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Abstract This paper presents an adaptive control
strategy for hypersonic flight vehicles (HFVs) subject
to parametric uncertainties, external disturbances and
faulty actuators. Besides the guaranteed tracking per-
formance, the main novelty of this study is to strictly
constrain the flight states, which are crucial to hyper-
sonic flights, such as the bounded angle of attack
required by the scramjet. To achieve this, the disturbed
control-oriented model of HFVs with uncertain param-
eters and faulty actuators is first rewritten into a parame-
terized form, based onwhich novel adaptive controllers
are then designed for velocity and altitude subsystems.
By introducing barrier Lyapunov functions to design
procedures, specific tracking performances of veloc-
ity and altitude are guaranteed, while the other flight
states of angle of attack, flight path angle, pitch angle
and pitch angle rate can be kept within the prescribed
ranges. Command filters are employed in the back-
stepping design for altitude subsystem to limit themag-
nitudes of virtual controls and to avoid the complicated
analytical calculations. In addition, an adaptive inverse
is integrated into the adaptive control scheme to suffi-
ciently compensate for the unknown dead-zone nonlin-
earity in elevator. It is shown that the developed control
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system regulates the tracking errors within some neigh-
borhoods of zero, which become sufficiently small by
proper adjustments on design parameters. Finally, the
numerical simulation is provided for comparison and
verification purposes.
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Barrier Lyapunov function · Performance-guaranteed
tracking · Constrained flight states · Adaptive fault-
tolerant control

1 Introduction

With a series of successful experiments like X-43A
and X-51A, the research of hypersonic flight vehi-
cles (HFVs) is becoming more and more attractive in
both military and civil fields, which owes much to the
cutting-edge scramjet. The dynamics of HFVs have
strong nonlinearities, uncertainties and couplings that
are introduced by the unique integration of scramjet
and fuselage [1]. Moreover, due to the extreme flight
environment and the rigid working condition of the
scramjet, the permissible flight envelope of HFVs is
very narrow [2], which in turn requires the flight states
to be regulated within some specific ranges. All these
facts bring huge difficulties and challenges to hyper-
sonic flight.

In the literature, abundant methods have been
applied to the control of HFVs [3], mainly focus-
ing on the longitudinal maneuvering flight. A control-
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oriented model (COM) was derived in [4], which has
been the commonest model in the state of the art of
HFV control. [5] utilized the linear parameter vary-
ing version of COM to develop a nonfragile track-
ing controller robustly to uncertain perturbations. [6]
designed a sliding mode observer and an adaptive slid-
ing mode controller to handle unavailable states and
parametric uncertainties. Furthermore, [7] employed
the high-order dynamic slidingmode control to achieve
finite-time stability for flexibleHFVswithout the upper
bound information of uncertainties. [8] and [9] also
realized finite-time output tracking for HFVs via the
technique of terminal sliding mode control. [10] pro-
posed a feedback linearization-based anti-windup con-
troller for HFVs suffering from input saturations and
external disturbances. [11] utilized adaptive dynamic
surface control to handle input saturations and paramet-
ric uncertainties. In [12], trajectory linearization con-
trol was combined with a time-varying notch filter to
protect the rigid-body dynamics from being disturbed
by the excited flexmodes. Trajectory linearization con-
trol was also enhanced by the extended state observer
to compensate for four categories of uncertainties in
COM [13]. [14] presented a fault-tolerant controller
for HFVs by employing disturbance observers and
auxiliary dynamics. The sliding mode observer was
employed to tackle faulty actuators with partial state
information [15]. [16] proposed aTakagi-Sugeno fuzzy
control strategy to accommodate actuator faults and
then applied the proposed method to HFVs. Later, [17]
derived a Takagi-Sugeno fuzzy model for HFVs with
flexible dynamics, based on which an adaptive sliding
mode controller was designed in spite of input non-
linearities. Flexible dynamics of HFVs were also con-
sidered in [18] and [19]. Most recent, neural network
control also has applications in hypersonic flight con-
trol [20–23].

From a practical viewpoint, one of the greatest chal-
lenges in HFV control is the unavoidable uncertain
parameters due to the unclear mechanisms of hyper-
sonic aerodynamics and the curve fits made for design
purpose. On the other hand, the adaptive control, which
essentially focuses on the system uncertainty, espe-
cially the parametric uncertainty [24], is a potential
solution for HFV control. In addition, because of the
extreme operation environment of high dynamic pres-
sure and high thermal flow, the scramjet and aerody-
namic control surfaces may become faulty. The adap-
tive control is able to deal with a wide class of faults for

its strong ability of online estimation [25]. Some rep-
resentative adaptive controls for HFVs have come out,
for example, [26] utilized the adaptive back-stepping to
design a robust controller for HFVs proceed by uncer-
tain aerodynamic parameters and flexible dynamics. In
that study, it has been proved that the flexible modes
could be suppressed if specific conditions on design
parameters were satisfied. [27] further considered the
non-minimum phase problem in hypersonic control by
utilizing the small-gain argument in the baseline adap-
tive back-stepping design. Notice that all the above
cited control strategies only regulate the steady state
of the tracking error to zero or within a small neigh-
borhood of zero, while the transient performance is
not guaranteed. Moreover, flight states should also be
strictly limited within some admissible ranges during
hypersonic flight. For example, just as stated in [2],
angle of attack needs to be kept inside the so-called
hypersonic corridor in case of scramjet inlet unstart and
thermal choking. Also in that work, a recovery mecha-
nism of the inlet unstart is developed for HFVs, whose
working condition is beyond the permissible set. The
proposed mechanism maximizes the flight time spent
in the “hypersonic corridor”, so that HFVs have enough
time to recover from the inlet unstart. From another per-
spective, if the flight states are constrained within some
permissible ranges during control, the additional com-
ponents like the recovery mechanism proposed in [2]
can be removed to further simplify the control scheme.
To the best knowledge of the authors, the problem of
state-constrained high-performance tracking for HFVs
with uncertain parameters and faulty actuators has not
been systematically solved, which is the main motiva-
tion of this study.

In fact, as reported in [24], the standard adaptive
back-stepping design can provide a possible way of
transient performance improvement byproperly adjust-
ing the gains in control and adaption laws. How-
ever, the performance is evaluated only by L2 norm,
which is somewhat inconvenient for practical appli-
cation. Although this defect has been overcome with
the aid of the so-called prescribed performance control
[23,28], state constraints are still hard to be ensured in
theory. One alternative solution is the recently devel-
oped barrier Lyapunov function (BLF)-based design,
which is also the main tool of this study to guaran-
tee the prescribed tracking performances and the con-
strained flight states. BLF is a special class of Lya-
punov functions, whose value approaches infinity as

123



Barrier Lyapunov function-based adaptive control for hypersonic flight vehicles 1835

the state approaches the boundary of its permissible
set [29]. So far, BLF has theoretical applications on the
back-stepping design for systemswith constrained out-
puts [29,30] or constrained states [31,32], and practi-
cal applications on the electrostatic microactuator [33]
or the robot manipulator [34]. But due to the special
expression of BLF that contains logarithmic function
(see, e.g., [29,31,33]) or tangent function (see, e.g.,
[30,32,34]), the designed control law is usually very
complicated, especially in the adaptive back-stepping
design for altitude subsystem of HFVs. In this study,
this drawback will be circumvented with the idea of
command filters [32,35,36], where the nominal virtual
control is replaced by a filtered virtual control. Nev-
ertheless, the resulting discrepancy between the nom-
inal and the filtered virtual controls should be further
analyzed and compensated by designing some novel
auxiliary systems.

Another beneficial research is to handle actuator
nonlinearities of HFVs. Among the fruitful studies
like [10,11,14,17,21,22], the dead-zone nonlinearity
in elevator, which is inevitable due to the insensitivity
of servomechanism with respect to small control sig-
nals, does not get considerable concerns. Although a
few outstanding works have come out, the dead-zone
nonlinearity has not been fully analyzed and compen-
sated. For example, [17] considered the dead-zone non-
linearity for HFVs via Takagi-Sugeno fuzzy approach.
In that work, a sufficient condition of the existence of
controller was given in a form of linear matrix inequal-
ities, which could be robust to the dead-zone nonlin-
earity but somewhat conservative to the control perfor-
mance. Recently, [22] utilized neural network to effec-
tively estimate a compound disturbance that contains
the effects of dead-zone nonlinearity in elevator. Fur-
ther considering the baseline adaptive control scheme
and the poor knowledge of the dead-zone nonlinear-
ity in engineering, the adaptive inverse compensation
proposed in [37] could be a better choice or a comple-
ment to the existing works for the purpose of high-
performance hypersonic flight control. It should be
pointed out that this idea, which constructs the inverse
for compensation purpose, also has wide applications
in other types of actuator nonlinearities, such as the
unknown backlash nonlinearity considered in [38] and
[39].

Motivated by the above investigations, this paper
develops a BLF-based adaptive control strategy for

HFVs. Comparedwith the existingworks, the novelties
of this study are briefly listed as

– A parameterized model is derived for HFVs with
faulty actuators. With the utilization of adap-
tive (back-stepping) design, uncertain parameters,
external disturbances and faulty actuators are well
handled;

– By constructing BLFs in design, the prescribed
tracking performances and state constraints can be
guaranteed in theory. Hence, the controlled HFVs
well meet the rigid limitations, such as the bounded
angle of attack required by the scramjet, which
makes the designed controller more practicable;

– In the back-stepping design for altitude subsys-
tem, command filters are employed to ensure the
required bounds of virtual controls, as well as to
directly generate the time derivatives of the fil-
tered virtual controls, which largely simplify the
final control algorithms. Additionally, novel auxil-
iary systems are designed to remove the effects that
are introduced by command filters;

– An adaptive inverse is constructed to effectively
accommodate the dead-zone nonlinearity in eleva-
tor.

The rest of this paper is organized as follows. Model
formulation and control objective are stated in Sect. 2.
Adaptive control designs for both velocity and altitude
subsystems are presented in Sect. 3 and 4, respectively.
Simulation studies are provided in Sect. 5 to show the
effectiveness of the proposed controller. This study is
concluded in Sect. 6.

Notations The Euclidean norm and the Γ -weighted
Euclidean norm of a vector a ∈ Rn are, respectively,
denoted by ||a|| = √

aTa and ||a||Γ = √
aTΓ a with

the positive definite matrix Γ ∈ Rn×n ; the estimate
error of an unknown parametric vector p ∈ Rm is
defined as p̃ = p − p̂; Ax > 0 presents the magni-
tude constraint of a variable x ∈ R, that is, |x | < Ax ;
log{•} is the natural logarithm function; tanh{•} is the
hyperbolic tangent function; sgn{•} is the standard sign
function; Proj{•} is the projection function [24].

2 Model formulation and control objective

This paper considers a control-oriented model (COM)
for the longitudinalmotion ofHFVsdescribed as Fig. 1,
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Fig. 1 Geometry of the scramjet-powered hypersonic flight
vehicle

which was derived by Parker et al. [4]. This COM is
formulated by the following kinematic and dynamic
equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇ = T cosα − D

m
− g sin γ,

ḣ = V sin γ,

γ̇ = T sin α + L

mV
− g cos γ

V
,

θ̇ = Q,

Q̇ = Myy

Iyy
,

(1)

and the curve-fitted expressions of lift L , drag D, thrust
T , pitch moment Myy:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L = q̄ S
[
Cα
Lα + Cδe

L δe + C0
L

]
,

D = q̄ S
[
Cα2

D α2 + Cα
Dα + C

δ2e
D δ2e + Cδe

D δe + C0
D

]
,

T = q̄ S
[
(C3

T,Φα3 + C2
T,Φα2 + C1

T,Φα + C0
T,Φ)Φ

+(C3
Tα3 + C2

Tα2 + C1
Tα + C0

T )
]
,

Myy = zT T + q̄ c̄S
[
Cα2

M α2 + Cα
Mα + Cδe

Mδe + C0
M

]
.

(2)

The above COM has five flight states: velocity V , alti-
tude h, flight path angle (FPA) γ , pitch angle (PA) θ ,
pitch angle rate (PAR) Q, and two control actuators:
scramjet fuel equivalency ratio (FER) Φ, elevator δe.
α = θ−γ denotes the angle of attack (AOA),m denotes
the mass, Iyy denotes the moment of inertia, g denotes
the gravitational acceleration, q denotes the dynamic
pressure, c, zT , S denote the constants decided by the
aerodynamic shape, C∗∗ denotes the curve-fitted coef-
ficient.

In this study, we assume that c, zT , S and C∗∗ are
constants but unknown; the dynamic equations (i.e.,
the first, third and fifth equations in COM) are affected
by bounded external disturbances (denoted by dV , dγ

and dQ , respectively); the control actuators suffer from
faults of partial effectiveness loss and bias, as well as
the dead-zone nonlinearity in elevator:

{
Φ = ζΦΦc + �Φ,

δe = ζeD(δe,c) + �e,
(3)

where Φc, δe,c denote the nominal commands of FER
and elevator, respectively, ζΦ , ζe, �Φ , �e are unknown
constants satisfying ζΦ, ζe ∈ (0, 1], D(•) is the dead-
zone nonlinearity formulated by

D(δe,c) =
⎧
⎨

⎩

mr
(
δe,c − nr

)
, δe,c > nr,

ml
(
δe,c − nl

)
, δe,c < nl,

0, otherwise,
(4)

where mr > 0, ml > 0, nr ≥ 0, nl ≤ 0 are unknown
constants. Furthermore, the above dead-zone nonlin-
earity (4) is parameterized as

δ̄e,c =D(δe,c) = ρrmr
(
δe,c − nr

) + ρlml
(
δe,c − nl

)

= ϑT
DϕD, (5)

where δ̄e,c denotes the output of dead-zone nonlinearity
with respect to the input δe,c, and

ϑD = [
mr, mrnr, ml, mlnl

]T
,

ϕD = [
ρrδe,c, − ρr, ρlδe,c,−ρl

]T
,

ρr =
{
1, δe,c > nr,
0, otherwise,

and ρl =
{
1, δe,c < nl,
0, otherwise.

Remark 1 Notice that we cannot get the exact inverse
of the dead-zone nonlinearity (4) or (5) directly for
compensation purpose due to the discontinuous ρr and
ρl as well as the uncertain ϑD. Also, ϕD is not exactly
known because the expressions of ρr and ρl involve
uncertain parameters nl and nr. To handle this problem,
we shall approximate ρr and ρl with the help of some
specific smooth functions ρ̄r and ρ̄l, while ϑD will be
estimated online. As a result, we can construct an adap-
tive inverse for (5) butwith an estimate error introduced
by the imprecisely known parameters and an approx-
imate error introduced by the employed smooth func-
tions. In the following design, the effect of this estimate
error will be removed by an adaptive law; meanwhile,
the introduced approximate error will be suppressed
via estimating its upper bound. More details are given
by the design process of Step 4 in Sect. 4.1.
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Then, COM with external disturbances and faulty
actuators can be parameterized into the following
model:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V̇ = fV + ϑT
V,1ϕV,1 + ϑT

V,2ϕV,2Φc + dV ,

ḣ ≈ V γ,

γ̇ = fγ + ϑT
γ,1ϕγ,1 + ϑγ,2ϕγ,2θ + dγ ,

θ̇ = Q,

Q̇ = ϑT
Q,1ϕQ,1 + ϑQ,2ϕQ,2δ̄e,c + dQ,

(6)

where the small angle approximation sin γ ≈ γ has
been applied [26], and |dV | ≤ DV , |dγ | ≤ Dγ ,
|dQ | ≤ DQ with unknown nonnegative constants DV ,
Dγ , DQ . Detailed expressions of the undefined param-
eters and functions in parameterized model (6) are
given in Appendix.

Suppose that Vc and hc are some predesigned veloc-
ity and altitude references whose time derivatives are
bounded. Our task is to realize the tracking control
of HFVs suffering from the above uncertain param-
eters, external disturbances and faulty actuators, along
with the prescribed tracking performances: |zV | =
|V − Vc| < AzV , |zh | = |h − hc| < Azh , and state
constraints: |γ | < Aγ , |θ | < Aθ , |Q| < AQ . The
following two assumptions are necessary for the solv-
ability of this control problem.

Assumption 1 The initial flight conditions of HFVs
satisfy the prescribed performances and constraints,
that is, |zV (0)| < AzV , |zh(0)| < Azh , |γ (0)| < Aγ ,
|θ(0)| < Aθ , |Q(0)| < AQ .

Assumption 2 Within the permissible flight envelope
decided by the prescribed references, tracking perfor-
mances and state constraints, there exists a compact
convex set S = SV × Sγ × SQ such that the control

gains gV = ϑ̂
T
V,2ϕV,2, gγ = ϑ̂γ,2ϕγ,2, gQ = ϑ̂Q,2ϕQ,2

are nonsingular if (θ̂V,2, θ̂γ,2, θ̂Q,2) ∈ S. In addition,
the sign of ϑQ,2 ∈ SQ is known a priori.

To facilitate the design process in the sequel, three
useful inequalities are reviewed without proof:

(i) log x ≤ x−1, for x ∈ [1,∞), and “=” is achieved
at x = 1;

(ii) 2 p̃T p̂ ≤ || p||2 − || p̃||2, for p ∈ Rm ;
(iii) 0 ≤ |τ |−τ tanh(τ/σ ) ≤ 0.2785σ , for τ ∈ R and

σ > 0.

3 Design for velocity subsystem

The parameterizedmodel (6) can be divided into veloc-
ity subsystem (i.e., the first equation) and altitude sub-
system (i.e., the last four equations) as [26]. In this
section, an adaptive controller will be designed first
for velocity subsystemwith themagnitude requirement
on tracking error. Then, both transient and steady-state
performances of velocity tracking are derived, which
can provide a guide for further performance improve-
ment.

3.1 Controller design

The dynamics of the velocity tracking error zV is for-
mulated by

żV = fV − V̇c + ϑT
V,1ϕV,1 + ϑT

V,2ϕV,2Φc + dV . (7)

To guarantee the prescribed tracking performance:
|zV | < AzV , a logarithmic barrier function [29] is
defined as

BV = 1

2
log

A2
zV

A2
zV − z2V

, (8)

which satisfies that BV ≥ 0 for any |zV | < AzV , and
BV = 0 if and only if zV = 0. The time derivative of
BV is calculated as

ḂV = τV żV , (9)

with τV = zV /(A2
zV − z2V ).

Remark 2 The above analysis indicates that the
selected BV is a valid Lyapunov function candidate
with respect to all the zV satisfying |zV | < AzV , and
that lim|zV |→A−

zV
BV = +∞. Therefore, if we can

guarantee the boundedness of BV during control, the
limitation |zV | < AzV will not be violated.

Next, we design the control law of FER for (7) as

Φc = 1

ϑ̂
T
V,2ϕV,2

[

− kV zV − fV − V̇c − ϑ̂
T
V,1ϕV,1

− D̂V tanh
( τV

σV

)]

, (10)
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where kV > 0, σV > 0, the variables ϑ̂V,1, ϑ̂V,2, D̂V

are generated by the adaptive laws:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂
ϑV,1 = Γ −1

V,1

(
ϕV,1τV − lV,1ϑ̂V,1

)
,

˙̂
ϑV,2 = Proj

ϑ̂V,2∈SV

{
Γ −1

V,2

(
ϕV,2ΦcτV − lV,2ϑ̂V,2

)}
,

˙̂DV = Γ −1
V,3

[
τV tanh

( τV

σV

)
− lV,3 D̂V

]
,

(11)

with Γ V,1 > 0, Γ V,2 > 0, ΓV,3 > 0, lV,1 > 0, lV,2 >

0, lV,3 > 0.

Remark 3 Notice that the designed control algorithms
(10) and (11) contain the function τV . From the analy-
sis in next subsection, the nonsingularity of τV can be
guaranteed, which in turn ensures the well definition
of the control algorithms. It should also be pointed out
that the adaptive law of ϑ̂V,2 contains Φc. After sub-
stituting the expression of Φc into the adaptive law of
ϑ̂V,2, we observe that the adaptive laws (11) are self-
contained. This implies that our designed control law
and adaptive laws can be implemented in practice.

3.2 Performance analysis

For analysis purpose, the following barrier Lyapunov
function (BLF) is constructed for velocity subsystem:

LV =BV + 1

2
||ϑ̃V,1||2Γ V,1

+ 1

2
||ϑ̃V,2||2Γ V,2

+ 1

2
||D̃V ||2ΓV,3

. (12)

For the constantϑV,1,ϑV,2 and DV , we have
˙̃
ϑV,1 =

− ˙̂
ϑV,1,

˙̃
ϑV,2 = − ˙̂

ϑV,2 and ˙̃DV = − ˙̂DV . Moreover,
utilizing (7)–(11) and the properties of the projection
function [24], the time derivative of LV satisfies that

L̇V = τV żV − ϑ̃
T
V,1Γ V,1

˙̂
ϑV,1 − ϑ̃

T
V,2Γ V,2

˙̂
ϑV,2

− D̃VΓV,3
˙̂DV

≤−kh
z2h

A2
zh − z2h

+ lV,1ϑ̃
T
V,1ϑ̂V,1 + lV,2ϑ̃

T
V,2ϑ̂V,2

+ lV,3 D̃V D̂V + DV

[
|τV | − τV tanh

( τV

σV

)]
.

(13)

Applying the inequalities (i)–(iii) to (13), we can
obtain that

L̇V ≤ − kh log
A2
zV

A2
zV − z2V

− lV,1

2
||ϑ̃V,1||2

− lV,2

2
||ϑ̃V,2||2 − lV,3

2
D̃2
V + lV,1

2
||ϑV,1||2

+ lV,2

2
||ϑV,2||2 + lV,3

2
D2
V + 0.2875σV DV

≤−κV LV + ςV , (14)

where κV and ςV are constants defined by

κV = min

{

2kh,
lV,1

λmax(Γ V,1)
,

lV,2

λmax(Γ V,2)
,
lV,3

ΓV,3

}

,

ςV = lV,1

2
||ϑV,1||2 + lV,2

2
||ϑV,2||2

+ lV,3

2
D2
V + 0.2875σV DV .

Recalling the initial condition |zV (0)| < AzV in
Assumption 1, the constructed BLF LV satisfies the
following inequality (see Lemma B.5 in [24]):

LV (t) ≤ M(t) = ςV

κV
+

[
LV (0) − ςV

κV

]
e−κV t < +∞,

(15)

which indicates that the prescribed tracking perfor-
mance: |zV (t)| < AzV is not violated during con-
trol (otherwise, LV (t) should achieve infinity at some
time instants), and that LV (t) is uniformly ultimately
bounded (UUB) [40]:

lim
t→∞ LV (t) ≤ lim

t→∞ M(t) = ςV

κV
. (16)

Further noting |zV | < AzV and

BV (t) = 1

2
log

A2
zV

A2
zV − z2V (t)

≤ LV (t) ≤ M(t), (17)

the transient and steady-state tracking performances of
velocity subsystem are derived from (15)–(17) as

|zV (t)| ≤
√
1 − e−2M(t)AzV , (18)

lim
t→∞ |zV (t)| ≤

√

1 − e
−2

ςV
κV AzV . (19)
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Remark 4 It is easily seen from (18) and (19) that the
velocity tracking error zV exponentially converges into
the set:

SzV = {zV : |zV | ≤
√
1 − e−2ςV /κV AzV }

⊂ {zV : |zV | < AzV }, (20)

and thus ςV
κV

should be as small as possible to ensure
some better transient and steady-state performances.
Further noting the expressions of ςV and κV , we
conclude that large kh and small lV,1, lV,2, lV,3, σV
should be chosen, while the values of λmax(Γ V,1),
λmax(Γ V,2),ΓV,3 need to be sufficiently small to obtain
large lV,1

λmax(Γ V,1)
, lV,2

λmax(Γ V,2)
, lV,3

ΓV,3
.

4 Design for altitude subsystem

In this section, we shall develop a controller for altitude
subsystem via the BLF-based adaptive back-stepping
design. In addition to the prescribed tracking perfor-
mance: |zh | < Azh , the state constraints: |γ | < Aγ ,
|θ | < Aθ , |Q| < AQ should be guaranteed at the same
time.Here,wedefine the virtual controls for the dynam-
ics of altitude, FPA, PA as vγ , vθ , vQ , respectively, and
suppose that

⎧
⎨

⎩

|vγ | < Avγ < Aγ ,

|vθ | < Avθ < Aθ ,

|vQ | < AvQ < AQ .

(21)

Therefore, the corresponding virtual tracking errors are
zγ = γ − vγ , zθ = θ − vθ , zQ = Q − vQ . If we can
design a controller such that |zγ | < Azγ ≤ Aγ − Avγ ,
|zθ | < Azθ ≤ Aθ − Avθ , |zQ | < AzQ ≤ AQ − AvQ , the
state constraints on FPA, PA and PAR are guaranteed.

For a common adaptive back-stepping design pre-
sented in [24], there is no effectivemechanism to ensure
condition (21). Here we employ the command filter
described in Fig. 2 to generate the constrained virtual
controls and their time derivatives. The additional ben-
efit of using this command filter is to avoid the com-
plicated analytical calculations on the time derivatives
of virtual controls, so that the final control algorithms
will be largely simplified. However, one further task
is to handle the discrepancies between the nominal
and the constrained virtual controls, denoted here by
Δvγ = vγ −vγ,c,Δvθ = vθ −vθ,c,ΔvQ = vQ −vQ,c.
In this study, we resort to the ideas in [32] and [41] to

+ +vA

vAQ

v
v
v

v

Q

v
v
v

v
v

v

v v
v v

Fig. 2 Realization of the command filter: ξv ∈ (0, 1], ωv > 0,
Av > 0, “

∫
” denotes the integrator; vc denotes the vector of the

nominal virtual controls to bedesigned,v and v̇ denote the vectors
of the constrained virtual controls and their time derivatives

compensate for the effects ofΔvγ ,Δvθ ,ΔvQ by intro-
ducing specific auxiliary systems.

Remark 5 In hypersonic flight, the constraints onAOA
are particularly concerned by engineers because the
working condition of the scramjet is mainly decided by
AOA. Unsuitable AOAmay cause the fatal inlet unstart
or thermal choking of the scramjet [1]. Considering the
fact |α| = |θ − γ | ≤ |θ | + |γ | < Aθ + Aγ , the magni-
tude constraint |α| < Aα can be guaranteed if proper
Aθ and Aγ are selected such that Aθ + Aγ ≤ Aα .

4.1 Controller design

Step 1:

The dynamics of the altitude tracking error zh is for-
mulated by

żh ≈ V γ − ḣc = V
(
zγ + vγ,c + Δvγ

) − ḣc. (22)

Similar to the design in the previous section, a log-
arithmic barrier function is selected for zh as

Bh = 1

2
log

A2
zh

A2
zh − z2h

, (23)

whose time derivative is calculated as Ḃh = τh żh with
τh = zh/(A2

zh − z2h).
The nominal virtual control for (22) is designed as

vγ,c = 1

V

(

− khzh + ḣc + chξh − c2h
2

τh

)

, (24)

where kh > 0, ch > 0, ξh is an auxiliary state to com-
pensate for the effect of Δvγ in (22), generated by the
following auxiliary system:
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ξ̇h =

⎧
⎪⎨

⎪⎩

0, |ξh | ≤ ξ∗
h ,

−ahξh + bhΔvγ

−
(
|VΔvγ τh | + 1

2
b2hΔv2γ

)
ξ−1
h , |ξh | > ξ∗

h ,

(25)

with ah > 1, bh > 0, ξ∗
h is a sufficiently small constant

in accordance with the performance requirement.

Remark 6 This auxiliary system (25) is inspired by the
ideas in [32] and [41], which can be regarded as the
scalar version of that in [32]. It is seen that ξh will
exponentially converge into a small set of Sξh = {ξh :
|ξh | ≤ ξ∗

h } ifΔvγ = 0. Proper reset mechanism for the
initial value of auxiliary system (25) should be imple-
mented to effectively respond the possible Δvγ �= 0
(seeRemark 10 in [32]). By selecting an appropriate ξ∗

h ,
if the state of auxiliary system (25) satisfies |ξh | > ξ∗

h ,
saturation on virtual control happens, that is,Δvγ �= 0;
otherwise, there exists no saturation, that is, Δvγ = 0
[41].

Next, we choose a Lyapunov-like function for this
step:

Lh = Bh + 1

2
ξ2h . (26)

Combining (22)–(25) and applying the inequality
(i), the time derivative of Lh satisfies that

L̇h = τh żh + ξh ξ̇h

= − kh
z2h

A2
zh − z2h

+ V
zhzγ

A2
zh − z2h

+ VΔvγ τh + chξhτh

− 1

2
c2hτ

2
h − ahξ

2
h − |VΔvγ τh |

− 1

2
b2hΔv2γ + bhΔvγ ξh

≤ − kh
z2h

A2
zh − z2h

+ V
zhzγ

A2
zh − z2h

− (
ah − 1

)
ξ2h

− 1

2

(
ξh − chτh

)2 − 1

2

(
ξh − bhΔvγ

)2

≤ −κh Lh + V
zhzγ

A2
zh − z2h

, (27)

where κh = min{2kh, 2(ah − 1)}.
It should be pointed out that similar to [32] and [41],

the above derivation only considers the case of |ξh | >

ξ∗
h , that is, there exists saturation. In the absence of
saturation, which also means |ξh | ≤ ξ∗

h , ξ̇h = 0 and
Δvγ = 0, a similar result can be readily obtained by
the same process. For example, the time derivative of
Lh in the unsaturation case is derived as

L̇h ≤ − kh
z2h

A2
zh − z2h

+ V
zhzγ

A2
zh − z2h

+ 1

2
ξ∗
h
2

− 1

2

(
ξh − chτh

)2

≤ − κ ′
h Lh + ς ′

h + V
zhzγ

A2
zh − z2h

, (28)

where κ ′
h = min{2k′

h, 2(a
′
h − 1)}, ς ′

h = (
a′
h − 1

2

)
ξ∗
h
2,

and a′
h > 1 is a constant for analytical purpose. It is

seen that the additional ς ′
h is a small constant due to

the sufficiently small ξ∗
h , which can be readily han-

dled according to the later analysis in Sect. 4.2. Similar
actions will be taken in the following steps.

Step 2:

For the dynamics of virtual tracking error zγ :

żγ = fγ − v̇γ + ϑT
γ,1ϕγ,1

+ ϑγ,2ϕγ,2
(
zθ + vθ,c + Δvθ

) + dγ , (29)

we select a logarithmic barrier function:

Bγ = 1

2
log

A2
zγ

A2
zγ − z2γ

, (30)

where Ḃγ = τγ żγ with τγ = zγ /(A2
zγ − z2γ ).

The nominal virtual control for (29) is designed as

vθ,c = 1

ϑ̂γ,2ϕγ,2

[

− kγ zγ − fγ + v̇γ

− V
(A2

zγ − z2γ )zh

A2
zh − z2h

− ϑ̂
T
γ,1ϕγ,1

− D̂γ tanh
( τγ

σγ

)
+ cγ ξγ − c2γ

2
τγ

]

, (31)

where kγ > 0, σγ > 0, cγ > 0, v̇γ is directly obtained
from the command filter, the variables ϑ̂γ,1, ϑ̂γ,2, D̂γ
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and ξγ are generated by the adaptive laws:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

˙̂
ϑγ,1 = Γ −1

γ,1

(
ϕγ,1τγ − lγ,1ϑ̂γ,1

)
,

˙̂
ϑγ,2 = Proj

ϑ̂γ,2∈Sγ

{
Γ −1

γ,2

(
ϕγ,2θτγ − lγ,2ϑ̂γ,2

)}
,

˙̂Dγ = Γ −1
γ,3

[
τγ tanh

( τγ

σγ

)
− lγ,3 D̂γ

]
,

(32)

and the auxiliary system:

ξ̇γ =

⎧
⎪⎨

⎪⎩

0, |ξγ | ≤ ξ∗
γ ,

−aγ ξγ + bγ Δvθ

−
(
|ϑ̂γ,2ϕγ,2Δvθτγ | + 1

2
b2γ Δv2θ

)
ξ−1
γ , |ξγ | > ξ∗

γ ,

(33)

with Γ γ,1 > 0, Γγ,2 > 0, Γγ,3 > 0, lγ,1 > 0, lγ,2 > 0,
lγ,3 > 0, aγ > 1, bγ > 0, ξ∗

γ is a sufficiently small
constant.

Next, we choose a Lyapunov-like function for this
step:

Lγ =Bγ + 1

2
||ϑ̃γ,1||2Γ γ,1

+ 1

2
||ϑ̃γ,2||2Γγ,2

+ 1

2
||D̃γ ||2Γγ,3

+ 1

2
ξ2γ . (34)

Combining (29)–(33) and the properties of the pro-
jection function, the time derivative of Lγ satisfies that

L̇γ = τγ żγ − ϑ̃
T
γ,1Γ γ,1

˙̂
ϑγ,1 − ϑ̃T

γ,2Γγ,2
˙̂
ϑγ,2 − D̃γ Γγ,3

˙̂Dγ

+ ξγ ξ̇γ

≤ − kγ

z2γ
A2
zγ − z2γ

− V
zhzγ

A2
zh − z2h

+ ϑ̂γ,2ϕγ,2
zγ zθ

A2
zγ − z2γ

+ ϑ̂γ,2ϕγ,2Δvθτγ + cγ ξγ τγ − 1

2
c2γ τ 2γ − aγ ξ2γ

− |ϑ̂γ,2ϕγ,2Δvθτγ | − 1

2
b2γ Δv2θ + bγ Δvθ ξγ

+ lγ,1ϑ̃
T
γ,1ϑ̂γ,1 + lγ,2ϑ̃

T
γ,2ϑ̂γ,2 + lγ,3 D̃γ D̂γ

+ Dγ

[
|τγ | − τγ tanh

( τγ

σγ

)]
. (35)

Further applying inequalities (i)–(iii) to (35), it is
derived that

L̇γ ≤ − kγ log
A2
zγ

A2
zγ − z2γ

− V
zhzγ

A2
zh − z2h

+ ϑ̂γ,2ϕγ,2
zγ zθ

A2
zγ − z2γ

− lγ,1

2
||ϑ̃γ,1||2 − lγ,2

2
ϑ̃2

γ,2 − lγ,3

2
D̃2

γ

− (
aγ − 1

)
ξ2γ + lγ,1

2
||ϑγ,1||2 + lγ,2

2
ϑ2

γ,2

+ lγ,3

2
D2

γ + 0.2875σγ Dγ

≤ − κγ Lγ + ςγ − V
zhzγ

A2
zh − z2h

+ ϑ̂γ,2ϕγ,2
zγ zθ

A2
zγ − z2γ

, (36)

whereκγ =min
{
2kγ ,

lγ,1
λmax(Γ γ,1)

,
lγ,2
Γγ,2

,
lγ,3
Γγ,3

, 2(aγ −1)
}
,

ςγ = lγ,1
2 ||ϑγ,1||2 + lγ,2

2 ϑ2
γ,2 + lγ,3

2 D2
γ +0.2875σγ Dγ .

Step 3:

For the dynamics of virtual tracking error zθ :

żθ = Q − v̇θ = zQ + vQ,c + ΔvQ − v̇θ , (37)

we select a logarithmic barrier function:

Bθ = 1

2
log

A2
zθ

A2
zθ − z2θ

, (38)

where Ḃθ = τθ żθ with τθ = zθ /(A2
zθ − z2θ ).

The nominal virtual control for (37) is designed as

vQ,c = − kθ zθ + v̇θ − ϑ̂γ,2ϕγ,2
(A2

zθ − z2θ )zγ
A2
zγ − z2γ

+ cθ ξθ − c2θ
2

τθ , (39)

where kθ > 0, cθ > 0, v̇θ is directly obtained from
the command filter and ξθ is generated by the auxiliary
system:

ξ̇θ =

⎧
⎪⎨

⎪⎩

0, |ξθ | ≤ ξ∗
θ ,

−aθ ξθ + bθΔvQ

−
(
|ΔvQτθ | + 1

2
b2θΔv2Q

)
ξ−1
θ , |ξθ | > ξ∗

θ ,

(40)

with aθ > 1, bθ > 0, ξ∗
θ is a sufficiently small constant.
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Next, we choose a Lyapunov-like function for this
step:

Lθ = Bθ + 1

2
ξ2θ . (41)

Combining (37)–(40) and applying the inequality
(i), the time derivative of Lθ satisfies that

L̇θ =τθ żθ + ξθ ξ̇θ

= − kθ

z2θ
A2
zθ − z2θ

− ϑ̂γ,2ϕγ,2
zγ zθ

A2
zγ − z2γ

+ zθ zQ
A2
zθ − z2θ

+ ΔvQτθ + cθ ξθ τθ − 1

2
c2θ τ

2
θ − aθ ξ

2
θ − |ΔvQτθ |

− 1

2
b2θΔθ2Q + bθΔvQξθ

≤ − κθ Lθ − ϑ̂γ,2ϕγ,2
zγ zθ

A2
zγ − z2γ

+ zθ zQ
A2
zθ − z2θ

,

(42)

where κθ = min{2kθ , 2(aθ − 1)}.

Step 4:

For the dynamics of the virtual tracking error zQ :

żQ = −v̇Q + ϑT
Q,1ϕQ,1 + ϑQ,2ϕQ,2δ̄e,c + dQ, (43)

we select a logarithmic barrier function:

BQ = 1

2
log

A2
zQ

A2
zQ − z2Q

, (44)

where ḂQ = τQżQ with τQ = zQ/(A2
zQ − z2Q).

Unlike the existing solutions to the dead-zone non-
linearity δ̄e,c = D(δe,c) via fuzzy control [17] or neural
network control [22], we shall employ a more effective
method of dynamic compensation by constructing the
smooth dead-zone inverse:

δe,c = I(δ̄e,c,d)

= δ̄e,c,d + m̂rnr
m̂r

ρ̄r(δ̄e,c,d) + δ̄e,c,d + m̂lnl
m̂l

ρ̄l(δ̄e,c,d),

(45)

where δ̄e,c,d is the desired value of δ̄e,c to be designed,

ϑ̂D = [
m̂r, m̂rnr, m̂l, m̂lnl

]T is the estimate of ϑD,

the functions ρ̄r(•) and ρ̄l(•) are defined as

ρ̄r(x) = eεx

eεx + e−εx
, ρ̄l(x) = e−εx

eεx + e−εx
, (46)

with ε > 0 a large constant. It has been proved by [37]
that if the command of elevator is selected as (45), the
actual output of the real dead-zone nonlinearity (5) can
be expressed as

δ̄e,c = δ̄e,c,d + ϑ̃
T
Dϕ̄D + dD, (47)

where ϕ̄D = [
ρ̄r(δe,c)δe,c, − ρ̄r(δe,c), ρ̄l(δe,c)δe,c,

−ρ̄l(δe,c)
]T is exactly known, dD satisfies |dD| ≤ DD

with DD a unknown positive constant.We can see from
(47) that after applying inverse (45), the output of the
dead-zone nonlinearity has been expressed as the sum
of a design single δ̄e,c,d, a term due to the estimate

error ϑ̃
T
Dϕ̄D and a bounded approximate error dD. As

a result, (43) is rewritten as

żQ = − v̇Q + ϑT
Q,1ϕQ,1 + ϑQ,2ϕQ,2δ̄e,c,d

+ ϑQ,2ϕQ,2ϑ̃
T
Dϕ̄D + d̄Q, (48)

with d̄Q = ϑQ,2ϕQ,2dD + dQ satisfying that

|d̄Q | ≤ |ϑQ,2ϕQ,2dD| + |dQ |
≤ϑ2

Q,2ϕ
2
Q,2 + 1

4
d2D + |dQ |

�ϑQ,3ϕQ,3 + d̄Q, (49)

where ϑQ,3 = ϑ2
Q,2 is an unknown constant, ϕQ,3 =

ϕ2
Q,2 is a known function, d̄Q = d2D/4 + |dQ | is

bounded by D̄Q = D2
D/4 + DQ .

Here, we design the control law for (48) as

δ̄e,c,d = 1

ϑ̂Q,2ϕQ,2

[

− kQzQ + v̇Q − (A2
zQ − z2Q)zθ

A2
zθ − z2θ

− ϑ̂
T
Q,1ϕQ,1 − (

ϑ̂Q,3ϕQ,3 + ˆ̄DQ
)
sgn

(
τQ

)
]

,

(50)

where kQ > 0, v̇Q is directly obtained from the com-

mand filter, the variables ϑ̂Q,1, ϑ̂Q,2, ϑ̂Q,3,
ˆ̄DQ and ϑ̂D

are generated by the adaptive laws:
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Fig. 3 Adaptive back-stepping control structure of altitude subsystem. Notice that the state feedback signals have been omitted in this
figure for clarity

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
ϑQ,1 = Γ −1

Q,1

(
ϕQ,1τQ − lQ,1ϑ̂Q,1

)
,

˙̂
ϑQ,2 = Proj

ϑ̂Q,2∈SQ

{
Γ −1
Q,2

(
ϕQ,2δ̄e,c,dτQ − lQ,2ϑ̂Q,2

)}
,

˙̂
ϑQ,3 = Γ −1

Q,3

(
ϕQ,3|τQ | − lQ,3ϑ̂Q,3

)
,

˙̄̂
DQ = Γ −1

Q,4

(|τQ | − lQ,4
ˆ̄DQ

)
,

˙̂
ϑD = Γ −1

Q,5

[
ϕQ,2τQ ϕ̄Dsgn

(
ϑQ,2

) − lQ,5ϑ̂D
]
,

(51)

with Γ Q,1 > 0, ΓQ,2 > 0, ΓQ,3 > 0, ΓQ,4 > 0,
Γ Q,5 > 0, lQ,1 > 0, lQ,2 > 0, lQ,3 > 0, lQ,4 > 0,
lQ,5 > 0,.

Next, we choose a Lyapunov-like function for this
step:

LQ = BQ + 1

2
||ϑ̃Q,1||2Γ Q,1

+ 1

2
||ϑ̃Q,2||2ΓQ,2

+ 1

2
||ϑ̃Q,3||2ΓQ,3

+ 1

2
|| ˜̄DQ ||2ΓQ,4

+ |ϑQ,2|
2

||ϑ̃D||2Γ Q,5
. (52)

Combining (48)–(51) and applying the properties
of the projection function, the time derivative of LQ

satisfies that

L̇ Q = τQ żQ − ϑ̃
T
Q,1Γ Q,1

˙̂
ϑQ,1 − ϑ̃T

Q,2ΓQ,2
˙̂
ϑQ,2

− ϑ̃T
Q,3ΓQ,3

˙̂
ϑQ,3 − ˜̄DQΓQ,4

˙̄̂
DQ

− |ϑQ,2|ϑ̃T
DΓ Q,5

˙̂
ϑD

≤ − kQ
z2Q

A2
zQ − z2Q

− zθ zQ
A2
zθ − z2θ

+ lQ,1ϑ̃
T
Q,1ϑ̂Q,1

+ lQ,2ϑ̃
T
Q,2ϑ̂Q,2 + lQ,3ϑ̃

T
Q,3ϑ̂Q,3 + lQ,4

˜̄DQ
ˆ̄DQ

+ lQ,5|ϑQ,2|ϑ̃T
Dϑ̂D − (

D̄Q − d̄Q
)|τQ |

≤ − κQLQ + ςQ − zθ zQ
A2
zθ − z2θ

, (53)

where κQ = min
{
2kQ,

lQ,1
λmax(Γ Q,1)

,
lQ,2
ΓQ,2

,
lQ,3
ΓQ,3

,
lQ,4
ΓQ,4

,

lQ,5
λmax(Γ Q,5)

}
,ςQ = lQ,1

2 ||ϑQ,1||2+ lQ,2
2 ϑ2

Q,2+ lQ,3
2 ϑ2

Q,3+
lQ,4
2 D̄2

Q + lQ,5
2 |ϑQ,2|||ϑD||2.

The overall control structure of altitude subsystem
is illustrated in Fig. 3. In the realization of this control,
adaptive laws (32) and (51) can be combined into a
single block, so as to obtain a simpler formand an easier
adjustment on design parameters. Similar handling is
also applied on auxiliary systems (25), (33) and (40).

4.2 Performance analysis

A BLF for the performance analysis of altitude subsys-
tem is constructed as the sum of Lyapunov-like func-
tions (26), (34), (41), (52):

LH = Lh + Lγ + Lθ + LQ . (54)

By adding (27), (35), (42) and (53), the time deriva-
tive of LH satisfies that

L̇ H = L̇h + L̇γ + L̇θ + L̇ Q

≤ − κh Lh − κγ Lγ − κθ Lθ − κQLQ + ςγ + ςQ

≤ − κH LH + ςH , (55)

where κH = min{κh, κγ , κθ , κQ}, ςH = ςγ + ςQ .
Similar to the analysis of velocity subsystem, if the

initial tracking errors satisfy |zh(0)| < Azh , |zγ (0)| <

Azγ , |zθ (0)| < Azθ , |zQ(0)| < AzQ , the following
inequality can be derived from (55) as

LH (t) ≤ N (t)= ςH

κH
+

[
LH (0) − ςH

κH

]
e−κH t < +∞,

(56)
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which indicates that the prescribed tracking perfor-
mance: |zh(t)| < Azh and state constraints: |zγ (t)| <

Azγ , |zθ (t)| < Azθ , |zQ(t)| < AzQ are not violated.
Moreover, LH (t) is also UUB:

lim
t→∞ LH (t) ≤ lim

t→∞ N (t) = ςH

κH
. (57)

Further considering the inequality:

Bh(t) = 1

2
log

A2
zh

A2
zh − z2h(t)

≤ LH (t) ≤ N (t), (58)

the transient and steady-state tracking performances of
altitude subsystem are derived from (57) and (58) as

|zh(t)| ≤
√
1 − e−2N (t)Azh , (59)

lim
t→∞ |zh(t)| ≤

√

1 − e
−2 ςH

κH Azh . (60)

Remark 7 Similar to the analysis in velocity subsys-
tem, the altitude tracking error exponentially converges
into the set:

Szh = {zh : |zh | ≤
√
1 − e−2ςh/κh Azh }

⊂ {zh : |zh | ≤ Azh }, (61)

with the desired performance and no violation of the
state constraints. In order to get a small ςH

κH
, large kh ,

kγ , kθ , kQ , ah , aγ , aθ and small lγ,1, lγ,2, lγ,3, lQ,1,
lQ,2, lQ,3, lQ,4, lQ,5, σγ should be chosen. Also, the
values of λmax(Γ γ,1), Γγ,2, Γγ,3, λmax(Γ Q,1), ΓQ,2,
ΓQ,3, ΓQ,4, λmax(Γ Q,5) need to be sufficiently small

to ensure large
lγ,1

λmax(Γ γ,1)
,

lγ,2
Γγ,2

,
lγ,3
Γγ,3

, lQ,1
λmax(Γ Q,1)

, lQ,2
ΓQ,2

,
lQ,3
ΓQ,3

, lQ,4
ΓQ,4

, lQ,5
λmax(Γ Q,5)

.

Remark 8 It is readily observed from the design and
analysis of altitude subsystem that the estimate error of
the uncertain parameter in adaptive dead-zone inverse,
whose effect is reflected by the term 1

2 |ϑQ,2|||ϑ̃D||2Γ Q,5

in (52), is handled by the adaptive law of ϑ̂D. Addition-
ally, the approximate error of the dead-zone inverse,
which is included in the expression of d̄Q , is suppressed
by the control law of δ̄e,c,d and the adaptive law of
ˆ̄DQ . As a result, the dead-zone nonlinearity in eleva-
tor has been effectively accommodated by the adaptive
inverse.

Remark 9 Just as discussed by Step 1 in Sect. 4.1, sim-
ilar performance analysis for altitude subsystem can be
implemented for the unsaturated case. The only differ-
ence comparedwith the saturated case is the ςH in (55),
whereas the tracking performance can also be guaran-
teed by selecting sufficiently small ξ∗

h , ξ
∗
γ and ξ∗

θ .

5 Simulation

This section will implement two simulation studies to
show the superiority and effectiveness of our designed
controller, namely the comparative simulation and the
verifying simulation. In both simulations, uncertain
parameters in COM, including c, zT , S and C∗∗ , have
relative uncertainties up to 0.2 with respect to the nom-
inal values in Table1. In other words, for an uncer-
tain parameter p whose nominal value is pn, its real
value is randomly selected within the compact con-
vex set: Sp = {p : 0.8pn ≤ p ≤ 1.2pn}. Coeffi-
cients in the actuator fault (3) and dead-zone (4) are
assumed as ζΦ = ζe = 0.7, �Φ = −0.05, �e = 2 deg,
mr = 0.9, ml = 0.8, nr = 0.5 deg, nl = −0.3 deg.
The external disturbances in (6), whichmay be aroused
by the time-varying environment and the flexible fuse-
lage, are selected as the periodic functions: dV =
2×sin(ωV t)−2 [ft/s2], dγ = 0.005×sin(ωγ t) [rad/s],
dQ = 0.01 × sin(ωQt) [rad/s2], with ωV = π/10,
ωγ = ωQ = π/5.

Relevant conditions in the comparative simulation
are briefly listed in Table2. To be specific, our task is
to steer a cruising HFV to track the filtered velocity
and altitude references [4], which start at the speed of
6500 ft/s with the altitude of 80, 500 ft and end at the
speed of 9000 ft/s with altitude of 90, 000 ft, as well
as to guarantee the prescribed tracking performances:
|zV | < 30 ft/s, |zh | < 40 ft, and state constraints:
|γ | < 1.5 deg, |θ | < 3 deg, |Q| < 3 deg/s. As a result,
AOA can be limited by |α| ≤ |γ |+ |θ | < 4.5 deg. Due
to the possible measurement errors, the real velocity
and altitude are supposed to be 6480 ft/s and 80, 470 ft,
respectively, which indicates the initial tracking errors:
zV (0) = −20 ft/s, zh(0) = −30 ft. For the above
flight task and control objective, relevant design param-
eters of both velocity and altitude subsystems are also
given in Table2. Besides the proposed controller, we
also simulate the flight case under another adaptive
controller for comparison purpose (hereafter referred
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Table 1 Nominal values of the uncertain parameters in simulation

Parameter Nominal value Unit Parameter Nominal value Unit

Cα
L 4.6773 × 100 1/rad Cδe

L 7.6224 × 10−1 1/rad

C0
L −1.8714 × 10−2 – Cα2

D 5.8224 × 100 1/rad2

Cα
D −4.5315 × 10−2 1/rad C

δ2e
D 8.1993 × 10−1 1/rad2

Cδe
D 2.7699 × 10−4 1/rad C0

D 1.0131 × 10−2 –

C3
T,Φ −1.7474 × 102 1/rad3 C2

T,Φ 1.2431 × 101 1/rad2

C1
T,Φ 1.6478 × 101 1/rad C0

T,Φ 2.9569 × 100 –

C3
T −1.7258 × 101 1/rad3 C2

T −8.0097 × 100 1/rad2

C1
T −1.1224 × 100 1/rad C0

T −4.6360 × 10−2 –

Cα2

M 6.2926 × 100 1/rad2 Cα
M 2.1335 × 100 1/rad

Cδe
M −1.2879 × 10−1 1/rad C0

M 1.8979 × 10−1 –

S 17 ft2 c̄ 17 ft

zT 8.36 ft

Table 2 Conditions in the comparative simulation

Operating condition Initial cruise Final cruise

Velocity 6480 ft/s 9000 ft/s

Altitude 80,470 ft 90,000 ft

Control objective Minimum value Maximum value

VTE a −30 ft/s 30 ft/s

ATE b −40 ft 40 ft

FPA −1.5 deg 1.5 deg

PA −3 deg 3 deg

PAR −3 deg/s 3 deg/s

Design parameter c kV = 5, kh = 4, kγ = 2, kθ = 20, kQ = 5

Azγ = 1 deg,Avγ = 0.5 deg,Azθ = 1 deg

Avθ = 2 deg,AzQ = 2 deg/s,AvQ = 1 deg/s

σV = 0.2, σγ = 0.01, ah = 10, aγ = aθ = 2,

bh = bγ = bθ = 5, ch = cγ = cθ = 5

lV,1 = lV,2 = lV,3 = 0.5, lγ,1 = lγ,2 = lγ,3 = 0.2

lQ,1 = lQ,2 = lQ,3 = lQ,4 = lQ,5 = 0.2

Γ V,1 = 0.1I9, Γ V,2 = 0.05I4, ΓV,3 = 0.05

Γ γ,1 = 0.05I11, Γγ,2 = Γγ,3 = 0.15, Γ Q,1 = 0.1I8
ΓQ,2 = ΓQ,3 = ΓQ,4 = 0.2, Γ Q,5 = 0.05I4

a VTE = Velocity Tracking Error
b ATE = Altitude Tracking Error
c In denotes the n-order identity matrix
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Table 3 Results of the
comparative simulation

a There exists a steady-state
error of about 19 ft.
b “�” indicates that the
flight state does not satisfy
the control objective in
Table2

Flight state Maximum magnitude

Proposed controller Compared controller

VTE 20 ft/s 20 ft/s

ATE 30 ft 36 ft a

FPA 0.58 deg 0.59 deg

PA 2.42 deg 4.58 deg �

b

AOA 1.92 deg 4.56 deg �

PAR 1.73 deg/s 3.24 deg/s �

Table 4 Operating conditions in the verifying simulation

Initial cruise Final cruise

Case I Case II Case III Case IV

Velocity 6480 ft/s 10,000 ft/s 10,500 ft/s 11,000 ft/s 11,500 ft/s

Altitude 80,470 ft 92,000 ft 93,000 ft 94,000 ft 95,000 ft

to as the compared controller), whose design follows
the strategy proposed in [26]. Because this compared
controller is based on quadratic Lyapunov functions
rather than BLFs, constraints on flight states cannot
be guaranteed in theory. Additionally, there exists no
specific mechanism to handle faulty actuators, external
disturbances and the dead-zone nonlinearity in elevator.
Hence, relevant design parameters should be carefully
selected to approach the control objective in Table2 at
best.

Simulation results are shown in Figs. 4, 5, 6, 7, 8 and
9 and listed in Table3. Figures4 and 5 demonstrate the
tracking performances under the two controllers, from
which we can see that the proposed controller performs
better than the compared controller in both transient and
steady-state performances. Under the compared con-
troller, some oscillations are aroused by the dead-zone
nonlinearity in elevator (also see the enlarged view in
Fig. 8b); meanwhile, the altitude tracking error has a
large steady-state error. Under the proposed controller,
it is as expected that the HFV is regulated with faster
convergence rates and smaller steady-state errors.

Other flight states of FPA, PA and PAR, AOA are
shown in Figs. 6 and 7, respectively. Under the pro-
posed controller, the virtual controls vγ , vθ and vQ are
limited by the command filters, while the virtual track-
ing errors zγ , zθ and zQ are regulatedwithin the desired
ranges. As a result, the prescribed constraints on FPA,
PAandPAR inTable2 are successfully guaranteed, also

leading to the permissible AOA. However, under the
compared controller, the prescribed constraints specif-
ically on PA, AOA and PAR cannot be kept, which is
also clearly seen from Table3. At the same time, the
dead-zone nonlinearity in elevator also affects flight
states like AOA, probably leading to an unsteady work-
ing condition of the scramjet. Relevant control inputs
under the two controllers are shown in Fig. 8. With
the help of the adaptive inverse for dead-zone nonlin-
earity, the elevator under the proposed controller suf-
fers from less influence than that under the compared
controller.

Some important estimates under the proposed con-
troller are given in Fig. 9. Figure9a, b indicates that

the gains gV = ϑ̂
T
V,2ϕV,2 and gQ = ϑ̂Q,2ϕQ,2 in con-

trol laws (10) and (50) are nonsingular, which in turn
ensures the well definition of the designed control laws
for FER and elevator. It is observed from Fig. 9c–e that

the estimate values of D̂V , D̂γ and ˆ̄DQ do not converge
to their true values. This is reasonable in adaptive con-
trol [24], because, taking D̂V for example, the adaptive
law of D̂V in (11) would be dominated by the term
−lV,3 D̂V in the case of small velocity tracking error
zV (and thus small τV ).

Finally, we implement a verifying simulation to test
the effectiveness of the proposed controller in differ-
ent operating conditions given in Table4. The control
objective and control parameter are chosen the same as
those in Table2. For page limitation, only the result-
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ing tracking errors of velocity and altitude as well as
flight states of FPA and AOA are illustrated in Figs. 10
and 11, respectively.We can see that the HFV under the
proposed controller can effectively track the given ref-
erences, along with the states being strictly constrained
in the desired ranges. Therefore, the controller is appli-
cable to a wide flight envelope. It should be pointed out
that the design parameters of the compared controller
are fragile, that is to say, a given controller, whose
design parameters are selected to satisfy the prescribed
tracking performances and state constraints for a spe-
cific operating condition, could be ineffective in other
operating conditions. However, just as proved and ana-
lyzed in previous sections, the developed BLF-based
controller can achieve all the control objectives pro-
vided that the initial errors are within the prescribed
bounds.

6 Conclusion

A fault-tolerant adaptive controller for HFVs has been
proposed in this paper. The main novelty of our
designed controller is to strictly guarantee the pre-
scribed tracking performances and state constraints
during hypersonic flight, which benefits from the uti-
lization ofBLFs. In the back-stepping design of altitude
subsystem, command filters are applied to bound vir-
tual controls and to simplify control algorithms, while
an adaptive inverse is developed to effectively compen-
sate for the dead-zone nonlinearity in elevator. Anal-
ysis results show that the tracking errors of velocity
and altitude are regulated to sufficiently small values
decided by design parameters, with no violation of the
desired state constraints. Simulation results indicate the
superiority and effectiveness of the proposed controller.
Future study will consider some more complex state

constraints of HFVs, which are time-varying or even
related to flight states.
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Appendix

The parameters and functions in parameterized model
(6) are defined as follows:

fV = −g sin γ, fγ = −g cos γ /V,

ϑV,1 = S
[
C3
T + �ΦC

3
T,Φ, C2

T + �ΦC
2
T,Φ, C1

T + �ΦC
1
T,Φ,C0

T

+ �ΦC
0
T,Φ, Cα2

D , Cα
D, C

δ2e
D , Cδe

D , C0
D

]T
,

ϕV,1 = (q̄/m)
[
α3 cosα, α2 cosα, α cosα, cosα, − α2,

− α, − δ2e , − δe, − 1
]T

,

ϑV,2 = ζΦ S
[
C3
T,Φ, C2

T,Φ, C1
T,Φ, C0

T,Φ

]T
,

ϕV,2 = (q̄ cosα/m)
[
α3, α2, α, 1

]T
,

ϑγ,1 = S
[
C3
T,Φ, C2

T,Φ, C1
T,Φ, C0

T,Φ, C3
T , C2

T , C1
T , C0

T ,

Cα
L , Cδe

L , C0
L

]T
,

ϕγ,1 = (q̄/mV )
[
α3 sin αΦ, α2 sin αΦ, α sin αΦ, sin αΦ,

α3 sin α, α2 sin α, α sin α, sin α, − γ, δe, 1
]T

,

ϑγ,2 = SCα
L , ϕγ,2 = q̄/mV ,

ϑQ,1 = S
[
zT C

3
T,Φ, zT C

2
T,Φ, zT C

1
T,Φ, zT C

0
T,Φ, zT C

3
T ,

zT C
2
T + c̄Cα2

M , zT C
1
T + c̄Cα

M ,

zT C
0
T + c̄(C0

M + �eC
δe
M )

]T
,

ϕQ,1 = (q̄/Iyy)
[
α3Φ, α2Φ, αΦ, Φ, α3, α2, α, 1

]T
,

ϑQ,2 = ζeSc̄C
δe
M , ϕQ,2 = q̄/Iyy.
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Fig. 4 Tracking
performances under the two
controllers in the
comparative simulation:
a velocity tracking,
b velocity tracking error
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Fig. 5 Tracking
performances under the two
controllers in the
comparative simulation:
a altitude tracking,
b altitude tracking error
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Fig. 6 Flight states under
the two controllers in the
comparative simulation:
a FPA, b PA
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Fig. 7 Flight states under
the two controllers in the
comparative simulation:
a PAR, b AOA
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Fig. 8 Control inputs under
the two controllers in the
comparative simulation:
a FER, b elevator deflection
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Fig. 9 Estimate values
under the proposed
controller in the
comparative simulation:

a gV = ϑ̂
T
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Fig. 10 Tracking
performances under the
proposed controller in the
verifying simulation:
a velocity tracking error,
b altitude tracking error
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Fig. 11 Flight states under
the proposed controller in
the verifying simulation:
a FPA, b AOA
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