of the
bursting loop.

Such dynamic behavior is associated with two coex-
isting limit cycle interact with each other and form such
periodic oscillations with large amplitudes as relax-
ation oscillation, which leads to repetitive complex
spiking. We can refer to such spiking formation as
the “symmetric homoclinic/homoclinic bifurcation” of
cycle-cycle type, for the spiking process appears or ter-
minates by homoclinic bifurcations.
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4 Influence of time delay on bursting oscillations

The time delay is an important parameter of the delayed
system, because it influences system dynamic bifurca-
tions and its stability. Since bursting oscillations are
created when slow control parameter ρ passes through
values of the local bifurcations, the delays will play
an important role on the generation and evolution of
bursting oscillations.

First, we investigate the effects of time delay on
the amplitudes for fold bursting. Only if the forcing
amplitude is greater than the fold bifurcation value, this
bursting can appear. We can conclude the fold bursting
occurs which is independent of time delays. This indi-
cates that such dynamic will not lose its characters with
the variation of delays and a considerable large range of
delays could still stabilize the periodic bursting oscilla-
tion. Fix the parameters of u = 1, v = 0.5, F = 2 and
� = 0.01 in MDACS, time series for three selected
different couple delays is presented in Fig. 10.

Fig. 10 Time series in MDACS for three selected couple delays
(τ1, τ2) of (0.2, 0.1), (0.3, 0.2) and (0.1, 0.3), where u = 1,
v = 0.5, F = 2 and � = 0.01

For comparison, it can be seen, even if the delays are
selected as different sets of values, the bursting solution
still has similar form of the fold bursting and nearly
plots identical trajectories. We would like to point out
that the time delaywill not affect numbers of the spikes,
but it can be used to regulate the vibration amplitudes
of bursting oscillations.

Second, we turn to the effect of delays on bursting
about Hopf and homoclinic bifurcations. We can iden-
tify the generation of Hopf bifurcation as well as the
homoclinic orbit bifurcation bursting is closely related
to the magnitude of time delay. If the delays cannot
pass through such critical bifurcation values, trajecto-
ries will not go into the spiking state. To check what
happens in the regions of delay variation, the numerical
investigations are performed for the fixed parameters of
u = 1, v = −2, F = 1.5 and � = 0.01 in MDACS
(see in Figs. 11, 12, 13).

At the beginning, when (τ1, τ2) = (0.1, 0.06), the
periodic solution does not have obvious bursting tra-
jectories and the system moves in the stationary pro-
cess in Fig. 11. An influence of delays on bursting
dynamics for the two bursting cases can be shown
in Figs. 12 and 13. The first case when the couple
delays vary to (τ1, τ2) = (0.14, 0.07), the system
oscillates in a spiking amplitude of vibrations signifi-
cantly (see in Fig. 13). This type of motion arises from
supH bifurcation and can be determined by the delays
analytically. We can refer to such spiking formations
as the “supHopf/ supHopf bifurcation” of point-cycle
type. Both the quasi-stationary process and the repet-
itive spiking process terminate by supercritical Hopf
bifurcations, where the trajectories switch between the
untrivial equilibrium and a limit cycle.

By an variation of delays to (τ1, τ2) = (0.15, 0.08)
from the second case, the irregular periodic bursting
oscillations are obtained with the evolution of the limit

Fig. 11 Phase portraits for
Eq. (2) with different initials
for selected couple delays
(τ1, τ2) of (0.1, 0.06),
where u = 1, v = −2,
F = 1.5 and � = 0.01. a
limit cycle around untrivial
equilibrium E+. b limit
cycle around untrivial
equilibrium E−
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Fig. 12 Phase portraits for
Eq. (2) with different initials
for selected couple delays
(τ1, τ2) of (0.14, 0.07),
where u = 1, v = −2,
F = 1.5 and � = 0.01.
a Spiking attractor around
untrivial equilibrium E+.
b Spiking attractor around
untrivial equilibrium E−

Fig. 13 Phase portraits for
Eq. (2) with selected couple
delays (τ1, τ2) of
(0.15, 0.08), where u = 1,
v = −2, F = 1.5 and
� = 0.01. a On the phase
space of (x, y). b On the
phase space of (ρ, x)

cycle around the untrivial equilibrium E+ (or E−) to
homoclinic orbits. These novel spiking patterns are
related to saddle-focus homoclinic orbit bifurcation,
i.e., the repetitive spiking processes can be terminated
by homoclinic orbits near two untrivial equilibriums
and may interact with each other. We can refer to such
delay-induced spiking formation as “symmetric homo-
clinic/homoclinic bifurcation” of focus-focus type. We
would like to point out here that Fig. 13 exhibits the
coexistence of two nontrivial stable equilibriums and
symmetric homoclinic orbits, which coincides with a
novel route to bursting dynamic.

5 Conclusions

We have investigated the generation of bursting in
MDACSwith the slowlyvarying external periodic exci-
tation. The active control system with multiple time
delays may exhibit different bursting oscillations for
the order gap existing between the frequency of the
excitation item and the natural frequency. The stability
and bifurcation behaviors in this multiple time delayed
oscillator are discussed, as well as some bifurcation
conditions. By describing the external forcing as slow

variable and combining this bifurcation analysis of the
generalized autonomous system, we adopt bifurcation
analytical approach to study the various routes to delay-
induced bursting behaviors.

With the properly chosen delay and excitation, peri-
odic delay-induced bursting behaviors may be created,
and some remarkable wave forms to the repetitive spik-
ing are revealed. Some types of bursters corresponding
to codimension one or two bifurcations are obtained
and their generation mechanisms are discussed. Time
delay plays a key role to make simple system exhibit
complex spiking modes corresponding to the different
bifurcations.

The second-order non-autonomous differential
equation discussed in this letter is considered to be one
of the simplest dynamical systems,while it can produce
so complicated spiking mode. Time delays could be
used as a tuning parameter to generate bursting oscilla-
tions in a characteristic way, i.e., we conclude that the
time delay can enhance the spiking performance and
obtain the desired spiking dynamics even in a simple
model. Applying a time delay may be one of the best
approaches to control or regulate complicated bursting
dynamical motions. It should be interesting to study
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such dynamics in systems with the velocity feedback
delay, or larger number of delays, or delayed systems
with two or more degrees, and we will discuss those in
forthcoming papers.
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