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Abstract This paper investigates the nonlinear
dynamics of a doubly clamped piezoelectric nanobeam
subjected to a combined AC and DC loadings in the
presence of three-to-one internal resonance. Surface
effects are taken into account in the governing equation
of motion to incorporate the associated size effects at
nanoscales. The reduced-order model equation (ROM)
is obtained based on the Galerkin method. The mul-
tiple scales method is applied directly to the nonlin-
ear equation of motion and associated boundary con-
ditions to obtain the modulation equations. The equi-
librium solutions of the modulation equations and the
dynamic solutions of the ROM equation are investi-
gated in the case of primary and principal parametric
resonances of the first mode. Stability, bifurcations and
frequency response curves of the nanobeam are inves-
tigated. Dynamic behaviors of the motion are shown
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in the form of time traces, phase portraits, Poincare
sections and fast Fourier transforms. The results indi-
cate rich dynamic behaviors such as Hopf bifurcations,
periodic and quasiperiodic motions in both directly and
indirectly excited modes illustrating the influence of
modal interactions on the response.

Keywords Internal resonance · Modal interaction ·
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1 Introduction

In recent years, nanoelectromechanical systems
(NEMSs) havebeen the focus of attentionof vastmajor-
ity of researchers. Thanks to their inherent characteris-
tics, NEMSs are being used in awide variety of applica-
tions such as capacitive sensors, actuators, narrow band
filtering, mass and force detection and atomic-force
microscopes. NEMS resonators excited electrostati-
cally could experience different sources of nonlinear-
ity such as molecular interactions (Casimir and van der
Waals forces) and nonlinear electrostatic forces. This
reveals the importance of the nonlinear dynamics in
modeling a NEMS-based resonator under electrostatic
actuation.Many studies have been carried out in the lit-
erature on the nonlinear behavior of the NEMS/MEMS
resonators. Nonlinear dynamics of NEMS-based sen-
sors under superharmonic resonance was investigated
by Kacem et al. [1] using the method of multiple
scales. They obtained a way to retard the pull-in volt-
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age by decreasing the AC voltage. Ouakad and Younis
[2] studied nonlinear dynamics of an electrostatically
actuated carbon nanotube (CNT) resonator. Primary
and secondary resonances were studied using shoot-
ing method [3,4]. Several nonlinear phenomena have
been reported such as hysteresis [5,6], dynamic pull-in
[7–9], hardening behavior [8] and softening behavior
[10]. In a series of works [11–14], they investigated
the nonlinear dynamics of a CNT resonator in the pres-
ence of the initial curvature. They studied the effect
of DC electrostatic force and the slack level on the
CNT natural frequencies andmode shapes. Rasekh and
Khadem [15] investigated pull-in instability of a CNT
cantilever using direct numerical integration.Curvature
and inertia nonlinearities were also taken into account.
Asemi et al. [16] obtained a nonlinear continuum
model for the large amplitude vibration of nanoelec-
tromechanical resonators using piezoelectric nanofilms
(PNFs) under external electric voltage. Ke et al. [17]
investigated nonlinear vibration of the piezoelectric
nanobeams based on the nonlocal and Timoshenko
beam theories using the DQM. They studied the effect
of nonlocal parameter and piezoelectric voltage on the
nanobeam behavior. Hajnayeb and Khadem [18,19]
investigated in depth the stability and the nonlinear
vibrations of single-walled and double-walled CNTs
under electrostatic actuations. Primary and secondary
resonances and bifurcation points under different val-
ues of DC and AC voltages were studied using the mul-
tiple scales method. Rhoads et al. [20] explored the
nonlinear dynamics of an electromagnetically actuated
microcantilever under parametric excitations. Thefifth-
order nonlinearity was investigated using the perturba-
tion methods. Abdel-Rahman and Nayfeh [21] inves-
tigated secondary resonances of electrically actuated
resonant microsensors analytically using the method
of the multiple scales. Xu and Younis [22] investi-
gated the nonlinear dynamics of a CNT actuated under
large electrostatic forces. They expanded the nonlin-
ear electrostatic term into enough number of terms of
the Taylor series. Younis and Nayfeh [23] studied non-
linear dynamics of an electrically actuated microbeam
using the method of multiple scales. They explored the
three-to-one resonance between the first and second
modes. They showed that internal resonance cannot be
activated between the considered modes. Vyas et al.
[24] designed a T-beam microresonator based on the
nonlinear 1:2 internal resonance. They used asymp-
totic averaging method to analyze dynamic responses

of the system. It is beneficial to mention that reducing
the size to nanoscale leads to size-dependent behav-
iors of nanostructures [25,26]. Moreover, large surface
area-to-volume ratio is an important consequence of the
scale-down. Large surface-to-bulk ratio at nanoscales
results in an increase in the surface energy [27]. Many
studies have been carried out by researchers to inves-
tigate the influence of the surface effects on nanos-
tructures. Pourkiaee et al. [28,29] investigated nonlin-
ear vibrations of a piezoelectric nanobeam considering
surface effects and intermolecular interactions. They
explored the effect of different parameters such as sur-
face effects and piezoelectric voltage on static equilib-
ria, pull-in voltages and primary and secondary reso-
nances of the nanobeam. Wang and Wang [30] stud-
ied the effect of surface energy on free vibration of a
cracked nanobeam. They showed that the natural fre-
quencies of the nanobeam have dramatic dependence
on surface stresses. Eltaher et al. [31] investigated cou-
pling effects of nonlocal and surface energy on vibra-
tion of nanobeams using Galerkin finite element tech-
nique. There are also numerous papers in the literature
which have reported the influence of surface energy on
pull-in instability [32–34], buckling [35,36] and free
vibration [37] of nanostructures. According to the liter-
ature, it can be found that internal resonance inMEMS-
/NEMS-based resonators has not been explored so far.
The present study aims to investigate the nonlinear
dynamics of a piezoelectric nanoresonator in the pres-
ence of internal resonance, while physical behaviors
peculiar to the nanosized systems are considered in the
model. Accordingly, surface effects and intermolecu-
lar van der Waals forces are taken into account, due to
the size effects and the small initial gap between the
electrodes. For specific combination of system param-
eters, natural frequency of the second symmetric mode
(third mode) is approximately three times that of the
first one, a situation which results in nonlinear modal
interaction between the associated modes through the
three-to-one internal resonance. In-depth study of non-
linear oscillations of the nanobeam under small AC
loads is presented using the multiple scales method.
Stability, bifurcations and frequency response curves
of the nanobeam are investigated. Dynamic behaviors
of the motion are shown in the form of time traces,
phase portraits, Poincare sections and FFT diagrams.
The results indicate rich dynamic behaviors such as
Hopf bifurcations and quasiperiodic motions in both
directly and indirectly excited modes illustrating the
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Fig. 1 Schematic diagram
of an electrically actuated
clamped–clamped
piezoelectric nanobeam

influence of modal interactions on the stability and the
response of the nanoresonator.

2 Problem formulation

Consider a clamped–clamped piezoelectric nanores-
onator of length L , width b, thickness h, surrounded
between two conductive electrodes of different lengths,
as illustrated in Fig. 1. The xyz inertial coordinate sys-
tem passes through the centroid of the cross section
(y = 0, z = 0) and is located at the left clamped
end of the nanobeam. The vertical displacement of
the nanobeam centerline along the z-axis is denoted
by w(x, t).

The piezoelectric nanobeam is actuated by the elec-
tric load VDC + VAC cos(�t) through the lower elec-
trode and the VDC load through the upper electrode,
where VDC, VAC and � are DC bias voltage, amplitude
and frequency of AC voltage, respectively. In addition,
the piezoelectric nanobeam is actuated by the direct
current polarization voltage VP, which is applied along
the height of the nanobeam. The initial capacitor gap
width g0 is assumed to be under 20 nm, such that the van
derWaals force becomesdominant as an intermolecular
interaction between the electrodes [38]. Note here that

the initial gap is comparable to the nanobeam width;
consequently, the fringing field effects are also consid-
ered in this study. Moreover, due to the large surface-
to-bulk ratio at the nanoscale, the surface energies are
taken into account [27,28]. To incorporate the surface
effects, it is assumed that the surface layer has a math-
ematically zero thickness that is perfectly bonded to
the bulk material and there is no slipping between the
bulk and the surface. Assuming the Euler–Bernoulli
beam model and defining VD = VDC − VP, the nondi-
mensional equation of motion governing the transverse
vibration of the piezoelectric nanobeam considering
surface effects and van der Walls force distribution is
given by [28]:

∂4w

∂x4
+ ∂2w

∂t2
− [α1 + α2 + α3�(w,w)]

∂2w

∂x2

+α4
∂4w

∂x2∂t2
+ α5

∂w

∂t

= α6
[VD + VAC cos(�t)]2

(1 − w)2
H1(x)

−α6
V 2
D

(1 + w)2
H2(x)

+α7
H1(x)

(1 − w)3
− α7

H2(x)

(1 + w)3
(1)
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w(0, t) = w(1, t) = 0,
∂w(0, t)

∂x
= ∂w(1, t)

∂x
= 0 (2)

The functions�, Hi=1,2 (x) and the nondimensional
parameters in Eq. (1) are defined in “Appendix 1.” The
nanobeam deflection under electrostatic excitation is
composed of the dynamic component u(x, t), due to
the AC voltage, and the static component ws(x), due
to the DC voltage:

w(x, t) = ws(x) + u(x, t) (3)

To calculate the static deflection and boundary con-
ditions, all time-varying terms in Eqs. (1) and (2) are
set equal to zero and the following results are obtained:

w I V
s (x) − [α1 + α2 + α3�(ws, ws)]w

′′
s

= α6
V 2
D

(1 − ws)
2 H1(x) − α6

V 2
D

(1 + ws)
2 H2(x)

+α7
H1(x)

(1 − ws)
3 − α7

H1(x)

(1 + ws)
3 (4)

ws(x = 0, 1) = 0 and w′
s(x = 0, 1) = 0 (5)

where the prime denotes the derivative with respect
to x . Substituting Eq. (3) into Eqs. (1) and (2) and
using Eqs. (4) and (5) to eliminate the static equilib-
rium position, and expanding the electrostatic and dis-
persion forces around the stability point, yields nondi-
mensional equations and boundary conditions govern-
ing the dynamic behavior of the nanobeam:

ü + α5u̇ + uIV − [α1 + α2 + α3�(ws , ws)] u
′′

− 2α3�(ws , u)u − 2α3�(ws , u)w′′
s − α3�(u, u)w′′

s

−α3�(u, u)u′′ + α4ü
′′

= α61

⎛
⎝

2V 2
D

(1−ws )
3 u + 3V 2

D
(1−ws )

4 u
2 + 4V 2

D

(1−ws )
5 u

3

+ 2VDVAC cos(�t)
(1−ws )

2 + 4VDVAC cos(�t)
(1−ws )

3 u

⎞
⎠

−α62

(
−2V 2

D

(1 + ws)
3 u + 3V 2

D

(1 + ws)
4 u

2 − 4V 2
D

(1 + ws)
5
u3

)

+α71

(
3

(1 − ws)
4 u + 6

(1 − ws)
5
u2 + 10

(1 − ws)
6 u

3
)

−α72

( −3

(1 + ws)
4 u + 6

(1 + ws)
5
u2 − 10

(1 + ws)
6 u

3
)

(6)

u(x = 0, 1) = 0 and u′(x = 0, 1) = 0 (7)

where the dot denotes the derivative with respect to t .
The nondimensional parameters in Eq. (6) are defined
in “Appendix 1.” According to Ref. [23], V 2

AC is
dropped due to the fact V 2

AC � V 2
D.

3 The reduced-order model

The linear natural frequencies of the nanobeam res-
onator differ with the variation of the system param-
eters such as DC voltage load, piezoelectric actua-
tion voltage and the initial gap width. For specific
combination of system parameters, natural frequen-
cies of specific modes could become commensurable,
a situation which may result in nonlinear interactions
between the associated modes through the internal res-
onance. To generate the reduced-order model of the
system using the Galerkin discretization method, the
nanobeam deflection is approximated as:

u(x, t) =
n∑

i=1

qi (t)ϕi (x) (8)

where qi (t) is the i th time-dependent generalized
coordinate and ϕi=1,3,5,...(x) is the i th symmetric
eigenfuction of the clamped–clamped linear undamped
nanobeam, considering the surface effects and axial
load due to piezoelectric actuation [28]. It is worth
mentioning that there would be no energy exchange
between the symmetric and antisymmetric modes (the
antisymmetricmodeswould not be activated in the case
of beams with symmetric properties and forces) [23].
To obtain the ROM, first the nonlinear electrostatic and
van derWaals forces are expanded in Taylor series up to
the forth order. Taylor series expansion is used to avoid
the strong nonlinearities, and the truncated expansion is
valid under the small motion assumption. Substituting
Eq. (8) into Eq. (6), multiplying the resulting equa-
tion by ϕi , and integrating the outcome from x = 0 to
1 would reduce to the following nonlinear differential
equations in terms of generalized coordinates q j (t):

n∑
j=1

Mi j q̈ j +
n∑
j=1

Ci j q̇ j +
n∑
j=1

Ki j q j +
n∑
j=1

n∑
k=1

Ki jkq j qk

+
n∑
j=1

n∑
k=1

n∑
l=1

Ki jklq j qkql = Fi (t) (9)

The coefficients of Eq. (9) are defined in “Appendix
2.” This study investigates the special case of three-to-
one internal resonance (ω3 ≈ 3ω1), and it is assumed
that there are no other commensurate frequencies in
the higher modes; hence, just the two first symmet-
ric modes are considered to obtain the ROM. Equa-
tion (9) can be numerically integrated using theRunge–
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Table 1 Variation of the natural frequencies of the two first symmetric modes with the piezoelectric actuation voltage for two different
levels of DC voltage

VDC = 1v VDC = 1.5v

VP ω1 ω3 σ1 = ω3 − 3ω1 VP ω1 ω3 σ1 = ω3 − 3ω1

0.15 50.412 154.877 3.6416 0.15 49.385 154.731 6.5767

0.16 50.752 155.221 2.9646 0.16 49.736 155.076 5.8669

0.17 51.092 155.563 2.2854 0.17 50.088 155.420 5.1551

0.18 51.433 155.905 1.6063 0.18 50.440 155.764 4.4437

0.19 51.774 156.248 0.9269 0.19 50.792 156.108 3.7323

0.20 52.115 156.591 0.2463 0.20 51.144 156.452 3.0200

0.21 52.456 156.934 −0.4345 0.21 51.496 156.796 2.3078

0.22 52.797 157.276 −1.1162 0.22 51.848 157.140 1.5948

0.23 53.139 157.620 −1.7972 0.23 52.201 157.486 0.8830

0.24 53.481 157.963 −2.4795 0.239 52.518 157.795 0.2403

0.25 53.823 158.306 −3.1627 0.25 52.906 158.175 −0.5437

Kutta technique to simulate the dynamic behavior of the
nanobeam.

4 Perturbation analysis

It follows from Table 1 that for some specific values
of system parameters, there is a commensurable rela-
tion between the first and the third natural frequencies
(ω3 ≈ 3ω1), indicating the possibility of activating a
1:3 internal resonance between the first and third (sec-
ond symmetric) modes. In order to determine approx-
imate solution of the nonlinear distributed parameter
system, the multiple scales method is directly applied
to the partial differential equation ofmotion and associ-
ated boundary conditions. Therefore, the second-order
uniform solution is expressed in the form of [39]:

u(x, t; ε) = εu1(x, T0, T1, T2) + ε2u2(x, T0, T1, T2)

+ ε3u3(x, T0, T1, T2) + · · · (10)

where ε is a small dimensionless book-keeping param-
eter and T0 = t , T1 = εt and T2 = ε2t are different
timescales. Using chain rule, time derivatives can be
written as:
d

dt
= D0 + εD1 + ε2D2 + · · ·

d2

dt2
= D0 + 2εD0D1 + ε2

(
D2
1 + 2D0D2

)
+ · · ·

(11)

where Dn = ∂/∂Tn .

Next, we consider primary and principal parametric
resonances of the first mode separately.

4.1 Primary resonances of the first mode

In order to investigate the case of primary resonance
involving the two first symmetric modes, the damping
coefficient and the excitation amplitude are scaled as:

C = ε2C, VAC = ε3VAC (12)

Substituting Eqs. (10–12) into Eq. (6) and equating
the terms of like powers of ε, the following results are
achieved:

O(ε) :
L(u1) = D2

0u1 + uIV
1 + α4ü

′′
1

− [α1 + α2 + α3� (ws , ws)] u
′′
1 − 2α3� (ws , u1) w′′

s

− 2α61V 2
D

(1 − ws)
3 u1 − 2α62V 2

D

(1 + ws)
3 u1

− 3α71

(1 − ws)
4 u1 − 3α72

(1 + ws)
4 u1 = 0 (13)

O(ε2) :
L(u2) = −2D0D1u1 − 2α4D0D1u

′′
1

+ 2α3� (ws , u1) u
′′
1 + α3� (u1, u1) w′′

s

+ 3α61V 2
D

(1 − ws)
4 u

2
1 − 3α62V 2

D

(1 + ws)
4 u

2
1 + 6α71

(1 − ws)
5
u21

− 6α72

(1 + ws)
5
u21 (14)

O(ε3) :
L(u3) = −2D0D1u2 − D2

1u1 − 2D0D2u1 − CD0u1
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− α4
(
2D0D1u

′′
2 + 2D0D2u

′′
1 + D2

1u
′′
1

)

+ 2α3� (u1, u2)w′′
s + α3� (u1, u1) u

′′
1

+ 2α3� (ws , u1) u
′′
2 + 2α3� (ws , u2) u

′′
1

+ 6α61V 2
D

(1 − ws)
4 u1u2 − 6α62V 2

D

(1 + ws)
4 u1u2

+ 12α71

(1 − ws)
5
u1u2 − 12α72

(1 + ws)
5
u1u2

+ 4α61V 2
D

(1 − ws)
5
u31 + 4α62V 2

D

(1 + ws)
5
u31 + 10α71

(1 − ws)
6 u

3
1

+ 10α72

(1 + ws)
6 u

3
1 + 2P1(x) cos(�T0) (15)

where

P1(x) = α61VDVAC
(1 − ws)

2 (16)

The boundary conditions are similar for all orders
and are given by:

ui (x = 0, 1) = 0 and u′
i (x = 0, 1) = 0, i = 1, 2, 3

(17)

It is assumed that neither of the consideredmodes are
involved in the modal interaction with higher modes.
Therefore, in the presence of the damping, all other
modes except the directly or indirectly excited modes
decay with time. Consequently, the general solution
of Eq. (13) and the associated boundary conditions,
consisting of the two first symmetric modes, can be
expressed as:

u1 = A1(T1, T2)e
iω1T0φ1(x)

+ A3(T1, T2)e
iω3T0φ3(x) + cc (18)

where φ j (x) andω j are the mode shapes and the corre-
sponding natural frequencies for the consideredmodes,
respectively, and cc denotes the complex conjugate of
prior terms. Substituting Eq. (18) into Eq. (14) and
considering the solvability condition, one realizes that
A j are just the slow timescale complex-valued func-
tions (i.e., A1 = A1(T2), A3 = A3(T2)), which can be
obtained by applying the solvability conditions at third
order. By eliminating the secular terms, the second-
order equation reduces to:

L(u2) =
(
A2
1e

2iω1T0 + A1 Ā1

)
h11(x)

+
(
A2
3e

2iω3T0 + A3 Ā3

)
h13(x)

+
(
A3A1e

i(ω3+ω1)T0

+ A3 Ā1e
i(ω3−ω1)T0

)
H31(x) (19)

where h1 j (x) and H31(x) are defined as follows:

h1 j (x) = 2α3�
(
ws, φ j

)
φ′′
j + α3�

(
φ j , φ j

)
w′′
s

+ 3α61V 2
D

(1 − ws)
4φ2

j − 3α62V 2
D

(1 + ws)
4φ2

j

+ 6α71

(1 − ws)
5
φ2
j − 6α72

(1 + ws)
5
φ2
j (20)

H31(x) = 2α3� (φ1, φ3) w′′
s + 2α3� (ws, φ1) φ′′

3

+ 2α3� (ws, φ3) φ′′
1 + 6α61V 2

D

(1 − ws)
4φ1φ3

− 6α62V 2
D

(1 + ws)
4φ1φ3 + 12α71

(1 − ws)
5
φ1φ3

− 12α72

(1 + ws)
5
φ1φ3 (21)

The solution of the second-order equation can be
found in the form of:

u2 = ψ11(x)A
2
1e

2iω1T0 + ψ13(x)A
2
3e

2iω3T0

+ψ3(x)A3A1e
i(ω3+ω1)T0

×ψ4(x)A3 Ā1e
i(ω3−ω1)T0 + ψ21(x)A1 Ā1

+ψ23(x)A3 Ā3 + cc (22)

where ψi j (x) and ψ j (x) are the solutions of the fol-
lowing boundary value problems [23]:

ϑ(ψ1 j , 2ω j ) = h1 j (x) (23a)

ϑ(ψ1 j , 2ω j ) = h1 j (x) (23b)

ϑ(ψ3, ω3 + ω1) = H31(x) (23c)

ϑ(ψ4, ω3 − ω1) = H31(x) (23d)

ψ(x = 0, 1) = 0 and ψ ′(x = 0, 1) = 0 (24)

The linear differential operator ϑ(ψ,ω) is defined
as:

ϑ(ψ,ω) = ψ I V − ω2ψ − α4ω
2ψ ′′

− [α1 + α2 + α3� (ws, ws)]ψ
′′

−2α3� (ws, ψ)w′′
s − 2α61V 2

D

(1 − ws)
3ψ

− 2α62V 2
D

(1 + ws)
3ψ

− 3α71

(1 − ws)
4ψ − 3α72

(1 + ws)
4ψ (25)

Substituting Eqs. (18) and (22) into Eq. (15) yields:

L(u3) = [−iω1
(
2A′

1

(
φ1 + α4φ

′′
1

) + A1Cφ1
)

+χ11(x)A
2
1 Ā1 + ζ13(x)A1A3 Ā3

]
eiω1T0
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× [−iω3
(
2A′

3

(
φ3 + α4φ

′′
3

) + A3Cφ3
)

+χ13(x)A
2
3 Ā3 + ζ31(x)A3A1 Ā1

]
eiω3T0

+χ5(x)A
3
1e

3iω1T0 + χ6(x)A3 Ā
2
1e

i(ω3−2ω1)T0

+ P1(x)e
i�T2 + cc + NST (26)

where A′
j is the derivative of A j with respect to T2

and NST denotes nonsecular terms. The functions χ1 j ,
χ j and ζi j are defined in “Appendix 3.” In the case of
internal resonance and primary resonance of the first
mode, to show the nearness of ω3 to 3ω1 and � to ω1,
detuning parameters σ1 and σ2 are described as:

ω3 = 3ω1 + ε2σ1,� = ω1 + ε2σ2 (27)

Since the corresponding homogeneous problem of
Eq. (26) has a nontrivial solution, the nonhomogeneous
problem has a solution only if the right-hand side of Eq.
(26) is orthogonal to every solution of the adjoint homo-
geneous problem governing u3 [23]. Introducing Eq.
(27) into Eq. (26),multiplying the right-hand side of the
resulting equation by φ1(x)e−iω1T0 and φ3(x)e−iω3T0 ,
respectively, and integrating the outcome from x = 0
to x = 1, the solvability conditions can be obtained as
follows:

2iω1
(
m1A

′
1 + μ1A1

) − 8S11A
2
1 Ā1 − 8S13A1A3 Ā3

− 8�1A3 Ā
2
1e

iσ1T2 + Feiσ2T2 = 0 (28)

2iω3
(
m3A

′
3 + μ3A3

) − 8S33A
2
3 Ā3

− 8S31A3A1 Ā1 − 8�3A
3
1e

−iσ1T2 = 0 (29)

where

μ j = 1

2

∫ 1

0
Cφ2

j (x)dx,

m j =
∫ 1

0

(
φ2
j (x) + α4φ

′′
j (x)φ j (x)

)
dx,

S j j = 1

8

∫ 1

0
χ1 j (x)φ j (x)dx,

Si j = 1

8

∫ 1

0
ζi j (x)φi (x)dx i �= j ,

�1 = 1

8

∫ 1

0
χ6(x)φ1(x)dx,

�3 = 1

8

∫ 1

0
χ5(x)φ3(x)dx,

F =
∫ 1

0
P1(x)φ1(x)dx . (30)

We express An in the polar form as follows:

An = 1

2
an(T2)e

iβn(T2) (31)

where an and βn are real-valued functions of T2 rep-
resenting the amplitude and the phase of the response,
respectively. Substituting Eq. (31) into Eqs. (28) and
(29), separating the real and imaginary parts, and intro-
ducing γ1 = σ1T2 −3β1 +β2 and γ3 = σ2T2 −β1, the
modulation equations can be expressed as:

ȧ1 = −μ1a1
m1

+ �1a3a21
ω1m1

sin (γ1) + F

ω1m1
sin (γ3)

(32)

ȧ3 = − �3a31
ω3m3

sin (γ1) − μ3a3
m3

(33)

γ̇1 = 3a21 S11
ω1m1

− a21 S31
ω3m3

+ 3a23 S13
ω1m1

− a23S33
ω3m3

− �3a31
a3m3ω3

cos (γ1) + 3�1a3a1
ω1m1

cos (γ1)

+ 3F1
a1m1ω1

cos (γ3) + σ1 (34)

γ̇3 = a21 S11
ω1m1

+ a23S13
ω1m1

+ �1a3a1
ω1m1

cos (γ1)

+ F1
a1m1ω1

cos (γ3) + σ2 (35)

where (·) stands for derivative with respect to T2. The
steady-state response can be calculated by numerically
integrating Eqs. (32)–(35) or instead using the fact that
a1,a3,γ1 andγ3 are constants in the steady state.Hence,
the fixed points of Eqs. (32)–(35) are determined by
letting ȧ1 = ȧ3 = γ̇1 = γ̇3 = 0 and solving the con-
sequent four algebraic equations numerically for a1,
a3, γ1 and γ3. The stability of equilibrium solutions
can be determined by evaluating the eigenvalues of the
Jacobian matrix of the modulation equations at fixed
points.

4.2 Principal parametric resonances of the first mode

This section investigates the principal parametric reso-
nances of the firstmode. In order to apply themethod of
multiple scales, the damping coefficient and the exci-
tation amplitude are scaled as:

C = ε2C, VAC = ε2VAC (36)
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Substituting Eqs. (10), (11) and (36) into Eq. (6) and
equating the terms of like powers of ε, the following
results are achieved:

O(ε) :
L(u1) = D2

0u1 + uIV
1 + α4ü

′′
1 − [α1 + α2

+α3� (ws , ws)] u
′′
1 − 2α3� (ws , u1)w′′

s

− 2α61V 2
D

(1 − ws)
3 u1 − 2α62V 2

D

(1 + ws)
3 u1

− 3α71

(1 − ws)
4 u1 − 3α72

(1 + ws)
4 u1 = 0 (37)

O(ε2) :
L(u2) = −2D0D1u1 − 2α4D0D1u

′′
1

+ 2α3� (ws , u1) u
′′
1 + α3� (u1, u1)w′′

s

+ 3α61V 2
D

(1 − ws)
4 u

2
1 − 3α62V 2

D

(1 + ws)
4 u

2
1 + 6α71

(1 − ws)
5
u21

− 6α72

(1 + ws)
5
u21 + 2P1(x) cos(�T0) (38)

O(ε3) :
L(u3) = −2D0D1u2 − D2

1u1 − 2D0D2u1

−CD0u1 − α4

(
2D0D1u

′′
2 + 2D0D2u

′′
1 + D2

1u
′′
1

)

+ 2α3� (u1, u2)w′′
s + α3� (u1, u1) u

′′
1

+ 2α3� (ws , u1) u
′′
2 + 2α3� (ws , u2) u

′′
1

+ 6α61V 2
D

(1 − ws)
4 u1u2 − 6α62V 2

D

(1 + ws)
4 u1u2

+ 12α71

(1 − ws)
5
u1u2 − 12α72

(1 + ws)
5
u1u2

+ 4α61V 2
D

(1 − ws)
5
u31 + 4α62V 2

D

(1 + ws)
5
u31 + 10α71

(1 − ws)
6 u

3
1

+ 10α72

(1 + ws)
6 u

3
1 + 4P2(x) cos(�T0) (39)

where

P2 (x) = α61VDVAC
(1 − ws)

3 (40)

The modulation equations can be found by imple-
menting the procedure similar to that in Sect. 4.1. To
avoid repetition and also for the sake of brevity, the
complete scheme is not stated here (see the details in
“Appendix 4”). The modulation equations in the pres-
ence of the principal parametric resonances of the first
mode can be expressed as:

ȧ1 = −μ1a1
m1

+ �1a3a21 sin (γ1)

m1ω1
+ K1a1 sin (γ3)

m1ω1

− K2a3 sin (γ3) cos (γ1)

m1ω1
+ K2a3 cos (γ3) sin (γ1)

m1ω1

(41)

ȧ3 = −μ3a3
m3

− �2a31 sin (γ1)

ω3m3
+ K3a1 sin (γ3) cos (γ1)

ω3m3

− K3a1 cos (γ3) sin (γ1)

ω3m3
(42)

γ̇1 = 3
a21 S11
m1ω1

− a21 S31
ω3m3

+ 3
a23 S13
m1ω1

− a23 S33
ω3m3

− �3a31 cos (γ1)

a3m3ω3
+ 3

a3a1 cos (γ1)�1

m1ω1

+ 3
K1 cos (γ3)

m1ω1
+ 3

K2a3 cos (γ3) cos (γ1)

a1m1ω1

+ 3
K2a3 sin (γ3) sin (γ1)

a1m1ω1
− K3a1 cos (γ3) cos (γ1)

a3m3ω3

− K3a1 sin (γ3) sin (γ1)

a3m3ω3
+ σ1 (43)

γ̇3 = 2
a3a1 cos (γ1) �1

m1ω1
+ 2

a21 S11
m1ω1

+ 2
a23 S13
m1ω1

+ σ2 + 2
K1 cos (γ3)

m1ω1

+ 2
K2a3 cos (γ3) cos (γ1)

a1m1ω1
+ 2

K2a3 sin (γ3) sin (γ1)

a1m1ω1

(44)

where (·) stands for derivative with respect to T2.
According to the modulation equations, there are two
possibilities of solutions: trivial response and nontrivial
response. The stability of the nontrivial periodic solu-
tions can be determined by evaluating the eigenvalues
of the Jacobian matrix of modulation equations at fixed
points. It is convenient to determine the stability of the
trivial fixed points from the Cartesian form of the mod-
ulation equation rather than the polar form. Introducing
An = 1

2 (pn(T2) − iqn(T2)) eiνn(T2) into Eqs. (55) and
(56) and separating the real and imaginary parts, mod-
ulation equation in the Cartesian form can be obtained
as:

ṗ1 = −μ1 p1
m1

+ K1q1
m1ω1

− K2q3
m1ω1

+ 2
�1q1 p1 p3
m1ω1

− ν1q1 − S11q1
m1ω1

(
p21 + q21

)

− S13q1
m1ω1

(
p23 + q23

)
− q3�1

m1ω1

(
p21 − q21

)
(45)

q̇1 = −μ1q1
m1

+ K1 p1
m1ω1

+ p3K2

m1ω1
+ 2

q3�1q1 p1
m1ω1

+ ν1 p1 + S11 p1
m1ω1

(
p21 + q21

)

+ S13 p1
m1ω1

(
p23 + q23

)
+ p3�1

m1ω1

(
p21 + q21

)
(46)
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ṗ3 = −μ3 p3
m3

− K3q1
ω3m3

− ν3q2 − S31q3
ω3m3

(
p21 + q21

)

− S33q3
ω3m3

(
p23 + q23

)
− �2q1

ω3m3

(
3p21 − q21

)
(47)

q̇3 = −μ3q3
m3

+ K3 p1
ω3m3

+ ν3 p3 + �3 p1
ω3m3

(
p21 − 3q21

)

+ S31 p3
ω3m3

(
p21 + q21

)
+ S33 p3

ω3m3

(
p23 + q23

)
(48)

where ν1 = 1
2σ2 and ν3 = 3

2σ2−σ1. The stability of the
trivial fixed points can be determined by evaluating the
eigenvalues of the Jacobian matrix of Eqs. (45)–(48) at
trivial state p1 = q1 = p3 = q3 = 0.

5 Results and discussion

In this section, the numerical results are presented. The
numerical simulations are performed for the case study
of the PZT-5H nanobeam of L = 108 nm, b = 6 nm,
h = 5 nm, lu = 80 nm, ld = 5 nm, g0 = 4 nm. The
mechanical properties of the case study nanobeam are
adopted from [28]. The nondimensional natural fre-
quencies of the considered nanoresonator are evalu-
ated as functions of piezoelectric actuation voltage, for
specific values of DC voltages and system parameters
(the dependency of the nanobeam natural frequency on
the DC and the piezoelectric actuation voltages is also
apparent from the Ki j expression; “Appendix 2”). The
results are illustrated in Table 1 for the two first sym-
metric modes.

In addition, the variation of the natural frequencies
ratio of the two first symmetric modes with piezoelec-
tric actuation voltage is illustrated in Fig. 2.

It is noticed that a three-to-one internal resonance
(i.e., ω3 ≈ 3ω1; the highlighted narrow zone in Fig.
2) is tuned for two different sets of system param-
eters VDC = 1 v, VP = 0.2 v and VDC = 1.5 v,
VP = 0.239 v. For these values of parameters, it is
assumed that there are no other nonlinear interactions
among the highermodes and the investigation is limited
to the following resonances of the firstmode in the pres-
ence of internal resonance: (a) primary resonance (i.e.,
� ≈ ω1) and (b) principal parametric resonance (i.e.,
� ≈ 2ω1). The equilibrium and dynamic solutions are
obtainedbynumerically solving themodulation and the
ROM equations of motion, respectively. Specifically,
the frequency/force response curves are provided by
finding the stationary values of the modulation equa-
tions obtained from the direct perturbation technique

0.15 0.2 0.25

2.95

3

3.05

3.1

3.15

V
P

ω
3
/ω

1

V
DC

=1v

V
DC

=1.5v

(0.239,3.0046)

(0.2,3.0047)

Fig. 2 Variations of two first symmetric mode natural fre-
quencies ratio (ω3/ω1) with piezoelectric actuation voltage, for
VDC = 1v and VDC = 1.5v

and the dynamic solutions in terms of time histories,
phase portraits, Poincare sections and FFT diagrams
are provided by direct time integration of ROM equa-
tions obtained from Galerkin method.

5.1 The case of � ≈ ω1

Figures 3 and 4 illustrate the typical frequency response
curves for the first and second symmetric modes of
the nanoresonator as functions of detuning parameter
σ2, near the primary resonance of the first mode. The
corresponding systemparameters are VDC = 1 v, VP =
0.2 v, VAC = 0.09 v and σ1 = 0.2463. It is noted that
the quality factor is equal to Q = 1000 and is related to
damping coefficient by Q = ω1/C . In these figures, the
solid lines and the blue dotted lines represent the stable
and the unstable response branches, respectively, and
the small red circles denote unstable foci. An enlarged
part of Fig. 3 is also presented to provide a detailed
frequency response diagram.

The figures exhibit a hardening spring-type behav-
ior. According to the figures, there are multiple solu-
tions in the frequency response curves when 0.3937 <

σ2 < 3.4301. The response of the nanoresonator settles
on either of the stable branches depending on the initial
conditions. Hence, the system may experience nonlin-
ear dynamic phenomena such as jump and hysteresis
in this region. As the detuning parameter σ2 increases
from small values, the amplitude of the stable response
increases monotonically in both modes until it reaches
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Fig. 3 Frequency response curve of the first mode in the pres-
ence of internal resonance when � ≈ ω1, and for system param-
eters VDC = 1 v, VP = 0.2 v, VAC = 0.09 v and σ1 = 0.2463.
Solid lines represent stable solutions, blue dotted lines represent
saddle-nodes, and red circles represent unstable foci. (Color fig-
ure online)
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Fig. 4 Frequency response curve of the second symmetric mode
in the presence of internal resonance when � ≈ ω1, and for
system parameters VDC = 1 v, VP = 0.2 v, VAC = 0.09 v and
σ1 = 0.2463. Solid lines represent stable solutions, blue dotted
lines represent saddle-nodes, and red circles represent unstable
foci. (Color figure online)

the value of σ2 ≈ 0.39, where the amplitude of the
first mode drops slowly until it reaches the point A.
On the other hand, Fig. 4 shows a rise in the ampli-
tude of the second symmetric mode response over the
same detuning parameter range. A steady increase in
amplitude of the third mode coincided with a decrease
in first mode amplitude and exhibits an energy transfer
from the first mode to the third mode due to the inter-

nal resonance. At point A (σ2 = 0.4738), the solution
loses its stability through a saddle-node bifurcation.
With further decrease in the detuning parameter, the
unstable solution regains stability through the saddle-
node bifurcation point B (σ2 = 0.4171). For increasing
σ2 beyond point B, the amplitude of the first mode rises
steadily, while the amplitude of the third mode drops
continuously. It is noted that, in this region, the energy
is transferred back from the second symmetric mode
to the first symmetric mode. As σ2 increases beyond
the point C (σ2 = 0.5190), the system response loses
its stability via a Hopf bifurcation where one pair of
complex conjugate eigenvalues of the Jacobian matrix
crosses the imaginary axis into the right-half plane.
The unstable solution branch regains its stability via
a reverse Hopf bifurcation at point D (σ2 = 0.5881).
It is worth mentioning that numerous numerical sim-
ulations are needed to reveal the characteristic of the
response in this region. The numerical results are pre-
sented in the following sections to highlight the dynam-
ical features of this region. As the detuning parameter
is increased further, this new stable equilibrium solu-
tion encounters a saddle-node bifurcation point at E
(σ2 = 3.4301) and loses its stabilitywhere the response
jumps to the lower stable equilibrium manifold. With
further decrease in σ2, the motion regains stability at
point F (σ2 = 0.3937), where a saddle-node bifurca-
tion takes place. It is noted that the directly excited first
mode dominates the indirectly excited second mode.
Frequency response curves of the nanoresonator near
the primary resonance of the first mode for the system
parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.09 v
and σ1 = 0.2403 are shown in Figs. 5 and 6.

As it is seen, the frequency response curves are
totally different from the curves of Figs. 3 and 4. Over-
all, frequency response curves are tilted to the right,
which represents a hardening-like behavior and the
nonlinear response includes two-mode solution. It is
noted that there exist four stable two-mode branches
in the frequency range 0.4069 < σ2 < 3.3513, which
results in a relatively wide multivalued region. The
response settles on either of the stable branches depend-
ing on the initial conditions. Referring to Figs. 5 and 6,
as the detuning parameter σ2 increases, the response
amplitude increases steadily for both modes until it
reaches the first saddle-node bifurcation point A (σ2 =
3.35) and loses stability. The amplitude of this unsta-
ble branch decreases continuously for the first mode
until the second saddle-node bifurcation point occurs
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Fig. 5 Frequency response curve of the first mode in the pres-
ence of internal resonance when � ≈ ω1, and for system
parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.09 v and
σ1 = 0.2403. Solid lines represent stable solutions, blue dotted
lines represent saddle-nodes, and red circles represent unstable
foci. (Color figure online)
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Fig. 6 Frequency response curve of the second symmetric mode
in the presence of internal resonance when � ≈ ω1, and for sys-
tem parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.09 v and
σ1 = 0.2403. Solid lines represent stable solutions, blue dotted
lines represent saddle-nodes, and red circles represent unstable
foci. (Color figure online)

at B (σ2 = 1.17), and the motion regains its stabil-
ity, whereas the amplitude of the second symmetric
mode increases steadily in this frequency range. The
stable two-mode solution loses stability via a Hopf
bifurcation at C (σ2 = 1.21) and retrieves stability
via a reverse Hopf Bifurcation at D (σ2 = 1.32). In the
frequency range between the Hopf bifurcation points
C and D, a more precise investigation is required to

characterize the dynamic behavior of the motion. With
further increase in σ2, the stable manifold loses stabil-
ity through the saddle-node bifurcation E (σ2 = 2.65).
As the detuning parameter decreases even further, the
amplitude of the unstable branch decreases accordingly
until the saddle-node point F is reached at σ2 = 0.41,
and the motion recovers its stability. It is noted that the
contribution of the indirectly excited mode to the non-
linear response is considerable in this case which high-
lights the role of the three-to-one internal resonance.

Figure 7 shows the effect of DC voltage actuation
on the internal resonance of the nanobeam in the neigh-
borhood of primary resonance of the first mode for the
system parameters VP = 0.2 v and VAC = 0.09 v. Fre-
quency response curves in the case of lower DC voltage
actuation VDC = 0.9 v and σ1 = −0.1293 are shown in
Fig. 7a, b for the first and the second symmetric modes,
respectively.

It follows that decreasing theDCvoltage load signif-
icantly alters the locus of the bifurcation points (signifi-
cantly shifted toward the σ2 = 0). Besides, the hystere-
sis loop narrows (0.37 < σ2 < 2.83) and jump phe-
nomena take place at lower values of detuning param-
eter. It is noted that the Hopf bifurcation points totally
vanish in the upper stable branch. As it is seen, the
amplitude of the both directly and indirectly excited
modes are reduced in this case. It could be due to the
fact that decreasing the DC voltage load weakens the
effect of nonlinear electrostatic term and increases the
geometric nonlinearity effect. In more general sense,
changing the DC voltage will alter the natural fre-
quencies of the nanobeam, and as a result, it alters the
detuning parameter σ1 and consequently the nonlinear
response of the nanobeam. Frequency response curves
in the case of higher DC voltage actuation VDC = 1.1 v
and σ1 = 0.6778 are shown in Fig. 7c, d for the first
and the second symmetric modes, respectively. While
these curves are similar in shape to that of the lower
DC voltage load (Figs. 3, 4), all the bifurcation points
take place at higher values of detuning parameter σ2.
The unstable interval between the two Hopf bifurca-
tion points is also increased (0.8009 < σ2 < 1.0492).
It is evident that the multivalued region of the response
takes place in a wider range of the detuning parameter
(0.4161 < σ2 < 3.9289). As it is seen, the ampli-
tude of the both directly and indirectly excited modes
is amplified and the nonlinear interaction due to the
three-to-one internal resonance is strengthened com-
pared to the case of VDC = 1 v (Figs. 3 and 4). It is
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Fig. 7 Influence of the DC voltage level on the frequency
response curves in the presence of internal resonance when
� ≈ ω1, VP = 0.2 v and VAC = 0.09 v: a, b two first
symmetric modes with system parameters VDC = 0.9 v and

σ1 = −0.1293; c, d two first symmetric modes with system
parameters VDC = 1.1 v and σ1 = 0.6778. Solid lines represent
stable solutions, blue dotted lines represent saddle-nodes, and
red circles represent unstable foci. (Color figure online)

also due to the fact that changing the detuning param-
eter σ1 directly modifies the nonlinear behavior of the
response.

Figure 8 illustrates the influence of the piezoelectric
actuation voltage on the frequency response curves of
the two first symmetric modes when � ≈ ω1 and sys-
tem parameters are VDC = 1 v and VAC = 0.9 v. Fre-
quency response curves in the case of lower piezoelec-
tric voltage actuation VP = 0.17 v and σ1 = 2.2853 are
shown inFig. 8a, b.As it is seen, the response of the both
modes resembles those of the case with the absence of

modal interaction with the exception of the emergence
of a very small region in the response of the indirectly
excited mode in the range of 0.7 < σ2 < 0.85 which
depicts the slight role of the three-to-one internal res-
onance. It is due to the fact that changing the piezo-
electric actuation voltage alters the detuning parameter
σ1 and consequently violates the perfect conditions of
internal resonance. It is noted that the response ampli-
tude of the directly excited mode is decreased, while
the response amplitude of the indirectly excited mode
is increased compared to the case of Figs. 3 and 4.
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Fig. 8 Influence of the piezoelectric actuation voltage on the
frequency response curves in the presence of internal resonance
when � ≈ ω1, VDC = 1 v and VAC = 0.09 v: a, b two first
symmetric modes with system parameters VP = 0.17 v and

σ1 = 2.2853; c, d two first symmetricmodeswith system param-
etersVP = 0.23 v andσ1 = −1.7972. Solid lines represent stable
solutions, and blue dotted lines represent saddle-nodes. (Color
figure online)

It follows from Fig. 8 that decreasing the piezoelectric
actuation voltage vanishes the smallmultivalued region
and saddle-node bifurcation points in the upper stable
branch of the response and makes the hysteresis loop
narrower. Another significant difference is disappear-
ance of the Hopf bifurcation points C and D and the
associated unstable region.

Frequency response curves in the case of higher
piezoelectric voltage actuation VP = 0.23 v and σ1 =
−1.7972 are shown in Fig. 8c, d for the first and the sec-
ond symmetricmodes, respectively.While these curves
are similar in nature and shape to those of lower piezo-

electric actuation load (VDC = 0.17 v), the response
amplitude of the both directly and indirectly excited
modes is decreased compared to the case of Figs. 3 and
4. It follows that the response amplitude of the second
symmetric mode is decreased more profoundly com-
pared to the first mode. As it is seen, the hysteresis loop
range is influenced much less in this case compared to
the previous case. According to Fig. 8, piezoelectric
excitation amplitude significantly affects modal inter-
actions. It is seen that any slight variation of the piezo-
electric actuation voltage could cause drastic changes
in the overall system response, since it directly alters the
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Fig. 9 Force response curves of the a first mode and b sec-
ond symmetric mode in the presence of internal resonance when
� ≈ ω1 and for system parameters VDC = 1 v, VP = 0.2 v,

σ1 = 0.2463 and σ2 = 1. Solid lines represent stable solutions,
blue dotted lines represent saddle-nodes, and red circles repre-
sent unstable foci. (Color figure online)

internal resonance detuning parameter σ1 which could
violate the perfect internal resonance conditions. Thus,
it could be considered as a powerful design parameter
to control internal resonances of a piezoelectric NEMS
resonator.

Figure 9 shows the characteristic curves of the
response amplitude versus the excitation amplitude
VAC corresponding to static loading of Fig. 3 and
σ2 = 1 for the two first symmetric modes. As the exci-
tation amplitude VAC increases from small values, the
amplitude of the stable response increases steadily for
both modes until it reaches point A (VAC = 0.36 v),
where the response loses its stability through a saddle-
node bifurcation and jumps to one of the two other
branches of stable equilibrium solutions depending on
the initial conditions.

The stability is regained at saddle-node bifurcation
B (VAC = 0.049 v). With further increase of excitation
amplitude, the stable response loses stability via a Hopf
bifurcation at C (VAC = 0.21 v) and recovers stability
via a reverse Hopf bifurcation at D (VAC = 0.31 v).
As VAC amplitude is increased further, the new sta-
ble solution loses stability at saddle-node bifurcation E
(VAC = 0.48 v), where a sudden jump takes place to
the other stable solution. As the excitation amplitude
decreases from high values, the response settles on the
stable branch. With further decrease in VAC amplitude,
the response loses stability at saddle-node bifurcation

point F (VAC = 0.24 v)where it jumps to one of the two
other branches of stable equilibrium solutions depend-
ing on initial conditions. It is noted that there is an upper
bound for the response of the indirectly excited mode,
while there is no limit for the response of the directly
excited mode which could result in dynamic pull-in for
higher values of VAC.

Figure 10 illustrates the typical force response
curves of the two first symmetric modes with σ2 = 2
and static loading of Fig. 5. As the excitation ampli-
tude VAC increases from small values, the amplitude
of the stable response increases for both modes until it
reaches point A (VAC = 0.97 v), where the response
loses stability through a saddle-node bifurcation and
jumps to the upper stable branch.

As the excitation amplitude decreases fromhigh val-
ues, the stable response amplitude decreases continu-
ously until the saddle-node bifurcation point D (VAC =
0.07 v) is reached, where the response jumps to one of
the two other branches of stable equilibrium solutions
depending on the initial conditions. It is noted that a
segment of stable solution (0.11 v < VAC<0.15 v) is
separated by two saddle-node bifurcations at B and C.
It follows from Fig. 10 that there is an upper bound for
response of the indirectly excited mode, while there is
no bound for response of the directly excited mode in
this case.
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Fig. 10 Force response curves of the a first mode and b sec-
ond symmetric mode in the presence of internal resonance when
� ≈ ω1 and for system parameters VDC = 1.5 v, VP = 0.239 v,

σ1 = 0.2403 and σ2 = 2. Solid lines represent stable solu-
tions, and blue dotted lines represent saddle-nodes. (Color figure
online)

Figure 11 illustrates typical system response in terms
of time traces, phase portraits and Poincare sections at
σ2 = 0.2 for system parameters VDC = 1 v, VP =
0.2 v, VAC = 0.09 v, and σ1 = 0.2463 corresponding
to a point on the stable branch of frequency response
curves of Figs. 3 and 4.

This figure reveals that after long transients, sys-
tem experiences a mixed response, periodic behavior
in the first symmetric mode and quasiperiodic in the
second symmetric mode. It is noted that the quasiperi-
odic nature of the second symmetric mode is indicated
by the mild beating effect of the time history and the
closed loop form of the Poincare map (Fig. 11f). Fur-
ther along the same branch of the frequency response
curves, at σ2 = 0.52 in the vicinity of the Hopf bifur-
cation point C, the response becomes quasiperiodic as
shown in Fig. 12. This figure depicts time histories,
phase portraits, Poincare sections and FFTs of the two
first symmetric modes.

The quasiperiodic behavior of the response is more
prominent in the second symmetric mode as it is shown
in the time traces (Fig. 12a, b) and phase portraits (Fig.
12c, d). The system response exhibits beating phe-
nomenon in the both modes as shown in the time traces
which results in a continuous energy exchange between
the associated modes. Moreover, FFTs of the response
indicate that ω1 is the dominant resonance frequency
in the response of the directly excited mode, and 3ω1

is the dominant resonance frequency in the response
of the indirectly excited mode. Furthermore, the FFT
shows asymmetric sideband frequencies near the dom-
inant peaks indicating nonlinear interactions and pres-
ence ofmodulated quasiperiodicmotions in the system.
It is worth mentioning that FFT power spectra of the
response show some other harmonics in the response
(due to quasiperiodic behavior of the motion) which is
not presented in this paper. For the higher values of the
detuning parameter, the response remains quasiperi-
odic in both modes, and a similar behavior is noticed in
the region between the Hopf bifurcation points C andD
(the results have not been presented to avoid repetition).

Figure 13 shows the system behavior at σ2 = 0.2
for system parameters VDC = 1.5 v, VP = 0.239 v,
VAC = 0.09 v and σ1 = 0.2403 corresponding to the
typical frequency response curves shown in Figs. 5 and
6, in terms of time traces, phase portraits and Poincare
maps. The system experiences a mixed behavior in this
case.

The response is periodic in the first symmetric mode
while a beating effect in the time history (Fig. 13b),
and a closed loop curve in the Poincare map (Fig. 13f)
exhibits a quasiperiodic behavior in the second sym-
metric mode. It is noted that, further along a same
branch, the response remains periodic in the first mode
and quasiperiodic in the second symmetric mode. For
instance, at σ2 = 1.9598 (corresponding to a point
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Fig. 11 Mixed response in the two first symmetric modes in the
presence of internal resonance when � ≈ ω1, and for system
parameters VDC = 1 v, VP = 0.2 v, VAC = 0.09 v, σ1 = 0.2463

and σ2 = 0.2: a, b time traces of the q1 and q3, respectively; c, d
phase portraits of the q1 and q3 respectively; e, f Poincare maps
of the q1 and q3, respectively
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Fig. 12 Quasiperiodic response in the twofirst symmetricmodes
in the presence of internal resonance when � ≈ ω1, and for
system parameters VDC = 1 v, VP = 0.2 v, VAC = 0.09 v,
σ1 = 0.2463 and σ2 = 0.52: a, b time traces of the q1 and q3,

respectively; c, d phase portraits of the q1 and q3 respectively; e,
f Poincare maps of the q1 and q3, respectively; g, h FFTs of the
q1 and q3, respectively
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Fig. 13 Mixed response in the two first symmetric modes in
the presence of internal resonance when � ≈ ω1, and for sys-
tem parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.09 v,

σ1 = 0.2403 and σ2 = 0.2: a, b time traces of the q1 and q3,
respectively; c, d phase portraits of the q1 and q3, respectively;
e, f Poincare maps of the q1 and q3, respectively
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on the stable branch, settled between the bifurcation
points D and E), system exhibits a mixed behavior, a
periodic response in the directly excited mode and a
quasiperiodic response in the indirectly excited mode
as shown in Fig. 14. It is worth mentioning that time
history apparently shows a beating effect in the second
symmetric mode. The rich dynamic behaviors (peri-
odic, quasiperiodic and mixed response) observed in
the motion illustrate the intense effect of the modal
interactions on the system response.

5.2 The case of � ≈ 2ω1

Frequency response curves of the piezoelectric
nanobeam near the principal parametric resonance of
the firstmode are depicted in Figs. 15 and 16 for the first
and second symmetric modes, respectively. Response
of the nanoresonator is investigated for VDC = 1 v,
VP = 0.2 v, VAC = 0.9 v, and σ1 = 0.2463. The
parametric frequency response curves consist of one
trivial branch and two nontrivial steady-state branches,
and they represent a hardening-like behavior. As it
is seen, there exists a sharp transition between the
trivial response and the large amplitude subharmonic
responses due to the parametric excitation. As detuning
parameter σ2 increases from small values, the response
of the system remains trivial until it reaches the super-
critical pitchfork bifurcation point A (σ2 = −1.08)
where the parametric response is activated.

At this point, the trivial solution loses stability and
the solution jumps up to the new stable nontrivial
branch. As σ2 increases further, the response ampli-
tude increases along the nontrivial branch until the
saddle-node bifurcation B (σ2 = 3.29) is reached
and the stability gets lost. As the detuning parame-
ter decreases, the response turns stable through the
saddle-node bifurcation C (σ2 = 1.95). With further
increase in detuning parameter, the stable branch loses
stability through a Hopf bifurcation at D (σ2 = 5.07)
and regains stability through a reverse Hopf bifurca-
tion at E (σ2 = 5.22). As it is seen, the trivial solution
turns stable through the supercritical bifurcation point
F (σ2 = 1.08), and another unstable nontrivial solution
appears in the response. For high values of the detun-
ing parameter, there is no bound for the amplitude of
the directly excited mode and the amplitude increases
steadily until a dynamic pull-in takes place in the sys-
tem. However, the amplitude of the indirectly excited

mode is almost around an upper bound. It is noted that
the applied methods in this paper (bifurcation tech-
niques and Taylor series expansion) are not capable
of accurate investigation of the system response near
the dynamic pull-in.

In Figs. 17 and 18, the frequency response curves
of the two first symmetric modes were obtained for
VDC = 1.5 v, VP = 0.239 v, VAC = 0.9 v, and
σ1 = 0.2403 while � ≈ 2ω1. As it is seen, the
response of the both modes resembles those of the
case with the absence of internal resonance with the
exception of the interaction of the stable and unstable
nontrivial branches in the response of the indirectly
excited mode at σ2 = 4.65. As the detuning parameter
σ2 increases from small values, amplitude of the both
modes increases steadily and there is no bound for the
response amplitudes. It is noted that the directly excited
mode dominates the indirectly excited mode, and the
role of the three-to-one internal resonance is ignorable
in this case.

Figure 19 shows the effect of DC voltage actuation
on the principal parametric resonance of the nanobeam
in the presence of the internal resonance for the system
parameters VP = 0.2 v and VAC = 0.09 v. Frequency
response curves in the case of lower DC voltage actua-
tion VDC = 0.9 v and σ1 = −0.1293 are shown in Fig.
19a, b for the first and the second symmetric modes,
respectively.

These figures show that decreasing the DC volt-
age level narrows the trivial solution instability range
(−0.94 < σ2 < 0.94) and affects the pitchfork bifur-
cation points’ loci. It is noted that the Hopf bifurcation
points totally vanish in the nontrivial stable branch. As
it is seen, the amplitude of the parametric response of
both directly and indirectly excited modes is reduced
and nonlinear interactions are weakened compared to
the case of VDC = 1 v (Figs. 15, 16). Frequency
response curves in the case of higher DC voltage actu-
ation VDC = 1.1 v and σ1 = 0.6778 are shown in Fig.
19c, d for the two first symmetric modes. While these
curves are similar in shape to that of Figs. 15 and 16,
all the bifurcation points take place at higher values of
detuning parameter σ2.

The trivial solution instability range is broadened in
this case (−1.23 < σ2 < 1.23). Moreover, the unsta-
ble interval between the two Hopf bifurcation points
is also increased (7.2 < σ2 < 7.81). It is evident that
the multivalued region of the response takes place in
a wider range of the detuning parameter. As it is seen,
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Fig. 14 Mixed response in the two first symmetric modes in
the presence of internal resonance when � ≈ ω1, and for sys-
tem parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.09 v,
σ1 = 0.2403 and σ2 = 1.9598: a, b time traces of the q1 and q3,

respectively; c, d phase portraits of the q1 and q3, respectively;
e, f Poincare maps of the q1 and q3, respectively; g, h FFTs of
the q1 and q3, respectively
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Fig. 15 Frequency response curve of the first mode in the pres-
ence of internal resonance when� ≈ 2ω1 and for system param-
eters VDC = 1 v, VP = 0.2 v, VAC = 0.9 v and σ1 = 0.2463.
Solid lines represent stable solutions, blue dotted lines represent
saddle-nodes, and red circles represent unstable foci. (Color fig-
ure online)
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Fig. 16 Frequency response curve of the second symmetric
mode in the presence of internal resonance when � ≈ 2ω1 and
for system parameters VDC = 1 v, VP = 0.2 v, VAC = 0.9 v and
σ1 = 0.2463. Solid lines represent stable solutions, blue dotted
lines represent saddle-nodes, and red circles represent unstable
foci. (Color figure online)

the amplitude of both directly and indirectly excited
modes are amplified, and nonlinear interactions due to
the three-to-one internal resonance are enhanced com-
pared to the case of VDC = 1 v.

Figure 20 illustrates the influence of the piezoelec-
tric actuation voltage on the frequency response curves
of the two first symmetric modes in the presence of the
internal resonance when � ≈ 2ω1 and system param-
eters are VDC = 1 v and VAC = 0.9 v. Frequency
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Fig. 17 Frequency response curve of the first mode in the pres-
ence of internal resonance when � ≈ 2ω1 and for system
parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.9 v and
σ1 = 0.2403. Solid lines represent stable solutions, and blue
dotted lines represent saddle-nodes. (Color figure online)
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Fig. 18 Frequency response curve of the second symmetric
mode in the presence of internal resonance when � ≈ 2ω1, and
for system parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.9 v
and σ1 = 0.2403. Solid lines represent stable solutions, and blue
dotted lines represent saddle-nodes. (Color figure online)

response curves in the case of lower piezoelectric volt-
age actuation VP = 0.17 v and σ1 = 2.2853 are shown
in Fig. 20a, b. As it is seen, the response of both modes
is similar to those of Figs. 15 and 16 with the exception
of the emergence of a very small region in the unstable
nontrivial branch of the indirectly excited mode in the
range of 2.18 < σ2 < 2.55 which highlights the role
of the three-to-one internal resonance in this case. It is
noted that the response amplitude of the both directly
and indirectly excited modes increases compared to
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Fig. 19 Influence of the DC voltage level on the frequency
response curves in the presence of internal resonance when
� ≈ 2ω1, VP = 0.2 v and VAC = 0.9 v: (a, b) two first
symmetric modes with system parameters VDC = 0.9 v and

σ1 = −0.1293; (c, d) two first symmetric modes with system
parameters VDC = 1.1 v and σ1 = 0.6778. Solid lines represent
stable solutions, blue dotted lines represent saddle-nodes, and
red circles represent unstable foci. (Color figure online)

the case of Figs. 15 and 16. These figures show that
decreasing the piezoelectric actuation voltage enhances
themodal interaction in the presence of the three-to-one
internal resonance. It is noted that decreasing the piezo-
electric voltage level broadens the multivalued region
in the upper nontrivial branch (5.45 < σ2 < 9.26)
and increases the unstable response range between the
twoHopf bifurcation points (8.12 < σ2 < 10.01). Fre-
quency response curves in the case of higher piezoelec-
tric voltage actuation VDC = 0.23 v and σ1 = −1.7972
are shown in Fig. 20c, d for the first and the second
symmetric modes, respectively.

The response of both modes resembles those of the
case with the absence of modal interaction with the
exception of the emergence of a very small region
in the response of the indirectly excited mode in the
range of −1.04 < σ2 < −0.9 which shows the
minor role of the three-to-one internal resonance. It
is noted that the response amplitude of the directly
excited mode is not influenced very much, while the
response amplitude of the indirectly excited mode is
decreased remarkably compared to the case of Figs.
15 and 16. It follows that increasing the piezoelec-
tric actuation voltage vanishes the small multivalued
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Fig. 20 Influence of the piezoelectric actuation voltage on the
frequency response curves in the presence of internal resonance
when � ≈ 2ω1, VDC = 1 v and VAC = 0.9 v: a, b two first
symmetric modes with system parameters VP = 0.17 v and

σ1 = 2.2853; c, d two first symmetricmodeswith system param-
eters VP = 0.23 v and σ1 = −1.7972. Solid lines represent sta-
ble solutions, blue dotted lines represent saddle-nodes, and red
circles represent unstable foci. (Color figure online)

region and saddle-node bifurcation points in the sta-
ble nontrivial branch of the response. Another signif-
icant difference is disappearance of the Hopf bifur-
cation points C and D and the associated unstable
region. This figure shows that increasing the piezo-
electric actuation voltage weakens the modal interac-
tion in the presence of the three-to-one internal reso-
nance. It is also due to the fact that changing the piezo-
electric actuation voltage can directly change the natu-
ral frequencies of the nanobeam and consequently the
internal detuning parameter σ1. According to Fig. 20,
piezoelectric excitation amplitude significantly affects

modal interactions. It is seen that the variation of the
piezoelectric actuation voltage significantly affects the
system parametric response. Thus, it could be consid-
ered as a powerful design parameter to control para-
metric internal resonances of a piezoelectric NEMS
resonator.

Figure 21 shows the characteristic curves of the
response amplitude versus K1 corresponding to static
loading of Fig. 15 and σ2 = 2 for the two first sym-
metric modes. It is worth mentioning that K1 denotes
the terms produced due to external harmonic load (see
“Appendix 3”).
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Fig. 21 Amplitude versus coefficient K1 of the a first mode
and b second symmetric mode in the presence of internal res-
onance when � ≈ 2ω1 and for system parameters VDC = 1 v,

VP = 0.2 v, σ1 = 0.2463 and σ2 = 2. Solid lines represent stable
solutions, and blue dotted lines represent saddle-nodes. (Color
figure online)

As K1 increases from small values, the ampli-
tude remains zero until it reaches a subcritical pitch-
fork bifurcation at K1 = 52.18 where the parametric
response is activated and a sudden jump takes place
from this point to the upper stable branch. By revers-
ing this procedure, the solution decreases slowly along
the upper branch as it reaches the saddle-node bifurca-
tion point (K1 = 17.59), where it experiences a jump
to a stable branch depending on the initial conditions.
It is noted that there exists a multivalued region in the
upper stable branch confined between two saddle-node
bifurcation points in the range of 17.59 < K1 < 29.26
which highlights the effect of three-to-one internal res-
onance.

According to the figure, there is an upper bound for
the response of the indirectly excitedmode, while there
is no limit for the response of the directly excited mode
for high values of K1.

Figure 22 shows system response in terms of time
traces, phase portraits, Poincare sections and FFT dia-
grams at σ2 = 1 for system parameters VDC = 1 v,
VP = 0.2 v, VAC = 0.9 v, and σ1 = 0.2463 corre-
sponding to a point on the stable nontrivial branch of
parametric frequency response curves of Figs. 15 and
16.

The system illustrates a quasiperiodic response in
bothmodes.While the timehistory andphaseportrait of
the first mode do not indicate much about the response

nature, Poincare section and FFT diagram (Fig. 22e,
g) show a mild quasiperiodic motion in this mode.
The quasiperiodic behavior of the second symmetric
mode is dominant, and it is apparent from the beating
effect of the time history (Fig. 22b). For higher val-
ues of the detuning parameter, typically at σ2 = 3.5,
response becomes periodic in the first mode, while it
remains quasiperiodic in the second symmetric mode,
as shown in Fig. 23. It is noted that increasing the detun-
ing parameter σ2 weakens the strength of the quasiperi-
odic motion, as it makes the response of the first mode
periodic and weakens the quasiperiodic nature of the
second symmetric mode (Fig. 23b, e).

Figure 24 shows the system behavior at σ2 = 0.5
for system parameters VDC = 1.5 v, VP = 0.239 v,
VAC = 0.9 v and σ1 = 0.2403 corresponding to the
typical parametric frequency response curves shown in
Figs. 17 and 18, in terms of time traces, phase portraits,
Poincaremaps and FFT diagrams. As it is seen, the sys-
tem experiences a quasiperiodicmotion. The quasiperi-
odic behavior of the response is more prominent in the
second symmetricmode as it is shown in the time traces
(Fig. 24a, b) and phase portraits (Fig. 24c, d). It is noted
that there exists an energy exchange between the two
modes due to the beating phenomenon. It follows from
the FFT diagram (Fig. 24h) that the energy in the sec-
ond symmetricmode ismostly concentrated around the
first and the third resonance frequencies.
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Fig. 22 Quasiperiodic response in the twofirst symmetricmodes
in the presence of internal resonance when � ≈ 2ω1 and for
system parameters VDC = 1 v, VP = 0.2 v, VAC = 0.9 v,
σ1 = 0.2463 and σ2 = 1: a, b time traces of the q1 and q3,

respectively; c, d phase portraits of the q1 and q3, respectively;
e, f Poincare maps of the q1 and q3, respectively; g, h FFTs of
the q1 and q3, respectively
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Fig. 23 Mixed response in the two first symmetric modes in the
presence of internal resonance when � ≈ 2ω1 and for system
parameters VDC = 1 v, VP = 0.2 v, VAC = 0.9 v, σ1 = 0.2463
and σ2 = 3.5: a, b time traces of the q1 and q3, respectively;

c, d phase portraits of the q1 and q3, respectively; e, f Poincare
maps of the q1 and q3, respectively; g, h FFTs of the q1 and q3,
respectively
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Fig. 24 Quasiperiodic response in the twofirst symmetricmodes
in the presence of internal resonance when � ≈ 2ω1 and for
system parameters VDC = 1.5 v, VP = 0.239 v, VAC = 0.9 v,
σ1 = 0.2403 and σ2 = 0.5: a, b time traces of the q1 and q3,

respectively; c, d phase portraits of the q1 and q3, respectively;
e, f Poincare maps of the q1 and q3, respectively; g, h FFTs of
the q1 and q3, respectively
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6 Conclusions

In this paper, the nonlinear oscillations of an elec-
trostatically actuated clamped–clamped piezoelectric
nanoresonator in the presence of the three-to-one reso-
nance were studied. The governing equation of motion
incorporating surface effects and van der Waals forces
was discretized using the Galerkin method. The multi-
ple scales method was applied directly to the nonlinear
equation ofmotion and associated boundary conditions
to obtain the modulation equations of the amplitudes
and phases of the two first symmetric modes, while the
first mode was excited through the primary and prin-
cipal parametric resonance, respectively. Frequency
response and force response curves were obtained in
the presence of three-to-one internal resonance for dif-
ferent system parameters. Stability and bifurcations of
equilibrium solutions were investigated for each case.
Results show different dynamic phenomena such as
hardening type behaviors, jumps, fold and pitchfork
bifurcations in the system response. Furthermore, exis-
tence of Hopf bifurcations, and also complex multi-
valued regions in the equilibrium solutions, highlights
the role of internal resonance on the system response.
A detailed study was carried out to investigate the
influence of different parameters on the internal reso-
nance. Results illustrate that decreasing the DC voltage
level weakens the internal resonance, while increas-
ing the DC voltage level enhances the modal interac-
tions. Moreover, it was shown that any variation of the
piezoelectric actuation voltage weakens the strength of
modal interactions, while the primary resonance is acti-
vated. The results also revealed that, in the case of prin-
cipal parametric resonance, decreasing the piezoelec-
tric actuation voltage increases the modal interactions
due to internal resonance. Alternatively, increasing the
piezoelectric actuation voltage decreases the strength
of modal interactions. These are due to the fact that
changing the DC and piezoelectric actuation voltages
changes the natural frequencies of the nanobeamwhich
directly alters the internal detuning parameter σ1. This
could either violate or enhance the perfect conditions
of internal resonance. It was shown that the piezoelec-
tric actuation voltage could be considered as a power-
ful design parameter to control the internal resonances
of a piezoelectric NEMS resonator. Different dynamic
behaviors of the system were presented in terms of
time traces, phase portraits, Poincare maps and FFT
diagrams. Periodic, quasiperiodic andmixed responses

were observed in the motion which highlights the role
of modal interactions due to internal resonance. The
presented modeling approach can be used in the design
and optimization of novel NEMS resonators, and also
the provided results can give an insight into howmodal
interactions can affect the stability and the resonant
responses of NEMS resonators.

Appendix 1

� ( f1(x, t), f2(x, t)) =
∫ 1

0

∂ f1
∂x

· ∂ f2
∂x

dx,

α1 = FpL2
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, α2 = FSL2
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, α3 = (EI)effg0

2(EI)eff
,
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)
,

α61 = α6H1(x), α62 = α6H2(x),

α71 = α7H1(x), α72 = α7H2(x)

where Ã is theHamaker constant and H(x) is theHeav-
iside function. Fp and FS are axial forces due to piezo-
electric actuation and surface effects, respectively. Cn

is a nondimensional coefficient to consider the fringing
field effects. For more details, one may see Ref. [28].
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Appendix 4

The boundary conditions at all orders are identical to
that obtained in Eq. (17). The first-order equation given
in Eq. (37) is similar to Eq. (13); thus, the general solu-
tion of u1 can be expressed as in Eq. (18). By intro-
ducing Eq. (18) in Eq. (38), the second-order equation
reduces to:

L(u2) =
(
A2
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2iω1T0 + A1 Ā1

)
h11(x)

+
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A2
3e

2iω3T0 + A3 Ā3

)
h13(x)

+
(
A3A1e

i(ω3+ω1)T0 + A3 Ā1e
i(ω3−ω1)T0

)

×H31(x) + 2P1(x) cos(�T0) (49)

where h1 j (x) and H31(x) are defined in Eqs. (20) and
(21). The solution of the second-order equation can be
found in the form of:

u2 = ψ11(x)A
2
1e

2iω1T0

+ψ13(x)A
2
3e

2iω3T0 + ψ3(x)A3A1e
i(ω3+ω1)T0

×ψ4(x)A3 Ā1e
i(ω3−ω1)T0 + ψ21(x)A1 Ā1

+ψ23(x)A3 Ā3 + ψ5(x)
(
ei�T0 + e−i�T0

)
+ cc

(50)

whereψi j (x),ψ3(x) andψ4(x) are the solutions ofEqs.
(23a) and (24) and ψ5(x) is the solution of following
boundary value problem:

ψ I V
5 − �2ψ5 − α4�

2ψ ′′
5

− [α1 + α2 + α3� (ws, ws)]

×ψ ′′
5 − 2α3� (ws, ψ5) w′′

s

− 2α61V 2
D

(1 − ws)
3ψ5 − 2α62V 2

D

(1 + ws)
3ψ5

− 3α71

(1 − ws)
4ψ5 − 3α72

(1 + ws)
4ψ5 = P1(x) (51)

ψ5(x = 0, 1) = 0 and ψ ′
5(x = 0, 1) = 0 (52)

Substituting Eqs. (18) and (50) into Eq. (39) yields:

L(u3) = [−iω1
(
2A′

1

(
φ1 + α4φ

′′
1

) + A1Cφ1
)

+χ11(x)A
2
1 Ā1 + ζ13(x)A1A3 Ā3

]
eiω1T0

× [−iω3
(
2A′

3

(
φ3 + α4φ

′′
3

) + A3Cφ3
)

+χ13(x)A
2
3 Ā3 + ζ31(x)A3A1 Ā1

]
eiω3T0

+χ5(x)A
3
1e

3iω1T0 + χ6(x)A3 Ā
2
1e

i(ω3−2ω1)T0

+ k1(x) Ā1e
i(�−ω1)T2 + k2(x)A3e

−i(�−ω3)T2

+ k1(x)A1e
i(�+ω1)T2 + cc + NST (53)

where k1(x) and k2(x) are defined in “Appendix 3.”The
other functions in Eq. (53) are identical to those arising
from Eq. (26). In the case of internal resonances and
principal parametric resonances of the first mode, to
show the nearness of ω3 to 3ω1 and� to 2ω1, detuning
parameters σ1 and σ2 are described as:

ω3 = 3ω1 + ε2σ1,� = 2ω1 + ε2σ2 (54)

It is worth mentioning that � = ω3 − ω1 + ε2(σ2 −
σ1); hence, a combination parametric resonance of the
difference type would also be activated. The corre-
sponding homogeneous problem of Eq. (53) has a non-
trivial solution; it follows that the nonhomogeneous
problem has a solution only if the right-hand side of
Eq. (53) is orthogonal to every solution of the adjoint
homogeneous problem governing u3. Introducing Eq.
(54) in Eq. (53), multiplying the right-hand side of the
resulting equation by φ1(x)e−iω1T0 and φ3(x)e−iω3T0 ,
respectively, and integrating the outcome from x = 0
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to x = 1, the solvability conditions can be obtained as
follows:

2iω1
(
m1A

′
1 + μ1A1

) − 8S11A
2
1 Ā1 − 8S13A1A3 Ā3

− 8�1A3 Ā
2
1e

iσ1T2 − 2K1 Ā1e
iσ2T2

− 2K2A3e
i(σ1−σ2)T2 = 0 (55)

2iω3
(
m3A

′
3 + μ3A3

) − 8S33A
2
3 Ā3 − 8S31A3A1 Ā1

− 8�3A
3
1e

−iσ1T2 − 2K3A1e
i(σ2−σ1)T2 = 0 (56)

where

K1 = 1

2

∫ 1

0
k1(x)φ1(x)dx,

K2 = 1

2

∫ 1

0
k2(x)φ1(x)dx,

K3 = 1

2

∫ 1

0
k1(x)φ3(x)dx (57)

The other terms of Eqs. (55) and (56) are identical to
those defined inEq. (30). Expressing A j in a polar form,
as in Eq. (31), substituting the resulting equations into
Eqs. (55) and (56), separating the real and imaginary
parts, and introducing γ1 = σ1T2 − 3β1 +β2 and γ3 =
σ2T2−2β1, the modulation equations can be expressed
as Eqs. (41)–(44).
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