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Abstract The chemical synapses in a neural network
are known to be modulated by the neuronal firing
activities through the spike-timing-dependent plastic-
ity (STDP) rule. In this paper, we improve the mul-
tiplicative STDP rule by adding a momentum item
with the aim of overcoming the low rate with which
the neuronal network self-organizes into a stable com-
plex structure. We find that the improved STDP rule
with suitablemomentum factors significantly speeds up
the evolutionary process of the self-organized neuronal
network. In addition, we explore the topological struc-
ture of self-organized neuronal network using complex
network method. We show that the improved STDP
rule generally results in a smaller node degree, cluster-
ing coefficient and modularity of self-organized neu-
ronal network. Furthermore, we investigate the dynam-
ical behaviors of self-organized neuronal network. We
observe that depending on the momentum factor, the
improved STDP rule has different effects on the net-
work synchronization, neural information transmis-
sion, modularity and network complexity. Remark-
ably, for a specificmomentum factor, the self-organized
neuronal network shows the highest global efficiency
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of information transmission and the best combination
between functional segregation and integration, which
reflects the optimal dynamics as well as the topologi-
cal structure. Our results provide a reasonable and effi-
cient modulating rule of chemical synapse underlying
the neuronal firing activities.

Keywords STDP · Complex network method ·
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1 Introduction

The topological structures of neuronal network have
received considerable attention in recent years due
to their crucial roles for the dynamics of neural sys-
tem such as the network synchronization and reso-
nance [26,32]. The experimental findings have sug-
gested the small-world and scale-free structures of
neuronal network [14,16,36,39,43]. In addition, the
global coupled network, random network and nearest-
neighbor coupled network were also mathematically
proposed to investigate the dynamical behaviors of neu-
ronal network [13,24,25,29,47,50,51]. Recently, the
self-organized structure was found to be more real-
istic to characterize the real neuronal network [45],
and this type of structure with both small-world and
scale-free properties has a great effect on the neu-
ronal network dynamics [26,39,43]. For example, the
self-organized neuronal networks have higher coher-
ence resonance, stochastic resonance and efficiency in
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information transmission compared to the global cou-
pled network and random network [26]. Therefore, the
exploration of self-organized neuronal network con-
tributes to the more realistic understandings of struc-
ture and dynamics in the neural system.

The well-known feature of self-organized neuronal
network is that the synaptic connections among neu-
rons are controlled by the repeated firing activities
of neurons [38,55,56]. This biological process is
called the spike-timing-dependent plasticity (STDP)
rule which has been found in various vivo and vitro
experiments, such as the neocortical slices [33], rat hip-
pocampal neurons [7], human motor system [6,10,54]
and so forth [5,37,44]. The capability of STDP rule
is updating the synaptic connections among neurons
according to the relative timing between pre- and post-
synaptic action potentials at a millisecond timescale. If
the firing time for the presynaptic neuron is ahead of
that for the postsynaptic neuron, the synaptic connec-
tion is strengthened; otherwise, it isweakened [34]. The
updated synaptic connection againmodulates the firing
behavior of postsynaptic neuron and further affects the
synaptic connection from postsynaptic neuron to pre-
synaptic neuron. Apparently, the modulation of synap-
tic connection adaptively depends on the output of neu-
rons, which in turn affects the neural responses. This
feedback process between chemical synapses and neu-
rons is believed to be closely related to the mecha-
nisms of learning and memory in the brain [1,20,34].
Furthermore, the STDP rule has a great effect on the
dynamics of neural system [1,26,55,57]. For example,
in the absence of information transmission delay, the
STDP rule can slightly depress the efficiency of net-
work stochastic resonance [55] and induce the transi-
tion of spike propagation in neuronal networks [57].
Thus, investigating the effect of STDP rule on neural
system is more helpful for revealing the mechanism of
neural information transmission in the brain.

To date, there are two types of STDP rules [17,
18,42,61]: an additive rule and a multiplicative rule.
For the additive STDP rule, the modulated amount
of synaptic weight is only decided by the difference
between firing timings of pre- and postsynaptic neu-
rons and is independent on the present synaptic weight
[17]. But for the multiplicative STDP rule, the mod-
ulated amount of synaptic weight depends on both
the neuronal firing timings and synaptic weight [17].
Although the two types of STDP rules can reflect
the biological process, the multiplicative STDP rule

is more regarded as an improved version of additive
STDP rule. More importantly, the multiplicative STDP
rule results in a higher small-world property for self-
organized neuronal network than the additive STDP
rule, but it decreases the rate with which the neuronal
network evolves into a complex small-world struc-
ture [18]. Consequently, the multiplicative STDP rule
induces the higher efficiency of information transfer
across the resulted neuronal network than the additive
STDP rule, but it also brings the redundant feedback
and decreases the modulating accuracy during the evo-
lutionary process of neuronal network,which is accom-
panied by the higher energy cost for the biological sys-
tem. Therefore, overcoming the low speed of multi-
plicative STDP rule may contribute to the less energy
cost during the STDP biological process.

In this paper, we improve the multiplicative STDP
rule with the aim of speeding up the convergence pro-
cess and increasing the evolutionary accuracy of neu-
ronal network. We first study the effect of improved
STDPrule on the evolutionaryprocess of self-organized
neuronal network, and then we utilize the complex
network method to explore the topological proper-
ties. Finally, we investigate the dynamical behaviors
of self-organized neuronal network from the perspec-
tive of network synchronization, efficiency of informa-
tion transmission and functional segregation and inte-
gration. We find that the improved STDP rule has a
great effect on the evolutionary process, structure and
dynamics of self-organized neuronal network. In par-
ticular, the improvedSTDP rulewith a specificmomen-
tum factor results in an optimal neuronal network.

This paper is organized as follows. Section 2.1
provides a brief review of neuronal network model,
Sect. 2.2 theoretically analyzes the advantages of the
improved STDP rule compared to the multiplicative
STDP rule, and Sect. 3 displays the results and Sect. 4
shows the discussion and conclusion .

2 Model

2.1 Neuronal network model

Theneuronal network consistingofFitzHugh–Nagumo
neurons is described as [9,11,26,49,60]:

ε
dVi
dt

= Vi − V 3
i /3 − Wi + Iext + I syni
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dWi

dt
= Vi + a + biWi , (1)

where Vi is the membrane potential of the i th neuron,
Wi is the corresponding slow variable, and a, bi and
ε are the dimensionless parameters. Iext is the applied
current, I syni is the total chemical synaptic current that
the i th neuron receives and it obeys following equation:

I syni = −
N∑

j

gi j s j (Vi − Vsyn). (2)

Here, gi j is the synaptic weight from the j th neuron to
the i th neuron and is updated by the STDP rule, s j is
the synaptic variable and satisfies:

ds j
dt

= α(Vj )(1 − s j ) − βs j

α(Vj ) = α0/(1 + e−Vj /Vshp), (3)

where α(Vj ) is the synaptic recovery function and β is
the rate of synaptic decay.

In Eq. (2), Vsyn is the reversal potential of chemi-
cal synapse, which decides the classification of chem-
ical synapse: excitatory synapse or inhibitory synapse.
Here, the reversal potential for excitatory synapse is set
as 0 mV, and it is equal to 2 mV for inhibitory synapse
[26].

2.2 STDP rule

In the case that the presynaptic neuron i fires at the time
ti and the postsynaptic neuron j fires at t j , the STDP
updating function F(�t) is defined as [26]:

F(�t) =

⎧
⎪⎨

⎪⎩

A+ exp(−�t/τ+) if �t > 0

−A− exp(�t/τ−) if �t < 0

0 if �t = 0

(4)

where �t = ti − t j is the firing time lag, τ+ and τ− are
the temporal windows for synaptic refinement, and A+
and A− determine the maximum amount of synaptic
update.

For the multiplicative STDP rule, the firing time lag
�t ismeasuredwithin the temporalwindows for synap-
tic refinement, and the synaptic update is performed
once the temporal window is passed. We set the T as
the updating time at which the corresponding synap-
tic weight is gi j (T ) and the firing time lag is �t (T ).

Thus the updating process of synaptic weight gi j (T ) is
modeled as:

�gi j (T )=gi j (T + 1) − gi j (T )=gi j (T )F(�t (T )),

(5)

where the gi j (T ) is always restricted into the region
[0, gmax]. If the j th neuron first fires at the tempo-
ral windows for synaptic refinement, the �t (T ) > 0
and the corresponding modulated amount of synaptic
weight �gi j (T ) is greater than zero value such that the
synapse from j th neuron to i th neuron is reinforced;
otherwise, it is weakened.

Apparently, the multiplicative STDP rule ensures
that the �gi j (T ) varies according to the neuronal fir-
ing activities and synaptic weight gi j (T ). However, the
feedback of neural signals may be affected by its pre-
vious activities such as the refractory period [4], and
the amount of synaptic update also may be related to
its previous update. Thus we assume that the �gi j (T )

is affected by its previous updated amount�gi j (T −1)
and improve the multiplicative STDP rule as:

�gi j (T ) = gi j (T )F(�t (T )) + σ�gi j (T − 1), (6)

where σ�gi j (T −1) is called themomentum term, and
σ is the momentum factor.

Now we analyze the advantages of improved STDP
rule. While the neuronal network eventually achieves
a stable state, the �t (T ) → 0 and gi j (T ) ≈ g∗

i j where
g∗
i j is the final stable value of synaptic weight from

neuron j to neuron i . The process of synaptic weight
gi j (T ) converging to the stable value g∗

i j contains the
following four cases:

First, we assume that the �t (T − 1) > 0 happens
at updating time T − 1 and the �gi j (T − 1) > 0:

Case 1. If the �t (T ) > 0 and �gi j (T ) > 0, the
synaptic weight gi j (T ) is much less than the g∗

i j and
needs to be further strengthened. The added momen-
tum term σ�gi j (T − 1) > 0 contributes to the further
increase in synaptic weight such that the convergence
rate of synaptic weight is speeded up (see Fig. 1).

Case 2. If the �t (T ) < 0, �gi j (T ) < 0, the
synaptic weight gi j (T ) just crossed the g∗

i j and needs
to be decreased. At this moment, the �t (T ) is very
close to zero and the modulation amount of synap-
tic weight �gi j (t) is small. The gi j (T ) would show
the slight oscillation around the g∗

i j , which ensures the
gi j (T + 1) less than the g∗

i j . Therefore, the momentum
term σ�gi j (T − 1) > 0 slows down the decrease in
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Fig. 1 The schematic diagram of comparison between themulti-
plicative STDP rule and the improved STDP rule. The horizontal
axis represents the synaptic weight gi j (T )which increases along
the direction of arrow. The solid curve indicates the direction of
synaptic weight varying with updating time T for the multiplica-

tive STDP rule, and the dotted curve reflects the ideally updating
process for the improved STDP rule. With the added momentum
term, the improved STDP rule is more possible to promote the
synaptic weight gi j (T ) to converge to the stable value g∗

i j

synaptic weight to ensure the gi j (T + 1) ≈ g∗
i j , and

thus the evolutionary accuracy is enhanced (see Fig. 1).
Second, we assume that the�t (T −1) < 0 happens

at updating time T − 1 and the �gi j (T − 1) < 0:
Case 3. If the�t (T ) < 0,�gi j (T ) < 0, the synaptic

weight gi j (T ) is far more than the g∗
i j and needs to be

further decreased. The momentum term σ�gi j (T −
1) < 0 advances the decrease so that the gi j (T + 1)
approaches to the g∗

i j more faster (see Fig. 1).
Case 4. If the �t (T ) > 0, �gi j (T ) > 0, the synap-

tic weight gi j (T ) is slightly less than the g∗
i j and needs

to be strengthened. Due to the similar mechanism pro-
vided inCase 2, themomentum termσ�gi j (T−1) < 0
decays the increase in synaptic weight so as to promote
the gi j (T + 1) to converge to the g∗

i j more accurately
(see Fig. 1).

It should be stressed that the momentum factor must
not be less than zero value to guarantee the advantages
of improved STDP rule, and it also must not be too big
to ensure the gi j (T ) accurately converging to the g∗

i j .
Themomentum factor is thus constricted into the region
(0, 1] according to the improved back propagation (BP)
algorithm in the artificial neural network (ANN) where
the momentum item is utilized to speed up the learning
process [41]. Meanwhile, it also should be noted that
the improved STDP rule is equivalent to themultiplica-
tive STDP rule for the σ = 0, and the improved STDP
rule would promote the synaptic weight gi j (T ) rapidly
and accurately to reach the stable value g∗

i j only for the
suitable momentum factors.

The rest values of parameters utilized in above mod-
els are ε = 0.08, Iext = 0.1, a = 0.7, α0 = 2,
β = 1, Vshp = 0.05, A+ = 0.05, A− = 0.0525,
τ+ = τ− = 2, gmax = 0.1 and b is uniformly dis-
tributed in [0.45, 0.75]. Furthermore, the initial condi-
tions for all neurons are the same, that is V = −1.2729,
W = −0.5307 and s = 0.1172.

3 Results

In this paper, the Euler–Maruyama algorithm is uti-
lized to integrate the Eqs. (1–6) with a time step of
0.005 ms and a total time of 60 ms. The 50 excita-
tory neurons and 10 inhibitory neurons in a neuronal
network are globally coupled by chemical synapse in
the beginning, in which the autapse is not involved
[26,30,31]. The synaptic weight is set as gmax/2 for the
excitatory synapse, and it is equal to 3gmax/2 for the
inhibitory synapse. During the STDP modulating pro-
cess, the weight of excitatory synapse is updated by the
STDP rule, but it keeps consistence for the inhibitory
synapse. Consequently, the global coupled neuronal
network eventually evolves into a sparse directed
weighted topological structure. Furthermore, for sim-
plicity, the P0 represents the proportion of synapse
with weight in the range [0, 0.1gmax] (weak cou-
pling), the P1 stands for the proportion of synapse with
weight belonging to the region [0.9gmax, gmax] (strong
coupling), and the P2 is responsible for the rest of
occasions.
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σ

σσ

(a) (b)

(c) (d)

Fig. 2 The evolutionary process of P0, P1 and P2 for a σ = 0.0,
b σ = 0.3, c σ = 0.6 and d σ = 0.9. Note that for the simulating
time about over than 40 ms, the P0, P1 and P2 substantially keep
stable as well as the neuronal network structure

3.1 Evolutionary process of neuronal network
structure

In this part, we first investigate the evolutionary process
of neuronal network structure with the modulation of
multiplicative STDP rule (σ =0.0) and improved STDP
rule (σ > 0). Figure 2 shows the evolutionary process
of P0, P1 and P2 for different momentum factors. As
the evolutionary time increases, the P2 decreases while

the P0 and P1 increase. This result indicates that during
the evolutionary process, the competition between neu-
rons strengthens a part of chemical synapses and weak-
ens another, which is accompanied by the changes of
topological structure of neuronal network. Meanwhile,
the P0, P1 and P2 gradually reach the stable values,
reflecting that the structure of neuronal network even-
tually achieves a stable state. More importantly, the P0,
P1 and P2 for all momentum factors vary with a expo-
nential form, revealing that the improved STDP rule
has little effect on the evolutionary mode of neuronal
network structure.

As discussed in Sect. 2.2, the improved STDP rule is
excepted to speed up the evolutionary process of synap-
tic weight for the suitable momentum factors. To prove
the theoretical analysis, the standard deviations (std)
between P0, P1 and P2 are calculated to investigate
the evolutionary rate of neuronal network. Figure 3
shows the evolutionary process of standard deviation
for different momentum factors. As the evolutionary
time increases, the standard deviations first decrease
rapidly until the minimum values at which the P0, P1
and P2 curves intersect (see Fig. 2). Then, the standard
deviations increase and eventually reach the relatively
stable values, reflecting the stable topological structure
of self-organized neuronal network. However, during

Fig. 3 The evolutionary process of standard deviation (std)
between P0, P1 and P2 for different momentum factors. The
horizontal yellow shadow indicates the relatively stable value of
standard deviation for σ = 0.0, and the vertical yellow shadow
means the start time at which the corresponding standard devia-

tion achieves the stable value. While the standard deviation for a
momentum factor costs smaller time to achieve the relatively sta-
ble value, the corresponding neuronal network evolves into the
self-organized structure with higher speed. (Color figure online)
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Fig. 4 The evolutionary process of a �P0 = Px
0 − P0.0

0 , b
�P1 = Px

1 − P0.0
1 and c �P2 = Px

2 − P0.0
2 , where x = 0.3, 0.6,

0.9, respectively. d The average values of �P0, �P1 and �P2
from 50 to 60 ms for different momentum factors

the evolutionary process, the standard deviations for
σ = 0.0–0.4 are later to reach the stable values than
those for the rest of momentum factors, indicating that
the improved STDP rule indeed speeds up the evolu-
tionary process of neuronal network for the suitable
momentum factors such as σ = 0.6, 0.9, 1.0.

3.2 Topological structure of self-organized neuronal
network

Due to the STDP modulation on the synaptic connec-
tions, the global coupled neuronal network eventually
evolves into a sparse network and many neurons clus-
ter together to form a module. The synaptic weight
between neurons in the same module is strong, but it is
relatively weak while the neurons are in different mod-
ules (see Fig. 6a, d and g). Consequently, a very large
proportion of weak coupling and strong coupling exist
in the self-organized neuronal network (see Fig. 2).

To investigate the differences between structures of
self-organized neuronal network for different momen-
tum factors, we calculated the differences �P0 =
Pσ
0 − P0.0

0 , �P1 = Pσ
1 − P0.0

1 and �P2 = Pσ
2 − P0.0

2
(σ = 0.1, 0.2, . . ., 1.0) from 50 to 60 ms during which
the structures of neuronal network have achieved the
stable states (see Fig. 2). Figure 4a shows the evolu-
tionary process of �P0 for σ = 0.3, 0.6, 0.9. The val-
ues of P0.3

0 − P0.0
0 and P0.6

0 − P0.0
0 are always larger

than zero value, but not for P0.9
0 − P0.0

0 , reflecting that
the improved STDP rule has dual effects on the P0.

Meanwhile, the values of �P1 for σ = 0.3, 0.6, 0.9 are
frequently smaller than zero value, and the P0.3

1 − P0.0
1

has the minimum absolute value (see Fig. 4b), indicat-
ing that the improved STDP rule decreases the P1 and
this effect is relatively small for σ = 0.3. Furthermore,
the value of �P2 for σ = 0.6, 0.9 is generally larger
than zero value, but the P0.3

2 − P0.0
2 always fluctuates

around the zero value (see Fig. 4c). This result reveals
that the improved STDP rule increases the P2 and this
influence is relatively weak for σ = 0.3.

To further confirm the above results, we calculated
the average values of�P0,�P1 and�P2 from 50 to 60
ms, the results are shown in Fig. 4d. As the momentum
factor increases, the mean �P0 fluctuates around the
zero value, the mean �P1 is frequently less than zero
value and the mean �P2 is always larger than zero
value. Furthermore, these differences between P0, P1
and P2 for the improved STDP rule and the multiplica-
tive STDP rule are statistically significant (p < 0.05
for all values of σ , two-sample T test). These results
indicate that compared to themultiplicative STDP rule,
the improved STDP rule significantly decreases the P1
(strong coupling), increases the P2 and has dual effects
on the P0 (weak coupling).

Above results have proved that the improved STDP
rule has a great effect on the synaptic weight such that it
would affect the topological structure of self-organized
neuronal network. Hence, we introduced the complex
network method to further investigate the effect of
improved STDP rule on the topological structure. The
definitions of complex network indices including the
node degree, clustering coefficient and modularity in
the directed weighted network are shown in “Appendix
1”. We first calculated the complex network indices of
self-organized neuronal network at time Tk where Tk
varies from 50 to 60mswith a step of 0.05ms, and then
averaged the complex network indices among the 201
neuronal networks as the mean value for each momen-
tum factor.

The node degreemeasures the sparse degree of com-
plex network, and the bigger value of node degree
means the denser network. Figure 5a shows the mean
node degree of self-organized neuronal network. As
the momentum factor increases, the node degree grad-
ually decreases, and these differences between node
degree for the improved STDP rule and the multiplica-
tive STDP rule are statistically significant (p < 0.05
for all values of σ , two-sample T test). This result indi-
cates that the improved STDP rule induces the more
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σ σ σ

(a) (b) (c)

Fig. 5 aThenodedegree,b clustering coefficient and cmodular-
ity of self-organized neuronal network for different momentum
factors. The red fitting lines reflect the changing trends of node

degree, clustering coefficient and modularity with the momen-
tum factor increasing

sparse self-organized neuronal network than the multi-
plicative STDP rule.

The clustering coefficient measures the degree with
which nodes tend to cluster together [28]. Figure 5b
shows the mean clustering coefficient for different
momentum factors. The clustering coefficient of self-
organized neuronal network for σ = 0.3 is larger than
that forσ =0.0, but it is apparently decreased for the rest
values of σ , among which the clustering coefficient is
the smallest for σ = 0.6.More importantly, these differ-
ences between clustering coefficients of self-organized
neuronal network for the improved STDP rule and
the multiplicative STDP rule are statistically signif-
icant (p < 0.05 for all values of σ , two-sample T
test). These results suggest that the improved STDP
rule mostly decreases the mean clustering coefficient
of self-organized neuronal network, and the decreased
effect is the strongest for σ = 0.6.

The self-organized neuronal network exhibits the
apparent modular structure (see Fig. 6a, d and g),
the degree of which is measured by the modularity.
As can be seen from Fig. 5c, the mean modularity
of self-organized neuronal network for the improved
STDP rule is significantly smaller than that for the
multiplicative STDP rule, and the modularity for σ

= 0.5 is the smallest. Furthermore, these differences
between modularity for the improved STDP rule and
themultiplicative STDP rule are statistically significant
(p < 0.05 for all values ofσ , two-sampleT test). These
results reveal that the improved STDP rule decreases
the modular degree of self-organized neuronal network
compared to the multiplicative STDP rule, and this
decreased effect is the strongest for σ = 0.5.

Taken together, depending on the momentum factor,
the improved STDP rule significantly changes the pro-
portion of synaptic weight such that it generally results

in amore sparse, less clustered andmodular topological
structure of self-organized neuronal network.

3.3 Dynamics of self-organized neuronal network

The dynamics of complex network is closely related to
its topological structure and even can be predicted by it
[58]. Since the improved STDP rule has a great effect
on the topological structure of self-organized neuronal
network, the networks for different momentum factors
are expected to exhibit apparently different dynamical
behaviors. Therefore, we now investigate the dynamics
of self-organized neuronal network. We firstly selected
the neuronal network at the time Tk as the baseline net-
work structure, in which the Tk varies from 50 to 60 ms
with a step of 0.05 ms. Consequently, the 201 neuronal
networks were obtained with the mostly same topo-
logical properties for each momentum factor. Based
on the baseline network structures, we then again inte-
grated the Eqs. (1–6) with a time step of 0.05 ms and
a total time of 60 ms. Furthermore, we sampled the
time series of firing activities of neurons from 30 to 60
ms and calculated the correlation coefficient between
time series of neurons according to “Appendix 2”. The
correlationmatriceswere then obtained and regarded as
the functional networks of self-organized neuronal net-
work. Finally, based on the 201 functional networks for
each momentum factor, we investigate the dynamics of
self-organized neuronal network including the network
synchronization, information efficiency and functional
integration and segregation.

3.3.1 Network synchronization

The correlation coefficient (ρ) measures the phase syn-
chronizationbetweenfiring activities of neurons,where
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ρ

σ

ρ

σ

ρ

σ

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 6 The synaptic connection matrices of the self-organized
neuronal networks at the time of 60 ms (upper panel), the corre-
sponding functional networks (middle panel) and the probability

density distributions of absolute correlation coefficient (lower
panel) for a–c σ = 0.0, d–e σ = 0.3 and g–i σ = 0.6

the ρ = 1 indicates the completely phase synchroniza-
tion, and ρ = −1 reflects the completely anti-phase
synchronization. Here we adopted the absolute corre-
lation coefficient to characterize the firing synchroniza-
tion among neurons. Figure 6c, f and i show the prob-
ability density distributions of correlation coefficient
for σ = 0.0, 0.3, 0.6. The probability density of cor-
relation coefficient has the largest value for ρ → 1
and the smallest value for ρ → 0, reflecting the strong
synchronization among neurons in the self-organized
networks.Moreover, the probability density for σ = 0.0
is obviously different from that for σ = 0.3, 0.6 with
smaller probability density for ρ → 1, indicating that
the improved STDP rule may induce the smaller fir-
ing synchronization among neurons. Furthermore, we
calculated the mean correlation coefficient to prove the

result. As seen in Fig. 7, the mean correlation coeffi-
cient exhibits the bimodal structure as the momentum
factor increases. For a part of momentum factors such
as σ = 0.2, 0.9, the mean correlation coefficient is sig-
nificantly greater than that for σ = 0.0. But for the
other part of momentum factors such as σ = 0.6, the
mean correlation coefficient is apparently smaller than
that for σ = 0.0. In addition, themean correlation coef-
ficient is the greatest for σ = 0.2 and is the smallest for
σ = 0.6. More importantly, these differences between
mean correlation correlation for the improved STDP
rule and the multiplicative STDP rule are statistically
significant except for σ = 0.3 (p > 0.05 for σ = 0.3
and p < 0.05 for the rest values of σ , two-sample T
test). These results indicate that compared to the mul-
tiplicative STDP rule, the improved STDP rule con-
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ρ

σ

Fig. 7 The average value of absolute correlation coefficient of
functional networks for different momentum factors. The red
fitting line indicates the changing trend of average correlation
coefficient with the momentum factor increasing

tributes to either strengthening the network synchro-
nization or weakening it, and the strengthened effect is
the strongest for σ = 0.2 and the weakened influence
is the strongest for σ = 0.6.

3.3.2 Network efficiency

The neurons coupled together aims to communicate the
neural informationwhich apparently is related to thefir-
ing synchronization among neurons. Due to the great
effect on the network synchronization, the improved
STDP rule is expected to affect the neural informa-
tion transmission across the network. To investigate
the information transmission efficiency, we calculated
the local information efficiency and global informa-
tion efficiency of functional network, the definitions of
which are seen in “Network efficiency” of Appendix 1.

The local efficiency measures the information trans-
mission among sub-networks. As can be seen from
Fig. 8a, the mean local efficiency of functional net-
work for some momentum factors such as σ = 0.2,
0.9 is larger than that for σ = 0.0, but it is decreased
for the other momentum factors such as σ = 0.4, 0.6.
Meanwhile, these differences between local efficiency
of functional networks for the improved STDP rule and
themultiplicative STDP rule are statistically significant
except for σ = 0.3, 1.0 (p > 0.05 for σ = 0.3, 1.0 and
p < 0.05 for the rest values of σ , two-sample T test).
These results reveal that depending on the momen-
tum factor, the improved STDP rule either strength-
ens the local neural information transmission or weak-
ens it. More importantly, the mean local efficiency of
functional networks for σ = 0.2 is the biggest, indi-
cating the strongest strengthened effect of improved
STDP rule on local efficiency, and it is the smallest for

σσ

(a) (b)

Fig. 8 a The local efficiency and b global efficiency of func-
tional networks for different momentum factors. The red fitting
lines reflect the changing trends of local efficiency and global
efficiency as the momentum factor increases

σ = 0.6, revealing the strongest weakened influence.
Furthermore, it should be noted that the evolutionary
processes of average correlation and local efficient are
similar as the momentum factor increases, reflecting
that the local efficiency of information transmission is
closely related to the synchronization within the local
networks.

In contrary, the global efficiency characterizes the
information flow across the global network. From Fig.
8b, the mean global efficiency of functional networks
for σ = 0.4, 0.6 is larger than that for σ = 0.0, and the
functional network for the rest of momentum factors
has the decreased global efficiency. In addition, these
differences between global efficiency for the improved
STDP rule and the multiplicative STDP rule are sta-
tistically significant except for σ = 0.4, 0.7 (p > 0.05
for σ = 0.4, 0.7 and p < 0.05 for the rest values of
σ , two-sample T test). These results reveal that the
improved STDP rule has dual effects on the global effi-
ciency: strengthening the global efficiency or decreas-
ing it. More importantly, the global efficiency is the
biggest for σ = 0.6, indicating the strongest effect
on promoting the global neural information transmis-
sion, and it is the smallest for σ = 0.2, revealing the
strongest weakened effect.

3.3.3 Network functional integration and segregation

As seen from Fig. 6b, e and h, the functional networks
exhibit the apparent modular structure. The strong syn-
chronization within the module is responsible to spe-
cific function in subsystems and results in a func-
tional segregation, while the functional integration in
charging of the information integration in global sys-
tem needs strong synchronization between modules,
which would wipe away the modular structure. The
balance between functional segregation and integra-
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σ σ

(a) (b)

Fig. 9 a The modularity and b complexity of functional net-
works for different momentum factors. The red fitting lines indi-
cate the changing trends of modularity and complexity as the
momentum factor increases

tion is believed to be crucial for normal functioning
of complex system, for example, the brain disorders
often result from the imbalance between functional
segregation and integration [59]. Furthermore, the net-
work showsdifferent synchronous patterns for different
momentum factors (see Fig. 6c, f and i), which must
affect the balance between functional segregation and
integration. Therefore, we further investigate the func-
tional integration and segregationof functional network
using modularity and network complexity.

The modularity is a natural measure of modular
degree and its definition is given in “Modularity” of
Appendix 1. The larger the modularity, the more mod-
ular the network is and the stronger the functional segre-
gation is [27]. Figure 9a shows the modularity of func-
tional network for different momentum factors. The
modularity increases for some specific momentum fac-
tors such as σ = 0.6 than that for σ = 0.0, but it is
decreased for the other momentum factors such as σ

= 0.2, 0.9. However, the statistically significant differ-
ence between modularity for the improved STDP rule
and the multiplicative STDP rule mostly depends on
the momentum factor (p > 0.05 for σ = 0.3, 0.7, 0.8,
1.0 and p < 0.05 for the rest values of σ , two-sample T
test). These results reveal that the improved STDP rule
has dual effects on the modularity: strengthening the
functional segregation for σ = 0.4–0.6, and enhancing
the functional integration for σ = 0.1, 0.2, 0.9. Fur-
thermore, the modularity for σ = 0.6 is the largest,
reflecting the strongest effect of improved STDP rule
on functional segregation, and it has the smallest value
for σ = 0.2, indicating the strongest influence on func-
tional integration.

The network complexity S characterizes the bal-
ance between functional segregation, and integration
[46,59] and its definition is provided in “Appendix 3”.
The S is closed to zero value for both nonsynchronous

and fully synchronous state, and the maximum com-
plexity reflects the combination between functional
segregation and integration [59]. From Fig. 9b, the net-
work complexity nonlinear varies as the momentum
factor increases, during which the functional networks
for some momentum factors such as σ = 0.6 have the
larger complexity than that for σ = 0.0, but they have
decreased complexity for another momentum factors
such as σ = 0.2, 0.9. In addition, the two-sample T test
provides the σ—dependent difference between com-
plexity for the improved STDP rule and the multiplica-
tive STDP rule (p > 0.05 for σ = 0.3, 0.5, 1.0 and
p < 0.05 for the rest values of σ ). Therefore, it is obvi-
ous that the improved STDP rule has the dual effects
on the network complexity, decreasing the complex-
ity for σ = 0.1, 0.2, 0.7–0.9 and increasing it for σ =
0.4, 0.6. Furthermore, the complexity for σ = 0.2 is the
smallest, indicating the strongest decreased effect of
improved STDP rule on complexity, and it is the largest
for σ = 0.6, reflecting the strongest increased effect. It
is important to note the similar evolutionary processes
of modularity and complexity as the momentum factor
increases, revealing that the decreased synchronization
within the modules yields more modules with smaller
size so as to produce higher complexity.

In summary, depending on themomentum factor, the
improvedSTDP rule has different effects on the dynam-
ics of self-organized neuronal network. Compared to
the multiplicative STDP rule, the improved STDP rule
with σ = 0.1, 0.2, 0.9 results in a higher network syn-
chronization and local efficiency, less global efficiency,
modularity and complexity. However, these changes in
the dynamics of self-organized neuronal networks are
reversed for σ = 0.6.

4 Discussion and conclusion

In this paper,we improved themultiplicative STDP rule
by adding a momentum term and then studied the evo-
lutionary rate, topological structure and dynamics of
self-organized neuronal network with an aim of under-
standing whether the improved STDP rule optimizes
the convergence process and network properties. We
first found that the improved STDP rule with suitable
momentum factors speeds up the convergence rate with
which the global coupled neuronal network evolves
into the sparse self-organized structure. Then, using
the complex network method, we observed that the
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improved STDP rule mostly results in a more sparse,
less clustered andmodular self-organized neuronal net-
work by affecting the proportion of synaptic weight.
Finally, we showed that the improved STDP rulewithσ

= 0.1, 0.2, 0.9 strengthens the network synchronization
and local efficiency and weakens the global informa-
tion transmission, modularity and network complexity;
however, it has the adverse effect on these dynamical
behaviors for σ = 0.6.

The modulation of chemical synapse is crucial to
natural properties of neural system such as the learning
and memory, growing and aging [19,23,35,48]. The
previous study also suggested that the cellular networks
in the adult brain are continually remodeled [2,3,12].
The rate with which the synaptic connections change
according to the neural signals has a great effect on
the modulation and is also important for high effi-
ciency of information transmission in the neural sys-
tem. Compared to the multiplicative STDP rule, the
improved STDP rule with suitable momentum factors
significantly increases the evolutionary rate of neuronal
networks such that it optimizes the feedback between
neural signals and chemical synapses. Therefore, the
improvedSTDP rulemaybemore helpful for the higher
efficiency of information transmission during the bio-
logical feedback process.

The brain networks at all scales have the com-
mon properties of sparsity and clusters [3,15]. The
improved STDP rule induces the more sparse self-
organized neuronal network than the multiplicative
STDP rule, which, on the one hand, optimizes the
redundant chemical synaptic connections and, on the
other hand, increases the long-distance connections
between neurons and thus increases the energy cost
of information transmission. Combining with the dual
effects of improved STDP rule on clustering coef-
ficient, it is hard to identify whether the improved
STDP rule results in a more economical and benefi-
cial neuronal network than the multiplicative STDP
rule. Therefore, the dynamics of self-organized neu-
ronal network should be considered. It is clear that
depending on the momentum factors, the improved
STDP rule either strengthens the network synchroniza-
tion or weakens it. The high network synchronization
not only increases the efficiency of information trans-
mission in local loops or global network, but is also
related to the brain disorders such as epileptic seizure
[21,62]. The optimal synchronization ensures the high

efficiency of information transmission between neu-
rons at low connection cost. Apparently, the improved
STDP rule with σ = 0.6 results in a highest global effi-
ciency (see Fig. 8b), reflecting that the improved STDP
rule contributes to the higher efficiency of information
transfer across the stable self-organized neuronal net-
work.

The real complex network in the neural system
should have the optimal balance between functional
segregation and integration which yields the high com-
plex dynamics [3,59]. It is observed that the improved
STDP rule with σ = 0.6 not only induces the highest
modularity, but also produces the largest network com-
plexity, reflecting the higher functional segregation but
also the optimal balance between functional segrega-
tion and integration. Combining with the largest global
efficiency of neural information transmission, it is rea-
sonable to claim the optimal structure of self-organized
neuronal network which is resulted from the improved
STDP rule with σ = 0.6.

It should be noted that compared to the multiplica-
tive STDP rule, the improved STDP rule with σ = 0.2,
0.6 induces the most significant changes in the dynam-
ics of neuronal network (Figs. 7, 8, 9). Thus it is reason-
able to suspect that the differences between topological
structures for σ = 0.2, 0.6 and σ = 0.0 are most signif-
icant. However, the complex network indices provide
insufficient evidence to support the suspect (Fig. 5). In
fact, the relationship between structure anddynamics of
complex network has been a crucial challenge in neuro-
science [53], and the complexnetworkmethodbasedon
the nodes and edges also has shown the shortcomings
in characterizing the intrinsic relationship between net-
work structure and dynamics. In future, the more quan-
titative methods are required to intrinsically investigate
how the network structure decides the dynamics.

In conclusion, the improved STDP rule not only is
helpful for decreasing the energy cost during the mod-
ulating process of chemical synapses underlying the
neural signals, but also contributes to the optimal neu-
ronal network structure with the highest global effi-
ciency and the best combination between functional
segregation and integration.
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Appendix 1: Complex network indices

Node degree

The node degree in directed weighted network is cal-
culated as [40]:

k = 1

n

∑

i∈N
ki = 1

n

∑

i∈N

∑

j∈N
(wi j + w j i ), (7)

where N is the set of all nodes and n is the total number
of nodes. The wi j is the synaptic weight from nodes j
to i , which is not necessarily equal to w j i .

Clustering coefficient

The local clustering coefficient of node i in directed
weighted network is defined as [8]:

Ci =
∑

j,h∈N ,i �= j �=h

(
w

1
3
i j + w

1
3
j i

)(
w

1
3
ih + w

1
3
hi

) (
w

1
3
jh + w

1
3
h j

)

2[ki (ki − 1) − 2k↔
i ] ,

(8)

where k↔
i = ∑

j �=i wi jw j i is the number of bilateral
edges between node i and its neighbors. Themean clus-
tering coefficient of the network is:

C = 1

n

∑

i∈N
Ci . (9)

Network efficiency

In undirected weighted network, the global efficiency
is defined as [40]:

Ew
global = 1

n

∑

i∈N
Ew
i = 1

n

∑

i∈N

∑
j∈N ,i �= j (d

w
i j )

−1

n − 1
, (10)

where dw
i j represents the shortest path between nodes i

and j .
The local efficiency is defined as [40]:

Ew
loc = 1

2

∑

i∈N

∑
j,h∈N

(
wi jwih[dw

jh(Ni )]−1
)1/3

ki (ki − 1)
, (11)

where the d jh(Ni ) is the length of the shortest path
between nodes j and h, that only contains the neighbor
of node i .

Modularity

Themodularity in directedweighted network is defined
as [22]:

Q = 1

l

∑

i, j∈N

[
wi j − kini k

out
j

l

]
δmi ,m j , (12)

where l = ∑
i, j wi j is the sum of all weights in the

network, and the Kronecker delta function δmi ,m j is
equal to 1 if nodes i and j are in the same modularity.

For undirected weighted network, the modularity is
calculated as [40]:

Q = 1

l

∑

i, j∈N

[
wi j − ki k j

l

]
δmi ,m j . (13)

Appendix 2: Pearson correlation coefficient

The Pearson correlation coefficient is defined as [52]:

ρX,Y =
∑T

t=1(X (t) − X)(Y (t) − Y )
√∑T

t=1(X (t) − X)2
∑T

t=1(Y (t) − Y )2
,

(14)

where X and Y are the firing time series for different
neurons and X and Y are the average values corre-
sponding to these time series. The t represents the time
point of time series, and T is the total number of time
points.

Appendix 3: Network complexity

The complexity of network is measured by Shannon
entropy [59]:

S =
(

−
m∑

i=1

pi lnpi

)/
Sm, (15)
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wherem is the number of bins in the histogramof corre-
lation coefficient and the pi is the corresponding prob-
ability density as shown in Fig. 6c, f and i. The Sm is
the Shannon entropy of the uniform distribution and is
constantly equal to lnm.
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