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Abstract This paper focuses on the exponential syn-
chronization of nonlinearly coupled Markovian jump-
ing complex dynamical networks with stochastic per-
turbations under delayed impulsive controller. The
Markovian jumping parameters are represented as a
continuous-time, finite-stateMarkov chain. The impul-
sive control law is defined with both distributed as
well as discrete time-varying delays. By designing
the efficient impulsive control strategy and by using
the Lyapunov method and Ito’s formula, some sim-
ple and easily realized adequate conditions that assure
the exponential synchronization of considered complex
dynamical networks are derived in mean square sense.
Finally, some simulation results are granted to display
the effects of the theoretical findings.

Keywords Complex dynamical networks · Stochastic
perturbations · Impulsive control · Nonlinear coupling

1 Introduction

A complex dynamical network (CDN) is composed of
several coupled nodes combined by edges where each
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node characterizes a dynamical system. Most of the
real-world systems such as Internet, metabolic system,
telephone cell graphs, disease transmission networks
and so on can be labeled as CDNs. Particularly, the syn-
chronization phenomena in CDNs have earned grow-
ing attention among the research community and many
efficient methodologies to clarify the synchronization
problem of CDNs have been developed, see [1–7]. For
example, synchronization problem of CDNs via pin-
ning control under hybrid topologies has been analyzed
in [1]. In [4], exponential synchronization problem for
CDNs has been tackledwith the help of pinning period-
ically intermittent control technique. The issue of syn-
chronization for CDNswith similar nodes and coupling
time delay has been addressed in [5]. Recently, in [6],
authors have offered some new synchronization crite-
ria for CDNs by making use of sampled-data feedback
control. In CDNs, when signals are transmitted among
subsystems, the propagation delays are unavoidable as
a result of the finite speed of communication and lim-
ited bandwidth of the channels. Because of this cause,
while designing mathematical models it is important to
think about propagation delays, which are denoted as
coupling delays.

In most of the previous studies on CDNs, the inner
coupling is often assumed to be linear. However, con-
sidering many circumstances, this simplification does
not match the real-world networks, and the interplay of
nodes usually cannot be described accurately by linear
functions. Specific examples are cellular neural net-
works in which the neurons are coupled by the linear
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combination of their nonlinear activation function. For
nonlinear coupled networks, there only has been only
litter theoretical work on synchronization in the liter-
ature [8–10]. Pinning outer synchronization problem
for two delayed CDNs with nonlinear coupling has
been examined in [8]. Pinning synchronization crite-
ria for complex networks with nonlinear coupling and
time-varying delays have been acquired in [9] by mak-
ing use of M-matrix strategy. Global synchronization
problem for CDNs with nonlinear coupling and infor-
mation exchanges at discrete time has been considered
in [10].

In [11] Krasovskii and Lidskii have initiated the
Markovian jump systems, which can be regarded as
a certain class of hybrid system with two compo-
nents. This type of systems can be characterized by
means of a set of linear systems with the transfor-
mations among models determined by a Markovian
chain in a finite mode set, and it has applications
in power system, modeling production system, net-
work based control systems and so on. Addition-
ally, owing to component failures or repairs, unpre-
dictable natural changes, instant deviations of thework-
ing point of a nonlinear plant and interrelations, the
transition from one state to the other habitually takes
place in reference to certain probabilities, which is
driven through a Markov chain. Thus, it is signifi-
cant to consider Markovian jumping systems and there
are many results available in the existing literature,
see [12–19]. Authors in [12] have obtained the expo-
nential synchronization criteria for Markovian jump-
ing CDNs with randomly occurring parameter uncer-
tainties. Exponential synchronization criteria for neu-
ral networks with Markovian jumping parameters and
time-varying delays via sampled-data control has been
developed in [16]. Delay dependent conditions that
guarantee the exponential stability ofMarkovian jump-
ing recurrent neural networks with proportional delays
have been derived in [17]. Synchronization problem
of randomly coupled neural networks with Markovian
jumping parameters and time delays has been discussed
in [20].

While signals are transmitted fromonenode to other,
the state of the dynamical nodes typically depends on
instantaneous disturbances and meets sudden changes
because of the hasty environment. Owing to this rea-
son, the communicated signals may not be entirely
recognized by other subsystems and also there may
be some information lag in the transmitted signals.

This may cause some undesirable effects in the behav-
ior of CDNs. In an aim to overcome this difficulty,
while modeling CDNs stochastic perturbations are also
taken into account. Passivity analysis of Markovian
switching CDNs with multiple time-varying delays
and stochastic perturbations has been investigated in
[21]. Finite-time synchronization and identification of
Markovian jumping CDNs with stochastic perturba-
tions has been discussed in [22]. Synchronization cri-
teria for T–S fuzzy CDNs with time-varying impul-
sive delays and stochastic effects have been reported
in [23].

In practice, most of the dynamical networks can-
not synchronize by itself, and in order to achieve
synchronization, many control techniques have been
developed which include pinning control, impulsive
control, sampled-data control and so forth. Among
these control schemes, impulsive control method has
gained significant attention among researchers due to
their widespread applications in many areas such as
financial system, orbital transfer of satellites, ecosys-
tem management and so on. The main advantage
of impulsive control technique is that it performs
only at discrete instants and thus, the control cost
is reduced greatly. The existing literature has experi-
enced many works that deals with impulsive synchro-
nization of CDNs, see [24–29]. The problem of expo-
nential synchronization of nonlinearly coupled CDNs
with hybrid time-varying delays via impulsive con-
trol has been tackled in [24]. Synchronization prob-
lem of delayed CDNs with impulsive and stochastic
effects has been discussed in [28]. In [29], authors have
acquired impulsive synchronization criteria for T-S
fuzzymemristor-based chaotic systemswith parameter
mismatches.

Along with, input delays are inevitable while the
impulsive control signals are transmitted and observed
in network environments. So, it is necessary to pay
our attention on time delays when designing impul-
sive control law. Signal propagation may sometimes
be instantaneous which can be described with discrete
delays and such delay may also be distributed through-
out some time interval. Due to this reason, in this
paper we have designed the impulsive controller that
includes distributed delay and discrete delay. Recently,
authors in [30] have developed the pth moment expo-
nential stochastic synchronization criteria for coupled
memristor-based neural networks with discrete and
distributed delays by using delayed impulsive con-
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trol. Controllability of Boolean control networks with
impulsive effects and forbidden states has been inves-
tigated in [31]. In [32], outer synchronization of par-
tially coupled dynamical networks has been discussed
by using the pinning impulsive controller. Exponen-
tial synchronization criteria for discontinuous chaotic
systems via delayed impulsive control and its appli-
cation to secure communication have been addressed
in [33]. The problem of exponential synchronization
of discontinuous neural networks with time-varying
mixed delays via state feedback and impulsive control
has been tackled in [34]. Finite-time synchronization
problem for coupled networks with Markovian topol-
ogy and distributed impulsive effects has been investi-
gated in [35].

Inspired by the above revealed discussions, this
paper investigates the synchronization of CDNs with
nonlinear coupling and stochastic perturbations under
impulsive controller. From the control point of view,
impulsive control method is effective and robust in the
research of stability analysis, since it needs only small
control gains. Therefore, unlike other works, this paper
employs impulsive controller with both discrete and
distributed delays. By constructing an appropriate Lya-
punov functional and by using Ito’s formula, sufficient
criteria that ensure the synchronization of nonlinearly
coupled CDNswithMarkovian jumping and stochastic
perturbations are derived. Finally, to verify the validity
of the derived theoretical results, numerical simulations
for real-world systems such as Chen system, Rossler
system are provided.

The rest of this work is described as follows: Math-
ematical formulation of the problem and preliminar-
ies which we have used to obtain the main results are
given in Sect. 2. By making use of the delayed impul-
sive controller, exponential synchronization criteria for
nonlinearly coupled Markovian jumping CDNs with
stochastic perturbations have been developed in Sect. 3.
In order to verify the derived results, some numerical
simulations are offered in Sect. 4. Lastly, conclusions
are given in Sect. 5.

2 Problem formulation

In this work, let us assume {s(t), t ≥ 0} be a right con-
tinuousMarkov chain on the probability space catching
values in a finite space S = {1, 2, . . . , w̄} with genera-
tor π = πkl w̄×w̄ specified as

P(s(t + B(t)) = l|s(t) = k)

=
{

πklB + O(B) if k �= l
1 + πkk + O(B) if k = l

(1)

where B > 0 and limB(t)→0 O(B(t)/B(t)) = 0. Here
πkl ≥ 0 stands for the transition rate from k to l. If
k �= l then πkk =∑k �=l πkl .

Consider theMarkovian jumpingCDNconsisting of
L nonlinearly coupled identical nodes with stochastic
perturbations as follows:

dzi (t) = [ f (t, zi (t), zi (t − d1(t)))

+
L∑

i=1

pi j (s(t))Λ(s(t))g(zi (t))

+
L∑

i=1

qi j (s(t))Λ(s(t))h(zi (t − d2(t)))

]
dt

+ θ(s(t), zi (t), zi (t − d3(t)))dω(t),

i = 1, 2, . . . , L . (2)

where zi (t) = (zi1(t), zi2(t), . . . , zin(t))T ∈ R
n

serve as the state variable of the i th node at time
t ; f (t, zi (t), zi (t − d1(t))) = ( f1(t, zi (t), zi (t −
d1(t))), f2(t, zi (t), zi (t − d1(t))), . . . , fn(t, zi (t),
zi (t − d1(t))))T ∈ R

n represents a continuous vector-
valued function; P(s(t)) = (pi j (s(t)))L×L andQ(s(t))
= (qi j (s(t)))L×L are the non-delayed and delayed
outer linking matrix, respectively; If there is a relation-
ship among node i and node j (i �= j), pi j (s(t)) =
p ji (s(t)) �= 0, qi j (s(t)) = q ji (s(t)) �= 0; otherwise
pi j (s(t)) = p ji (s(t)) = 0, qi j (s(t)) = q ji (s(t)) = 0.

pii (s(t)) = −
L∑

j=1, j �=i

pi j (s(t))

and

qii (s(t)) = −
L∑

j=1, j �=i

qi j (s(t)).

Λ(s(t)) = diag{λ1(s(t)), λ2(s(t)), . . . , λn(s(t))} >

0 is the inner linking positive matrix; g(zi (t)) =
(g1(zi1(t)), g2(zi2(t)), . . . , gn(zin(t)))T and h(zi (t−
d2(t))) = (h1(zi1(t − d2(t))), h2(zi2(t − d2(t))),
. . . , hn(zin(t − d2(t))))T represents the non-delayed
inner coupling and delayed inner coupling vector func-
tions, respectively. d1(t) and d2(t) are the time-varying
delays satisfying 0 ≤ dm(t) ≤ dm, where dm, m =
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1, 2 are constants; ω(t) = (ω1(t), ω1(t), . . . , ω1(t))T

denotes n-dimensional Weiner process defined on
(Ω,F , {F}t≥0, P).θ : R+ × R

n × R
n → R

n×n is the
noise intensity function matrix. The initial conditions
of (1) are given by zi (t) = φi (t) ∈ LP

F0
[(−∞, 0];Rn].

In an aim to accomplish synchronization of (1), the
impulsive controller for the i th node is termed as

	zi (tk) = zi (t
+
k ) − zi (t

−
k ) = Uik(t

−
k ), (3)

where z(tk) = zi (t
+
k ) = limt→t+k

z(t), z(t−k ) =
limt→t−k

z(t) and Uik(t
−
k ) ∈ R

n is the impulsive con-
troller to be drawn. The impulsive instants tk grat-
ify 0 = t0 < t1 < t2 < . . . < tk−1 < tk <

· · · , limk→+∞ tk = +∞. Let

ri j (t) = z j (t) − zi (t), i = 1, 2, . . . , L ,

g(ri j (t)) = g(z j (t)) − g(zi (t)), i, j = 1, 2, . . . , L ,

h(ri j (t)) = h(z j (t)) − h(zi (t)), i, j = 1, 2, . . . , L .

In practice, when signals are transferred to the con-
trolled system from the receiver, there might be some
time delay. Due to this reason while designing the con-
trol law, it is essential to consider time delay. For this,
we have designed the following impulsive controller
with discrete and distributed delay:

Uik(t
−
k ) = Qik

(
ri j (t

−
k ), ri j (tk − τ1(tk)), . . . ,

ri j (tk − τm(tk)
)
,

∫ tk

t−τm+1(tk )
ri j (s)ds) − ri j (t

−
k ),

(4)

where the time-varying delays τi (t), i = 1, 2, . . . ,m+
1 satisfies 0 ≤ τi (t) ≤ τi , in which τi are posi-
tive constants. In (4), τ1, τ2, . . . , τm denote the dis-
crete delay and τm+1 stands for the distributed delay.
It should be mentioned that the CDN (1) with a set S
consist of s different modes, and the sthmode performs
when s(t) = s ∈ S. For notation convenience, when
s(t) = s, we signify thematrix corresponding to the sth
mode by 	(s) = 	(s(t)). Then, the error dynamical
system can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dri j (t) = [ f (t, z j (t), z j (t − d1(t)))
− f (t, zi (t), zi (t − d1(t)))

+
L∑

k=1
p jk(s(t))Λ(s(t))g(r jk(t))

−
L∑

k=1
pik(s(t))Λ(s(t))g(rik(t))

+
L∑

k=1
q jk(s(t))Λ(s(t))h(r jk(t − d2(t)))

−
L∑

k=1
qik(s(t))Λ(s(t))h(rik(t − d2(t)))]dt

+[θ(s(t), z j (t), z j (t − d3(t)))
−θ(s(t), zi (t), zi (t − d3(t)))]dω(t), t �= tk .

ri j (tk) = Qik
(
ri j (t

−
k ), ri j (tk − τ1(t)), . . . ,

ri j (tk − τm(t)),
∫ tk
t−τm+1(tk )

ri j (s)ds
)

.

(5)

Assumption 1 [43] For any x1, x2 ∈ R, there exist
constants η1l > 0 such that

gl(x1) − gl(x2)

x1 − x2
≥ η1l

for all l = 1, 2, . . . , n.

Assumption 2 For any x1, x2 ∈ R, assume hl(·) (l =
1, 2, . . . , n) are globally Lipschitz continuous func-
tions, i.e., there exist positive constants μ1l > 0 (l =
1, 2, . . . , n) such that

|hl(x1) − hl(x2)| ≤ μ1l |x1 − x2|

for all l = 1, 2, . . . , n .

Assumption 3 In the networks (2), for zi (t) ∈ R
n,

there exist constants wls(l, s = 1, 2, . . . , n) satisfying

| fl(t, z j (t), z j (t − d(t))) − fl(t, zi (t), zi (t − d(t)))|

≤
n∑

s=1

wls(|zsj (t) − zsi (t)| + |zsj (t − d(t))

− zsi (t − d(t))|).

Assumption 4 The noise intensity function θ(·) sat-
isfies the uniform Lipschitz condition and there exist
nonnegative constants m(s(t)) and n(s(t)) such that
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trace(θ(s(t), x1, y1) − θ(s(t), x2, y2))
T

(θ(s(t), x1, y1) − θ(s(t), x2, y2))

≤ m(s(t))‖x1 − x2‖2 + n(s(t))‖y1 − y2‖2.

Assumption 5 [30] There exist nonnegative constants
usk, s = 0, 1, . . . ,m + 1, such that

‖Qik(t
−
k )‖ ≤ u0k‖rTi j (t−k )‖ + u1k‖rTi j (tk − τ1(tk))‖ + · · ·

+ umk‖rTi j (tk − τm(tk))‖

+ u(m+1)k

(∫ tk

tk−τm+1(tk )
‖ri j (s)‖ds

)
,

where Qik(t
−
k ) = Qik(ri j (t

−
k ), ri j (tk − τ1(tk)), . . . ,

ri j (tk − τm(tk)),
∫ tk
tk−τm+1(tk )

ri j (s)ds).

Definition 1 The CDN with stochastic perturbations
(5) is said to be mean square globally exponentially
synchronized, if there exist constants α > 1 and ε > 0
such that for any initial values

L∑
i=1

E{‖ri j (t)‖2} ≤ sup
s≤0

L∑
i=1

E{‖φi (t)‖2}αe−εt

holds for t ≥ 0 where ri j (t) = z j (t) − zi (t), φi (t) =
(φi1(t), φi2(t), · · · , φin(t)), i = 1, 2, . . . , L , the norm
‖ri j (t)‖ is the standard Euclidean norm.

Lemma 1 [30] Consider the following impulsive dif-
ferential inequality:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

D+w(t) ≤ pw(t) + q1[w(t)]h1 + q2[w(t)]h2 + · · ·
+qm[w(t)]hm , t �= tk, t ≥ t0,

w(t+k ) ≤ akw(t−k ) + b1k [w(t−k )]d1 + b2k [w(t−k )]d2
+ · · · + brk[w(t−k )]dr , k ∈ N+,

w(t) = φ(t), t ∈ [t0 − h, t0]
where 0 ≤ d j (t) ≤ d j , p, qi , ak, b

j
k , hi , d j are con-

stants and qi , ak, b
j
k , hi , d j are nonnegative, i =

1, 2, . . . ,m, j = 1, 2, . . . , r, h = max{hi , d j , i =
1, 2, . . . ,m, j = 1, 2, · · · , r}, w(t) ≥ 0, [w(t)]τi =
supt−hi≤s≤t w(s), [w(tk)]d j = suptk−d j (tk)≤s≤tk w(s),
φ(t) is continuous on [t0 − h, t0], and w(t) is contin-
uous expect tk, k ∈ N+, where it has jump discontinu-
ities. The sequence {tk} satisfies 0 = t0 < t1 < t2 <

· · · < tk < tk+1 < · · · , and limk→+∞ tk = +∞.

Suppose that,

ak +
r∑
j=1

b j
k < 1, (6)

p +
∑m

i=1 qi

ak +∑r
j=1 b

j
k

+
ln
(
ak +∑r

j=1 b
j
k

)
tk+1 − tk

< 0. (7)

Then there exist constants α > 1 and ε > 0 such that

w(t) ≤ ‖φ‖hαe−ε(t−t0), t ≥ t0,

where ‖φ‖h = supt0−h≤s≤t0 ‖φ(s)‖.

3 Main results

The main objective of this section is to design the
delayed impulsive controller and to obtain some con-
ditions which assures the exponential synchronization
of (5).

Theorem 1 Assume that Assumptions 1–5 hold. Then
the CDN (5) is said to be mean square exponentially
synchronized under the impulsive controller (4) if there
exist constants ν > 0, υ > 0 and ρ > 0 such that
specified inequalities are satisfied:

(i) − Lη1 pi j (s)Λ(s)ρs − κ

2
Iρs + Lqi j (s)ρ2

2
Λ(s)ρs

+
w̄∑
l=1

πsl

2
ρl I ≤ 0; (8)

(ii)
Lμ2

1qi j (s)

2ρ2 Λ(s)ρs − υ

2
Iρs ≤ 0; (9)

(iii) θk =
(
u20k + u21k + · · · + u2mk + u(m+1)kτ

2
m+1

)
< 1

(10)

(iv) a + b

θk
+ ln θk

tk+1 − tk
< 0 (11)

where u = diag{u1, u2, . . . , un}, a(s) = 2M +
b̃ + κ + m̃(s), a = maxs∈S{a(s)}, b(s) = b̃ +
υ + ñ(s), b = maxs∈S{b(s)}, Mm =

N∑
m=1

(αmwν)2,

M = max
1≤m≤n

{Mm}, η1 = min
1≤l≤n

{η1l}, μ1 = min
1≤l≤n

{μ1l},
ν > 0, b̃ = n

ν2
, ñ = maxs∈S{ñ(s)}, 0 < ρs ≤ 1.

Proof Consider the Markovian switching Lyapunov
function

V(t) = 1

2

L∑
i=1

L∑
j=1

rTi j (t)ri j (t)ρs . (12)
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By using Ito’s formula and calculating the time deriva-
tive of V(t) along the trajectory of the system (5), one
can attain for any k ∈ N,

dV(t) =
L∑

i=1

L∑
j=1

rTi j (t)ρs[ f (t, z j (t), z j (t − d1(t)))

− f (t, zi (t), zi (t − d1(t)))]

+
L∑

i=1

L∑
j=1

rTi j (t)ρs

[
L∑

k=1

p jk(s)Λ(s)g(r jk(t))

−
L∑

k=1

pik(s)Λ(s)g(rik(t))

]

+
L∑

i=1

L∑
j=1

ρsr
T
i j (t)

[
L∑

k=1

q jk(s)Λ(s)h(r jk(t − d2(t)))

−
L∑

k=1

qik(s)Λ(s)h(rik(t − d2(t)))

]
dt

+
w̄∑
l=1

πsl

2
ρsr

T
i j (t)ri j (t)

+
L∑

i=1

L∑
j=1

rTi j (t)ρs[θ(s, z j (t), z j (t − d3(t)))

− θ(s, zi (t), zi (t − d3(t)))]dω(t)

+ 1

2

L∑
i=1

L∑
j=1

ρs trace[(θ(s, z j (t), z j (t − d3(t)))

− θ(s, zi (t), zi (t − d3(t))))
T

× (θ(s, z j (t), z j (t − d3(t)))

− θ(s, zi (t), zi (t − d3(t))))]dt (13)

With Assumption 3, and inequality pq ≤ |pq| ≤
1
2 [(pν)2 + (

q
ν
)2], the first term of (13) can be rewritten

as

T1 =
L∑

i=1

L∑
j=1

n∑
w=1

ρsr
w
i j (t)[ fw(t, z j (t), z j (t − d1(t)))

− fw(t, zi (t), zi (t − d1(t)))]

≤ ρs

L∑
i=1

L∑
j=1

n∑
w=1

[
n∑

m=1

αwm |rw
i j (t)||rmi j (t)|

+
n∑

m=1

αlm |rw
i j (t)||rmi j (t − d1(t))|

]

≤ ρs

L∑
i=1

L∑
j=1

n∑
w=1

n∑
m=1

(αwmν)2|rw
i j (t)|2

+ ρs

L∑
i=1

L∑
j=1

n∑
w=1

n

2ν2
|rw
i j (t)|2

+ ρs

L∑
i=1

L∑
j=1

n∑
w=1

n

2ν2
|rw
i j (t − d1(t))|2

=
L∑

i=1

L∑
j=1

Mρs |ri j (t)|2 + ρs

L∑
i=1

L∑
j=1

n

2ν2
|ri j (t)|2

+ ρs

L∑
i=1

L∑
j=1

n

2ν2
|ri j (t − d1(t))|2

≤ (2M + b̃)V(t) + b̃V(t − d1(t)) (14)

By means of Assumption 1, we have

T2 =
L∑

i=1

L∑
j=1

L∑
w=1

ρs p jw(s)rTi j (t)Λ(s)g(r jw(t))

−
L∑

i=1

L∑
j=1

L∑
w=1

ρs piw(s)rTi j (t)Λ(s)g(riw(t))

= −L
L∑

i=1

L∑
j=1

pi j (s)ρsr
T
i j (t)Λ(s)g(ri j (t))

≤ −L
L∑

i=1

L∑
j=1

pi j (s)ρsη1Λ(s)rTi j (t)ri j (t) (15)

By making use of Assumption 2, and inequality pq ≤
|p||q| ≤ 1

2 [(ρp)2 + (
q
ρ
)2], we can get

T3 =
L∑

i=1

L∑
j=1

L∑
w=1

ρsq jw(s)rTi j (t)Λ(s)h(r jw(t − d2(t)))

−
L∑

i=1

L∑
j=1

L∑
w=1

ρsqiw(s)rTi j (t)Λ(s)h(riw(t − d2(t)))

= −
L∑

i=1

L∑
j=1

L∑
w=1

ρsq jw(s)rTjw(t)Λ(s)h(r jw(t − d2(t)))

≤
L∑

i=1

L∑
j=1

L∑
w=1

ρsq jw(s)

[
L∑

m=1

λm(s)(
ρ2

2
(rmjw(t))2

+ μ2
1

2ρ2 (rmjw(t − d2(t)))
2)

]
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≤
L∑

i=1

L∑
j=1

ρs
Lqi j (s)ρ2Λ(s)

2
rTi j (t)ri j (t)

+
L∑

i=1

L∑
j=1

ρs
μ1Lqi j (s)Λ(s)

2ρ2 rTi j (t − d2(t))ri j (t − d2(t))

(16)

As reported in Assumption 4,

T4 = 1

2

L∑
i=1

L∑
j=1

ρs trace[θT (s, z j (t) − zi (t),

z j (t − d3(t)) − zi (t − d3(t))) × θ(s, z j (t) − zi (t),

z j (t − d3(t)) − zi (t − d3(t)))]

≤ ρs
1

2

L∑
i=1

L∑
j=1

m̃(s)‖z j (t) − zi (t)‖2

+ ñ(s)‖z j (t − d3(t)) − zi (t − d3(t))‖2
= m̃(s)V(t) + ñ(s)V(t − d3(t)) (17)

From (13)–(17), conditions (8) and (9), one can obtain

dV(t) ≤
[
(2M + b̃ + κ + m̃(s))V(t)

+b̃V(t − d1(t)) + υV(t − d2(t))

+
L∑

i=1

L∑
j=1

rTi j (t)

×
(
−Lη1 pi j (s)Λ(s)ρs − κ

2
Iρs

+ Lqi j (s)ρ2

2
ρs +

w̄∑
l=1

πsl

2
ρl

)
ri j (t)

+
L∑

i=1

L∑
j=1

rTi j (t − d2(t))

×
(
Lμ2

1qi j (s)

2ρ2 Λ(s)ρs − υ

2
Iρs

)
ri j (t − d2(t))

+ñ(s)V(t − d3(t))
]
dt

+
L∑

i=1

L∑
j=1

rTi j (t)ρsθ(s, z j (t), z j (t − d3(t)))

− θ(s, zi (t), zi (t − d3(t)))dω(t)

≤
[
a(s)V(t) + b̃V(t − d1(t)) + υV(t − d2(t))

+ ñ(s)V(t − d3(t))
]
dt

+
L∑

i=1

L∑
j=1

rTi j (t)ρsθ(s, z j (t), z j (t − d3(t)))

− θ(s, zi (t), zi (t − d3(t)))dω(t) (18)

Taking expectation on both sides of (18), we can get

dEV(t)

dt
≤ E{a(s)V(t) + b̃V(t − d1(t))

+ υV(t − d2(t))

+ ñ(s)V(t − d3(t))} (19)

If t = tk, k ∈ N, one can observe from Lemma 1,
Assumption 5 and the second equation of (5) that

V(t−k ) = 1

2

L∑
i=1

L∑
j=1

ρsr
T
i j (tk)ri j (tk)

= 1

2

L∑
i=1

L∑
j=1

ρs‖ri j (tk)‖2

= 1

2
ρs

L∑
i=1

L∑
j=1

u20k‖ri j (t−k )‖2

+ u21k‖ri j (tk − τ1(tk))‖2
+ · · · + u2mk‖ri j (tk − τm(tk))‖2

+ u2(m+1)k

(∫ tk

tk−τm+1(tk )
‖ri j (s)‖ds

)2

≤ u20kV(t−k ) + u21k[V(t−k )]τ1
+ · · · + u2mk[V(t−k )]τm
+ u2(m+1)kτ

2
m+1[V(t−k )]τm+1

which is pursued by

E{V(t−k )} ≤ u20kE{V(t−k )} + u21kE{[V(t−k )]τ1} + · · ·
+ u2mkE{[V(t−k )]τm }
+ u2(m+1)kτ

2
m+1E{[V(t−k )]τm+1} (20)

Therefore, there exist constants α > 1 and ε > 0 such
that, for any initial values ,

L∑
i=1

L∑
j=1

E{‖rTi j (t)‖2} ≤ sup
s≤0

L∑
i=1

L∑
j=1

E{‖φ(t)‖2}αe−εt

(21)
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holds for t ≥ t0. As stated in Definition 1, CDNs (5) is
mean square globally exponentially synchronized. 	

Remark 1 When the stochastic perturbations are not
taken into account, system (2) can be written as

żi (t) = f (t, zi (t), zi (t − d1(t)))

+
L∑

i=1

pi j (s(t))Λ(s(t))g(zi (t))

+
L∑

i=1

qi j (s(t))Λ(s(t))h(zi (t − d2(t))), (22)

i = 1, 2, . . . , L . (23)

In this case, one can attain the following result.

Corollary 1 Suppose that Assumptions 1–5 hold. Then
the CDN (22) is said to be mean square exponentially
synchronized under the impulsive controller (4) if there
exist constants ν > 0, υ > 0 and ρ > 0 such that
specified inequalities are satisfied:

(i) − Lη1 pi j (s)Λ(s)ρs − κ

2
Iρs + Lqi j (s)ρ2

2
Λ(s)ρs

+
w̄∑
l=1

πsl

2
ρl I ≤ 0; (24)

(ii)
Lμ2

1qi j (s)

2ρ2 Λ(s)ρs − υ

2
Iρs ≤ 0; (25)

(iii) θk = (u20k + u21k + · · · + u2mk + u(m+1)kτ
2
m+1)<1

(26)

(iv) a + b

θk
+ lnθk

tk+1 − tk
< 0 (27)

where u = diag{u1, u2, . . . , un}, a(s) = 2M +
b̃ + κ, a = maxs∈S{a(s)}, b(s) = b̃ + υ, b =
maxs∈S{b(s)}, Mm =

L∑
m=1

(αmwν)2, M = max
1≤m≤n

{Mm}, η1 = min
1≤l≤n

{η1l}, μ1 = min
1≤l≤n

{μ1l}, ν > 0, b̃ =
n
ν2

, 0 < ρs ≤ 1.

Remark 2 It should be stated that, if the Markov chain
{s(t), t ≥ 0} takes only one value, that is S = {1},
CDN (2) will turn out to be the successive one:

dzi (t) =
[
f (t, zi (t), zi (t − d1(t)))

+
L∑

i=1

pi jΛg(zi (t))

L∑
i=1

qi jΛh(zi (t − d2(t)))

]
dt

+ θ(t, zi (t), zi (t − d3(t)))dω(t),

i = 1, 2, . . . , L . (28)

Then one can attain the following Corollary.

Corollary 2 Suppose that Assumptions 1–5 hold. Then
the CDN (28) is said to be mean square exponentially
synchronized under the impulsive controller (4) if there
exist constants ν > 0, υ > 0 and ρ > 0 such that
specified inequalities are satisfied:

(i) − Lη1 pi jΛ − κ

2
I + Lqi jρ2

2
Λ ≤ 0; (29)

(ii)
Lμ2

1qi j
2ρ2 Λ − υ

2
I ≤ 0; (30)

(iii) θk =
(
u20k + u21k + · · · + u2mk + u(m+1)kτ

2
m+1

)
< 1

(31)

(iv) a + b

θk
+ lnθk

tk+1 − tk
< 0 (32)

where u = diag{u1, u2, . . . , un}, a = 2M + b̃ + κ +
m̃, b = b̃+ υ + ñ, Mm =∑L

m=1(αmwν)2, ν > 0, b̃ =
n
ν2

.

Remark 3 If we neglect the distributed delay from (4),
then one can acquire the impulsive rule as:

Uik(t
−
k ) = Qik

(
ri j (t

−
k ), ri j (tk − τ1(tk)), . . . ,

ri j (tk − τm(tk)
)
) − ri j (t

−
k ), (33)

where τi (t), i = 1, 2, . . . ,m are defined as in (4). Just
as Assumption 4, we present the following Assump-
tion:
There exist nonnegative constants usk, s = 0, 1, . . . ,
m + 1, such that

‖Qik(t
−
k )‖ ≤u0k‖rTi j (t−k )‖ + u1k‖rTi j (tk − τ1(tk))‖

+ · · · + umk‖rTi j (tk − τm(tk))‖ (34)

whereQik(t
−
k ) = Qik(ri j (t

−
k ), ri j (tk−τ1(tk)), · · · , ri j

(tk − τm(tk))).
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The following result can be obtained easily from The-
orem 1.

Corollary 3 Assume that Assumptions 1–5 hold. Then
the CDN (5) is said to be mean square exponentially
synchronized under the impulsive controller (33) if
there exist constants ν > 0, υ > 0 and ρ > 0 such
that specified inequalities are satisfied:

(i) − Lη1 pi j (s)Λ(s)ρs − κ

2
Iρs + Lqi j (s)ρ2

2
Λ(s)ρs

+
w̄∑
l=1

πslρl I ≤ 0; (35)

(ii)
Lμ2

1qi j (s)

2ρ2 Λ(s)ρs − υ

2
Iρs ≤ 0; (36)

(iii) θk =
(
u20k + u21k + · · · + u2mk

)
< 1 (37)

(iv) a + b

θk
+ ln θk

tk+1 − tk
< 0 (38)

where u = diag{u1, u2, · · · , un}, a(s) = 2M + b̃ +
κ + m̃(s), a = maxs∈S{a(s)}, b(s) = b̃ + υ + ñ(s),

b = maxs∈S{b(s)}, Mm =
L∑

m=1
(αmwν)2, M =

max
1≤m≤n

{Mm},
η1 = min

1≤l≤n
{η1l}, μ1 = min

1≤l≤n
{μ1l}, ν > 0, b̃ =

n
ν2

, ñ = maxs∈S{ñ(s)}, 0 < ρs ≤ 1.

Remark 4 In Theorem 1, the impulsive part contains
distributed delay as well as discrete delay. From the
inequalities (10) and (11), one can see that the derived
result is not associated with the value of the discrete
delay although it relies upon the value of the distributed
delay. When 0 ≤ τm+1 < 1, the distributed delay
performs a positive role in synchronization process. If
τm+1 > 1, then distributed delay performs a negative
role in synchronization process. When τm+1 = 1, the
role of the distributed delay and discrete delay are sim-
ilar.

Remark 5 In most of the existing works, it is assumed
that the coupling between the state variables of CDNs is
linear. For example, in [36], authors have inspected the
synchronization problem of linearly coupled CDNs. In
[37,38], synchronization problem for CDNs has been
tackled with the help of impulsive controller without
time delay. However, in most of the real life problems
the coupling scheme is nonlinear. Besides, since time

delays are unavoidablewhile signals are communicated
from the receiver to the system, it is significant to con-
sider time delays in the controller. In this paper,we have
considered the CDNs with nonlinear coupling and also
the controller has been designed with discrete and dis-
tributed delays.

4 Numerical example

In this part, some numerical simulations are given to
certify the above mentioned results.

Example 1 Consider the nodedynamics of three dimen-
sional Chen system as

⎧⎨
⎩
żi1(t) = a1(zi2(t) − zi1(t))
żi2(t) = a2zi1(t) − zi1(t)zi3(t) + a3zi2(t)
żi3(t) = zi1(t)zi2(t) − a4zi3(t)

(39)

where a1 = 35, a2 = −7, a3 = 28 and a4 = 3. Let the
non-delayed coupling matrices

P(1) =

⎡
⎢⎢⎢⎢⎣

−0.4 0.1 0.1 0.1 0.1
0.1 −0.4 0.1 0.1 0.1
0.1 0.1 −0.4 0.1 0.1
0.1 0.1 0.1 −0.4 0.1
0.1 0.1 0.1 0.1 −0.4

⎤
⎥⎥⎥⎥⎦ ,

P(2) =

⎡
⎢⎢⎢⎢⎣

−3 1 1 1 0
1 −4 1 1 1
1 1 −4 1 1
1 1 1 −4 1
0 1 1 1 −3

⎤
⎥⎥⎥⎥⎦

and the delayed coupling matrices

Q(1) =

⎡
⎢⎢⎢⎢⎣

−0.15 0.15 0 0 0
0.15 −0.3 0.15 0 0
0 0.15 −0.3 0.15 0
0 0 0.15 −0.3 0.15
0 0 0 0.15 −0.15

⎤
⎥⎥⎥⎥⎦ ,

Q(2) =

⎡
⎢⎢⎢⎢⎣

−0.1 0.1 0 0 0
0.1 −0.2 0.1 0 0
0 0.1 −0.2 0.1 0
0 0 0.1 −0.2 0.1
0 0 0 0.1 −0.1

⎤
⎥⎥⎥⎥⎦
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The transition probability matrix and system parame-
ters are described as follows:

Π =
[−0.2 0.2

0.3 −0.3

]
,

Λ(1) =
⎡
⎣0.1 0 0

0 0.1 0
0 0 0.1

⎤
⎦ ,

Λ(2) =
⎡
⎣0.2 0 0

0 0.2 0
0 0 0.2

⎤
⎦ ,

θ(t, ri j (t), ri j (t − d3(t)), 1)

= 0.8 diag{ri j1(t), ri j2(t), ri j3(t − d3(t))},
θ(t, ri j (t), ri j (t − d3(t)), 2)

= 0.9 diag{ri j1(t), ri j2(t), ri j3(t − d3(t))}.

Nonlinear coupling functions g(zi (t)) and h(zi (t −
d2(t))) are represented as g(zi (t)) = (zi1(t) +
0.005 sin zi1(t),
zi2(t) + 0.005 sin zi2(t), zi3(t) + 0.005 sin zi3(t)) and
h(zi (t − d2(t))) = (sin zi1(t − d2(t)), sin zi2(t −
d2(t)), sin zi3(t − d2(t))), d2(t) = 0.01et/(1 + et );
then one can easily derive that η1 = 0.995, μ1 = 1.1.
Choose

(αi j )3×3 =
⎛
⎝ 3 0.5 4
2 1 7
6 3.5 8

⎞
⎠ (40)

ν = 0.25, κ = 20, υ = 50, ρ = 10, m̃(1) =
0.8, ñ(1) = 0.5, m̃(2) = 0.6, ñ(2) = 0.9, ρ1 = 0.99
and ρ2 = 0.8. With the above parameters one can eas-
ily obtain that M = 7.0156, , a = 82.8312, b = 98.9.
From this, we can easily verify the first two conditions
of theorem 1 . Let the impulsive function Qik(t

−
k ) in

(4) be the following simple form

Qik(t
−
k ) = β1ri j (tk) + β2ri j (tk − 0.5| sin tk |)

+ β3

∫ tk

tk−0.5
ri j (s)ds (41)

with positive constants βi , i = 1, 2, 3. when β1 =
0.5, β2 = 0.2, β3 = 0.3, tk − tk−1 = 0.0028, we get
θk = 0.365 < 1 and

a + b

θk
+ ln θk

tk+1 − tk
= −6.1591 < 0. (42)

From Theorem 1, we can conclude that CDN (5) with
impulsive controller (4) is exponentially synchronized.
The chaotic attractor of the Chen system and state tra-
jectories of the error system (5) under the controller
(41) are given in Fig. 2. Figure 1 describes the net-
work topology of the CDN. The time response curve of
log(||ri j (t)||), trajectories of Markov chain and impul-
sive instants are given in Figs. 3 and 4, respectively.

Remark 6 Algorithm (time-delayed ODE):

Step 1: Discretize the time axes of system.
Step 2: Choose the time step h, Starting time, End
time.
Step 3: Find N0 =Starting time/h; N =end
time/h;
Step 4: for i : N + 1

if i <= N0 + 1
Define the initial conditions
else
Define the delay values
Update the system with control protocol
end if
end for

Step 5: plot the trajectories using plot command.

Example 2 Consider a single Rossler oscillator
described by the following dimensionless form as

⎧⎨
⎩
żi1(t) = −(zi2(t) + zi3(t))
żi2(t) = zi1(t) + c1zi2(t)
żi3(t) = c2 + zi3(t)(zi1(t) − c3)

(43)

where c1 = 0.2, c2 = 0.2, c3 = 5.7. The non-delayed
and delayed coupling matrices are taken as

P(1) =
⎡
⎣−2 1 1

1 −2 1
1 1 −2

⎤
⎦ , P(2) =

⎡
⎣−1 1 0

0 −1 1
1 0 −1

⎤
⎦ ,

Q(1) =
⎡
⎣−0.2 0.1 0.1

0.1 −0.2 0.1
0.1 0.1 0.2

⎤
⎦ ,

Q(2) =
⎡
⎣−1 0 1

0 −1 1
1 1 −2

⎤
⎦ .

The system parameters Λ(1),Λ(2), nonlinear cou-
pling functions g(zi (t)) and h(zi (t − d2(t))) and the
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Fig. 1 Network topology of the CDN in Example 1

transition matrix Π are taken as in Example 1. Select

(αi j )3×3 =
⎛
⎝ 3 4.9 2
1 2.5 5
2 6 5.8

⎞
⎠ . (44)
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Fig. 2 Chen chaotic attractor and time responses of the error
system (5)
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It is easy to obtain thatM = 4.6025, η1 = 0.995, μ1 =
1.1, κ = 20, υ = 50, ρ = 10, m̃(1) = 0.5, ñ(1) =
0.6, m̃(2) = 0.2, ñ(2) = 0.3, a = 77.705, b = 98.6.
Consider the impulsive function Qik(t

−
k ) in (4) as fol-

lows:

Qik(t
−
k ) = β1ri j (tk) + β2ri j (tk − 0.5| sin tk |)

+ β3

∫ tk

tk−0.5
ri j (s)ds (45)

with positive constants βi , i = 1, 2, 3. when β1 =
0.1, β2 = 0.2, β3 = 0.2, tk − tk−1 = 0.002, we get
θk = 0.1 < 1 and

a + b

θk
+ ln θk

tk+1 − tk
= −85.24 < 0. (46)

One can easily verify the hypotheses (i) and (ii) of
Theorem 1 with ρ1 = 0.99 and ρ2 = 0.8. With
the statement of Theorem 1, CDN (5) with impulsive
controller (4) is exponentially synchronized. Figure 6,
depicts the chaotic attractor of Rossler system and time
responses of the error system. The topological structure
of the complex network is described by Fig. 5. Figure 7
describes the time response curve of log(||ri j (t)||) and
the impulsive instants are shown in Fig. 8.

Example 3 Consider the following CDN as

dzi (t) =
[
f (t, zi (t), zi (t − d1(t)))

+
L∑

i=1

pi jΛg(zi (t))
L∑

i=1

qi jΛh(zi (t − d2(t)))

]
dt

+ θ(t, zi (t), zi (t − d3(t)))dω(t), i = 1, 2, . . . , 5.
(47)

The nonlinear function is defined as

f =
[−0.5xi1 + tan h(0.2xi1) + 0.2xi2

0.65xi2 − tan h(0.45xi2)

]
.

The system parameters are all defined as in Example 1.
Choose the impulsive function Qik(t

−
k ) in (4) as,

Qik(t
−
k ) = β1ri j (tk) + β2ri j (tk − 0.5| sin tk |)

+ β3

∫ tk

tk−0.5
ri j (s)ds (48)
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Fig. 5 Network topology of the CDN in Example 2

with positive constants βi , i = 1, 2, 3. when β1 =
0.2, β2 = 0.3, β3 = 0.2, tk − tk−1 = 0.0025, we get
θk = 0.18 < 1 and

a + b

θk
+ ln θk

tk+1 − tk
= −53.6437 < 0. (49)

with this we can conclude that (28) is exponentially
synchronized under the impulsive controller (4). Fig-
ure 9, represents the state responses of the error sys-
tem(28). Figures 10 and 11 describe the time response
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Fig. 6 Chaotic attractor of Rossler system and time responses
of the error system (5)
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curve of log(||ri j (t)||) and impulsive instants respec-
tively.

Example 4 Consider the following Markovian jump-
ing CDN as

dzi (t) =
[
f (t, zi (t), zi (t − d1(t)))

+
L∑

i=1

pi j (s(t))Λ(s(t))g(zi (t))

+
L∑

i=1

qi j (s(t))Λ(s(t))h(zi (t − d2(t)))

]
dt
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Fig. 9 State responses of the error system (28)
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+ θ(s(t), zi (t), zi (t − d3(t)))dω(t),

i = 1, 2, . . . , 5. (50)

The nonlinear function is defined as

f =
[−0.5xi1 + tan h(0.2xi1) + 0.2xi2

0.65xi2 − tan h(0.45xi2)

]
.

The system parameters are all defined as in Example 1.
The impulsive function Qik(t

−
k ) in (33) is designed

as,

Qik(t
−
k ) = β1ri j (tk) + β2ri j (tk − 0.5| cos tk |) (51)
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Fig. 12 Time responses of the error system (5)
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with positive constants βi , i = 1, 2, 3. when β1 =
0.2, β2 = 0.3, tk−tk−1 = 0.0023,we get θk = 0.13 <

1 and

a + b

θk
+ ln θk

tk+1 − tk
= −43.4525 < 0. (52)

with this we can conclude that (5) is exponentially
synchronized under the impulsive controller (33). Fig-
ure 12 represents the time responses of the error system
(5). In Fig. 13, time response curve of log(||ri j (t)||) is
given, and Fig. 14 describes the impulsive instants.

Remark 7 In order to validate the theoretical results
obtained in this paper, four numerical examples with
simulations that show the synchronization of CDNs
(5) under delayed impulsive controller are presented.
Examples 1 and 2 consider Chen system and Rossler
system, respectively, and it can be clearly seen from
Figs. 2 and 4 that the trajectories of system (28) tend
to zero as time elapses. Figure 5 monitors the syn-
chronization of CDNs (5) without Markovian jump-
ing parameters, and Fig. 6 displays the synchroniza-
tion of CDNs (5) under impulsive controller without
distributed delay.

5 Conclusions

In this paper, the exponential synchronization problem
of nonlinearly coupled CDNswithMarkovian jumping
parameters and stochastic perturbations has been dis-
cussed with the help of impulsive controller. It should
be mentioned that the considered controller is a more
general one and that contains both discrete and dis-
tributed time-varying delays. By utilizing Lyapunov
method and Ito formula, some adequate conditions that
certify the exponential synchronization of CDNs have
been investigated with the help of delayed impulsive
controller. Finally, numerical simulations are presented
to show the efficacy of the derived criteria.

In practice, controlling all nodes is quite difficult
and even inapplicable, especiallywhennetwork is com-
posed of a large set of high dimensional nodes. Hinted
by this practical consideration, pinning control, which
means that only a small fraction of nodes is directly
controlled, has been proposed [39,40]. Along with,
intermittent control, as a discontinuous control strat-
egy in engineering fields, has been employed to real-
ize synchronization of complex dynamical networks
[41,42]. In an aim to save the control cost and amount of
transmitted information effectively, we will discuss the
synchronization criteria for CDNs with pinning impul-
sive control, pinning intermittent control in our future
works.
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