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Abstract This paper studies nonlinear control of a
3-link planar robot moving in the vertical plane with
only the first joint being actuated while the two
other revolute joints are passive (called the APP robot
below). A nonlinear energy-based controller is pro-
posed, whose objective is to drive the APP robot into an
invariant setwhere thefirst link is in the upright position
and the total mechanical energy converges to its value
at the upright equilibriumpoint (all three links are in the
upright position). By presenting and using a new prop-
erty of the motion of the APP robot, without any con-
dition on its mechanical parameters, this paper proves
that if the control gains are larger than specific lower
bounds, then only a measure-zero set of initial condi-
tions converges to three strictly unstable equilibrium
points instead of converging to the invariant set. This
paper presents numerical results for a physical 3-link
planar robot to validate the obtained theoretical results
and to demonstrate a switch–and–stabilize maneuver
in which the energy-based controller is switched to a
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1 Introduction

Studies on underactuated mechanical systems, which
possess fewer actuators thandegrees of freedom(DOF),
have received considerable interest in the last two
decades. In mobile robotic locomotion (legged,
wheeled, swimming, flying, etc.), underactuation is an
inherent property of the system since the degrees of
freedom that describe net body motion are not directly
actuated. Moreover, underactuation may alternatively
be a consequence of on-purpose “minimalistic” design
without using full actuation or that of the failure of one
or more actuators. However, it is difficult to control
these systems due to their complex nonlinear dynam-
ics and nonholonomic behavior, see pioneer works in
[10,15,25,26], and other interesting results in [2–4,7–
9,13,18,19,22,24,27–29].

Many researchers investigated the notion of energy
shaping in controlling underactuated mechanical sys-
tems since energy is an important variable related to the
motion of the systems. For an underactuated mechan-
ical system with generalized coordinate θ(t), [10] and
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[15] addressed the simultaneous control of both its total
mechanical energy E(θ(t), θ̇(t)) and actuated vari-
able(s) θa(t); that is, whether one can design a con-
troller to achieve

lim
t→∞ E(θ(t), θ̇(t)) = Er , (1)

lim
t→∞ θa(t) = θar , lim

t→∞ θ̇a(t) = 0, (2)

where Er is a given constant, θar is a given constant
vector, and 0 is zero column vector with a compatible
size.

For the Pendubot [11,15], and the Acrobot [32],
objectives (1) and (2) have been shown to be achievable
for the swing-up and stabilizing control problem,which
is to drive the robot to a small neighborhood of its UEP
(upright equilibrium point) and then stabilize it around
that point, where all links are in the upright position.
The above energy-based control is applied to stabilize
an unstable equilibrium point of the butterfly robot in
[6]. However, [31] showed that objectives (1) and (2)
cannot be achieved simultaneously for the swing-up
and stabilizing control problem of a 2-link underactu-
ated robot with a particular counterweight connected to
the passive first joint. For a set-point control for a folded
configuration of 3-link gymnastic planar robot with the
first joint being passive (unactuated) and the second and
third joints being active (actuated), we proved in [17]
that objectives (1) and (2) can be achieved simultane-
ously if the mechanical parameters of the robot satisfy
certain conditions, and we show via a numerical exam-
ple that objectives (1) and (2) are not achieved simulta-
neously when the mechanical parameters of the robot
do not satisfy these conditions. Thus, for an underac-
tuated system with particular mechanical parameters,
although objective (2) can be achieved for example by
the partial feedback linearization in [26], it is not clear
whether objectives (1) and (2) can be achieved simul-
taneously.

Although there are many results for mechanical sys-
tems with underactuation degree one [1,10,12], that
is, the number of control inputs is one less than that
of degrees of freedom, designing and analyzing con-
trollers for mechanical systems with underactuation
degree greater than one are still a challenging problem.
For the double pendulum in a cart, [30] showed that
objectives (1) and (2) can be achieved with Er being
the highest potential energy of the double pendulum
for almost all initial conditions of the system. Building

on this previous research, for a 3-link planar robot in
a vertical plane with its first joint being active and the
rest joints being passive, this paper studies a theoreti-
cally challenging problem, that is, whether objectives
(1) and (2) corresponding to the UEP (all three links
are in the upright position), and objective (3)

lim
t→∞ θ(t) = 03, lim

t→∞ θ̇(t) = 03, (3)

are achievable for almost every initial condition, where
θ(t) is the vector of three link angles of the robot, and
03 denotes a zero column vector with size 3. This is the
ultimate objective of stabilizing the robot at the UEP.
We call this robot APP (Active Passive Passive) robot
below.

This paper applies the procedure in [10,15] to derive
an energy-based controller for the APP robot. By pre-
senting and using a new property of the motion of the
APP robot, without any condition on its mechanical
parameters, this paper proves that if the control gains
are larger than specific lower bounds, then objectives
(1) and (2) corresponding to the UEP are achievable
for all initial conditions with the exception of a set of
Lebesgue measure zero.

Indeed, first, the new property is that if link 1 of the
APP robot does not move under a constant torque on
joint 1, then links 2 and 3 do notmove. To the best of our
knowledge, this property has not yet been proved. We
present a strict proof of this property for any mechan-
ical parameters of the APP robot, any constant angle
of joint 1, and corresponding constant torque by using
some properties of the mechanical parameters of the
APP robot. Second, the measure-zero set of initial con-
ditions converges to three strictly unstable equilibrium
points: the up–up–down, up–down–up, and up–down–
down equilibrium points, where, for example, up–up–
down means that links 1, 2, and 3 are in the upright,
upright, and downward positions, respectively.

The presented control law achieves objectives (1)
and (2) corresponding to the UEP for almost all ini-
tial conditions but does not achieve objective (3), since
the UEP becomes strictly unstable. This motivates the
use of the additional LQR-based linear state feedback
law. It is worth pointing out that the linear controller
succeeds in achieving only local stabilization, from ini-
tial conditions in a close neighborhood of the UEP. The
combination of switching between the two control laws
is then shown to practically achieve all objectives (1),
(2), and (3), but no formal proof is found yet that shows
that this ALWAYS works.
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Fig. 1 APP robot: 3-link planar robot with a single actuator at
the first joint

The remainder of the paper is organized as follows:
Sect. 2 gives some preliminary knowledge and problem
formulation. Section 3 presents the main results of this
paper. Section 4 makes some discussions. Section 5
gives numerical simulation results for a physical 3-link
planar robot in [20]. Section 6 makes some concluding
remarks. Certain proofs whose details are not central
to the flow of the paper are gathered in the appendices.
For brevity, we omit time argument t in the expression
of a variable if it is clear from the context.

2 Preliminary knowledge and problem
formulation

2.1 Preliminary knowledge

Consider a 3-link planar robot with a single actuator
at joint 1 (at the origin) shown in Fig. 1. For link i
(i = 1, 2, 3),mi is its mass, li is its length, lci is the dis-
tance from joint i to its center of mass (COM), and Ji is
the moment of inertia around its COM, τ1 is the torque
acting at joint 1, and θi is the angle measured counter-
clockwise from the positive Y-axis. In this paper, θ1,
the angle of active joint 1, is dealt in R; θ2 and θ3, the
angles of the passive links, are dealt with in S2 (a torus)
and take value in (−π, π ].

The motion equation of the APP robot is

M(θ)θ̈ + C(θ , θ̇)θ̇ + g(θ) = bτ1, (4)

where θ = [
θ1, θ2, θ3

]T
and

M(θ)

=
⎡

⎣
α11 α12 cos(θ2 − θ1) α13 cos(θ3 − θ1)

α12 cos(θ2 − θ1) α22 α23 cos(θ3 − θ2)

α13 cos(θ3 − θ1) α23 cos(θ3 − θ2) α33

⎤

⎦ , (5)

C(θ , θ̇)

=
⎡

⎣
0 −α12 θ̇2 sin(θ2 − θ1) −α13 θ̇3 sin(θ3 − θ1)

α12 θ̇1 sin(θ2 − θ1) 0 −α23 θ̇3 sin(θ3 − θ2)

α13 θ̇1 sin(θ3 − θ1) α23 θ̇2 sin(θ3 − θ2) 0

⎤

⎦ ,

(6)

g(θ) =
⎡

⎣
−β1 sin θ1

−β2 sin θ2

−β3 sin θ3

⎤

⎦ , b =
⎡

⎣
1
0
0

⎤

⎦ (7)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α11 = J1 + m1l2c1 + (m2 + m3)l21 ,
α22 = J2 + m2l2c2 + m3l22 ,
α33 = J3 + m3l2c3,
α12 = (m2lc2 + m3l2)l1,
α13 = m3l1lc3,
α23 = m3l2lc3,
β1 = (m1lc1 + m2l1 + m3l1)g,
β2 = (m2lc2 + m3l2)g,
β3 = m3lc3g,

(8)

where g is the acceleration of gravity.
The total mechanical energy of the APP robot is

E(θ , θ̇) = 1

2
θ̇
T
M(θ)θ̇ + P(θ), (9)

where P(θ) is its potential energy defined by

P(θ) = β1 cos θ1 + β2 cos θ2 + β3 cos θ3. (10)

From (4), we have

Ė(θ , θ̇) = θ̇
T
M(θ)θ̈ + 1

2
θ̇
T
Ṁ(θ)θ̇ + θ̇

T
g(θ)

= θ̇
T (−C(θ, θ̇)θ̇ − g(θ) + bτ1

)

+ 1

2
θ̇
T
Ṁ(θ)θ̇ + θ̇

T
g(θ)

= θ̇
T
bτ1 + 1

2
θ̇
T
(Ṁ(θ) − 2C(θ , θ̇))θ̇ (11)

= θ̇1τ1, (12)

where the second term in the right-hand side of (11) is
0 since Ṁ(θ) − 2C(θ, θ̇) is a skew-symmetric matrix
which can be verified directly by using (5) and (6).
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2.2 Problem formulation

Consider the following UEP:

θ(t) = 03, θ̇(t) = 03. (13)

For E(θ , θ̇), θ1, and θ̇1, we design and analyze a con-
troller to address whether objectives (1) and (2) can be
achieved, where Er is the highest potential energy of
the APP robot expressed as:

Er = E(θ(t), θ̇(t))
∣∣∣
θ(t)=03, θ̇(t)=03

= β1 + β2 + β3,

(14)

θa(t) = θ1(t), and θar = 0.

3 Main results

Define the following controller:

τ1(t)

= kD BTM−1(θ(t))(C(θ(t), θ̇(t))θ̇(t) + g(θ(t))) − kV θ̇1(t) − kP θ1(t)

η(θ(t), θ̇(t))
,

(15)

where

η(θ(t), θ̇(t)) = E(θ(t), θ̇(t)) − Er + kDbTM−1(θ(t))b.

(16)

Below we present the following five lemmas and
one theorem. Lemma 1 is about a condition on gain kD
to guarantee that controller (15) is well defined, whose
proof is given in “Appendix 1.”

Lemma 1 η(θ(t), θ̇(t)) in (16) is positive for any
(θ(t), θ̇(t)) if and only if kD satisfies

kD > kDm

= max
−π ≤ θi (t) ≤ π

i = 1, 2, 3

(
(Er − P(θ(t)))

(
bTM−1(θ(t))b

)−1
)

.

(17)

Lemma 2 is about the invariant set to which every
solution of the closed-loop system converges, whose
proof is given in “Appendix 2.”

Lemma 2 Consider the closed-loop system consisting
of APP robot (4) and controller (15). If kD satisfies
(17), and

kV > 0, (18)

kP > 0, (19)

then the closed-loop solution, (θ(t), θ̇(t)), converges
to the following invariant set:

W =
{
(θ(t), θ̇(t))

∣∣∣
1

2
α22θ̇

2
2 (t) + α23θ̇2(t)θ̇3(t)

× cos (θ3(t) − θ2(t)) + 1

2
α33θ̇

2
3 (t)

+ P(θ(t)) ≡ E∗, θ1(t) ≡ θ∗
1

}
, (20)

where “≡” denotes the equation holds for all t .

Lemma 3 shows a new property of the motion of the
APP robot with its proof in “Appendix 3.”

Lemma 3 Consider APP robot (4). Suppose θ1(t) ≡
θ∗
1 and τ1(t) ≡ τ ∗

1 with θ∗
1 and τ ∗

1 being constants;
that is, link 1 does not move under a constant torque
on joint 1. Then, links 2 and 3 do not move; that is,

θ̇2(t) ≡ 0, θ̇3(t) ≡ 0 (21)

for any mechanical parameters described in (8) for the
APP robot, θ∗

1 , and τ ∗
1 .

Lemma 4 characterizes the invariant set the W in
(20) further under a condition on gain kP , whose proof
is presented in “Appendix 4.”

Lemma 4 Consider the closed-loop system consisting
of APP robot (4) and controller (15). Suppose that kD
satisfies (17), kV satisfies (18), and kP satisfies

kP > kPm = max
π≤w≤2π

× −β1 (β1(1 − cosw) + 2β2 + 2β3) sinw

w
. (22)

Then, the invariant set W in (20) becomes the union

W = Wr ∪ �s, (23)

where

Wr =
{
(θ(t), θ̇(t))

∣∣∣
1

2
α22θ̇

2
2 (t)

+ α23θ̇2(t)θ̇3(t) cos (θ3(t) − θ2(t)) + 1

2
α33θ̇

2
3 (t)

+ β2(cos θ2(t) − 1) + β3(cos θ3(t) − 1) = 0,

θ1(t) ≡ 0
}

(24)
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and

�s =
{
(θ∗, 03) | θ∗ ≡ [

0, 0, π
]T

,
[
0, π, 0

]T
,

× [
0, π, π

]T}
. (25)

Moreover, the UEP is the only equilibrium point in Wr .

Lemma 5 is about the stability of all equilibrium
points of the closed-loop system, whose proof is pre-
sented in “Appendix 5.”

Lemma 5 Consider the closed-loop system consisting
of APP robot (4) and controller (15). Given the bounds
on the gains in (17), (18), and (22). The UEP and the
equilibrium points in �s are all strictly unstable.

We present the following main result of this paper.

Theorem 1 Consider the closed-loop system consist-
ing of APP robot (4) and controller (15). Given the
bounds on the gains in (17), (18), and (22). The closed-
loop solution, (θ(t), θ̇(t)), converges to the invariant
set Wr in (24), except for the measure-zero set of ini-
tial conditions that converge to the strictly unstable
equilibrium points in the �s in (25). The UEP is the
only equilibrium point in Wr and is strictly unstable.
Controller (15) achieves objectives (1) and (2) corre-
sponding to the UEP for almost all initial conditions
but does not achieve objective (3).

Proof From Lemmas 4 and 5, since each equilibrium
point of �s is strictly unstable; that is, the Jacobian
matrix evaluated at each equilibrium point of �s has at
least one eigenvalue in the open right-half plane, the set
of initial conditions from which the closed-loop solu-
tion converges to �s is of Lebesgue measure zero, see,
e.g., [21] (p. 1225). In other words, from all initial con-
ditions with the exception of a set of Lebesguemeasure
zero, the closed-loop solution (θ(t), θ̇(t)) converges
to the invariant set Wr . Thus, controller (15) achieves
objectives (1) and (2) corresponding to the UEP for
almost all initial conditions. From Lemmas 4 and 5,
we know that the UEP is the only equilibrium point in
Wr and is strictly unstable. Therefore, controller (15)
does not achieve objective (3). �	

4 Discussion

4.1 On the invariant set Wr

Theorem 1 shows that objectives (1) and (2) corre-
sponding to the UEP are achieved for almost all ini-

tial conditions under the proposed energy-based con-
troller (15), provided that the conditions on control
gains are satisfied. Even though the UEP is contained
in the invariant set Wr in (24) in t ∈ (0, ∞), it is
unclear that the solution trajectories will come into a
close neighborhood of the UEP. In this sense, this paper
does not give a general algorithm to guarantee theoret-
ically for achieving the true practical objective of the
APP control: stabilization of the UEP from almost any
initial conditions.

From our simulation results for the APP robot with
mechanical parameters in [20], under the proposed con-
troller (15) there existed moments in t ∈ (0, ∞) when
the robot came into a close neighborhood of the UEP
for several initial conditions we simulated. Please refer
two examples in Sects. 5.1 and 5.2. The combination
of switching between the two control laws is shown by
simulation to practically achieve all objectives (1), (2),
and (3), but no formal proof is found yet that shows
that this ALWAYS works. We would like to investigate
it further in the future.

4.2 On Lemma 3 and its proof

There are various applications of symbolic computa-
tion in robotmanipulator design and analysis, for exam-
ple, in kinematics, dynamics, trajectory planning, and
control [23]. This paper also shows an application of
symbolic computation in the proof of Lemma 3, which
is important for proving Theorem 1. Below we discuss
Lemma 3 and its proof.

First, Lemma 3 means that for APP robot (4), if link
1 is at rest under a constant torque on joint 1, then
the entire system is in an equilibrium point. Lemma 3
seems to be intuitive: As long as links 2 and 3 move,
the forces acting at the distal joint of link 1 (joint 2)
will change which results in a varying moment at the
proximal joint of link 1 (joint 1); thus, a varying torque
must be applied at joint 1 to keep link 1 balanced. How-
ever, by analyzing all the forces acting at three joints,
we cannot find more information than motion equation
(4). The details are omitted.

Second, it is very difficult to prove Lemma 3 for
any mechanical parameters described in (8) for the
APP robot, any constant angle of joint 1, and corre-
sponding constant torque because of the strong non-
linear coupling of two passive joints of the APP robot
when link 1 of the robot is at rest under a constant
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torque. Indeed, in its proof we used the properties of
the mechanical parameters shown in Lemmas 6 and 7.
If sin θ∗

1 = 0 (link 1 at the vertical position), then the
proof ofLemma3 can be simplified considerably (with-
out need to use symbolic computation), please refer
the result for the double pendulum in a cart in [30].
However, if sin θ∗

1 �= 0 (link 1 not at the vertical posi-
tion), then the proof is much more involved as shown
in “Appendix 3.”

If the mechanical parameters of links 2 and 3 of the
robot satisfy a2 − ab − ae + 1 �= 0, where a, b, and e
are defined in (34), then we do not need the analysis of
Case 2 (a2−ab−ae+1 = 0) in the proof of Lemma 3
which is complicated and involved, please refer “Eq. 37
of Appendix 3.” Note that the physical 3-link robot in
[20] which is used in the simulation in Sect. 5 satisfies
a2 − ab − ae + 1 �= 0. Moreover, when link 2 of a
3-link robot has a massless rod with a point mass at
its end; that is, lc2 = l2 and J2 = 0, then from (8) we
obtain

a = β2

β3
= (m2 + m3)l2

m3lc3
, b = α22

α23
= (m2 + m3)l2

m3lc3
.

Thus, a = b; together with ae > 1 due to Lemma 6,
a2 − ab − ae + 1 < 0. Note that the massless rod
assumption is often used in pendulum-type systems,
see, e.g., [5].

5 Simulation results

We present numerical simulation results for an APP
robot with its mechanical parameters being given in
Table 1, which are taken from the physical 3-link planar
robot in [20]. We took g = 9.8m/s2.

From Theorem 1, under controller (15) with con-
ditions (17) and (22); that is, kD > 11.2100 J2 s2 and
kP > 81.1069 J2 for this APP robot, and with condi-

Table 1 Mechanical parameters of the physical 3-link planar
robot in [20]

Link 1 Link 2 Link 3

mi (kg) 0.41 4.10 0.41

li (m) 0.268 0.258 0.268

lci (m) 0.134 0.128 0.095

Ji (kgm2) 4.52 × 10−3 6.11 × 10−2 4.52 × 10−3

tion kV > 0, objectives (1) and (2) corresponding to
the UEP are achievable from all initial conditions with
the exception of a set of Lebesgue measure zero.

Since the UEP is strictly unstable under the pro-
posed energy-based controller according to Lemma 5,
when the APP robot is swung up close to the UEP,
to stabilize it around the UEP, we need to switch
the energy-based controller to a local stabilizing con-
troller designed by LQR method. Define x(t) =[
θ1(t), θ2(t), θ3(t), θ̇1(t), θ̇2(t), θ̇3(t)

]T
. The LQR

controller is

τ1(t) = −Kx(t), (26)

where

K = [
24.8073, −125.5004, 276.3903, 10.9221, 5.2260, 39.4850

]
,

which was obtained by using the MATLAB function
“lqr” for which the weight related to the torque was
chosen to be 1, and the weight matrix related to state
x(t) was chosen to be a diagonal matrix of 6 × 6 with
the diagonal elements from (1, 1) to (6, 6) being 1, 1,
1, 0.1, 0.1, and 0.1.

The condition for switching controller (15) to con-
troller (26) was set as

d(t) = |θ1(t)| + |θ2(t)| + |θ3(t)|
+ 0.1|θ̇1(t)| + 0.1|θ̇2(t)| + 0.1|θ̇3(t)| < ε0

(27)

for given ε0 > 0. Indeed, small ε0 is good for achieving
a successful switch from controller (15) to controller
(26). On the other hand, big ε0 is good for achieving
a quick switch from controller (15) to controller (26).
In this paper, we chosen ε0 = 0.5 in (27) by trial and
error to achieve a successful and quick switch from
controller (15) to controller (26).

Since links 2 and 3 may have rotated several times
when the LQR controller is switched, θi (t) (i = 2, 3)
may take value out of (−π, π ]. Therefore, θ2(t) and
θ3(t) in (26) and (27) are used under modulo operation
with divisor 2π and take values in (−π, π ]. Note that
controller (15) needs more knowledge of the system’s
parameters and more computation time than controller
(26).

Below, we report our simulation results for two ini-
tial conditions.
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Fig. 2 Time responses of d(t) in (27) under controller (15) with
initial condition (28)

5.1 Initial condition 1

We took an initial condition

(
θ1(0), θ2(0), θ3(0), θ̇1(0), θ̇2(0), θ̇3(0)

)

=
(
5π

6
,
6π

7
,
7π

8
, 0, 0, 0

)
, (28)

which is close to the downward equilibrium point

(θ1(t), θ2(t), θ3(t), θ̇1(t), θ̇2(t), θ̇3(t))

= (π, π, π, 0, 0, 0).

To swing the APP robot up quickly close to the UEP,
we took kD = 12.8495 J2 s2, kP = 101.6513 J2, and
kV = 34.9863 J2s. Under controller (15), we present
the simulation results for t ∈ [0, 200] s to showwhether
the switching condition in (27) is satisfied. The simula-
tion results under the energy-based controller (15) are
shown in Figs. 2, 3 and 4. From Fig. 2, there were many
moments when (27) was satisfied.

Figure 3 shows that V (t) and E(t) − Er converged
to 0 and τ1(t) was not constant. Figure 4 shows that
θ1(t) converged to 0, and θ2(t) and θ3(t) were time
varying. Though θ2(t) and θ3(t) are treated in S2, plots
of θ2(t) and θ3(t) in Fig. 4 were not plotted modulo 2π
to avoid confusing artificial points of apparent discon-
tinuity. From Figs. 3 and 4, we validated that objectives
(1) and (2) corresponding to the UEP were achieved.

In Fig. 3, the control torque τ1(t) satisfied−44.4371
Nm ≤ τ1(t) ≤ 30.5831 Nm. To see whether these
values are small or large, we compare those with the
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controller (15) with initial condition (28)
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Fig. 4 Time responses of θ1(t), θ2(t), and θ3(t) under controller
(15) with initial condition (28)

torque where link 1 is horizontal while the two other
links are upward vertical. In such a position, we have
τ1(t) = −β1 = −12.3835 Nm.

When switching condition (27) was satisfied, we
switched controller (15) to controller (26). FromFig. 5,
the switch was taken at t = 4.67 s. Note that the final
convergence of θ3(t) is−6.2832 rad = −2π radwhich
is 0 rad under modulo operation with divisor 2π . From
Fig. 6, we found that the swing-up control and stabiliz-
ing control of the APP robot in Table 1 were achieved
under controllers (15) and (26).

The simulation result under control (26) for t ∈
[0, 0.2] s is depicted in Fig. 7, which indicates that
controller (26) did not stabilize the APP robot to the
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Fig. 5 Time responses of V (t), E(t) − Er , and τ1(t) under
controllers (15) and (26) with initial condition (28), where the
dashed vertical line indicates the switching time
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Fig. 6 Time responses of θ1(t), θ2(t), and θ3(t)under controllers
(15) and (26) with initial condition (28), where the dashed ver-
tical line indicates the switching time

UEP from initial condition (28). The maximal value of
τ1(t) in t ∈ [0, 0.2] s was 1.0283 × 106 Nm. This
shows that to stabilize the APP robot to the UEP from
initial condition (28), the proposed controllers (15) and
(26) are better than controller (26) only.

5.2 Initial condition 2

We took an initial condition

(
θ1(0), θ2(0), θ3(0), θ̇1(0), θ̇2(0), θ̇3(0)

)

=
(π

2
,
π

2
,
π

2
, 0, 0, 0

)
, (29)
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Fig. 7 Time responses of θ1(t), θ2(t), and θ3(t) under controller
(26) with initial condition (28)
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Fig. 8 Time responses of d(t) in (27) with initial condition (29)
under controller (15)

where all links are at a stretched horizontal position.
The simulation results under the energy-based con-

troller (15) are shown in Figs. 8, 9 and 10. From Fig. 8,
we can see that there were several moments when (27)
was satisfied. Figure 9 shows that V (t) and E(t) − Er

converged to 0 and τ1(t)was not constant. In Fig. 9, the
control torque τ1(t) satisfied −32.7102 Nm ≤ τ1(t) ≤
30.2021 Nm. Figure 10 shows that θ1(t) converged to
0, and θ2(t) and θ3(t) were time varying. From Figs. 9
and 10, we validated that objectives (1) and (2) corre-
sponding to the UEP were achieved.

When switching condition (27) was satisfied, we
switched controller (15) to controller (26). From
Fig. 11, the switch was taken at t = 107.70 s. From
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Fig. 9 Time responses of V (t), E(t) − Er , and τ1(t) under
controller (15) with initial condition (29)
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Fig. 10 Time responses of θ1(t), θ2(t), and θ3(t) under con-
troller (15) with initial condition (29)

Fig. 12, we found that the swing-up control and sta-
bilizing control of the APP robot in Table 1 were
achieved under controllers (15) and (26). We also pro-
vide Figs. 13 and 14 only for a short period of the time
after switching to the LQR law (26), which will enable
zooming into the scale for more effectively displaying
the final convergence. Note that the final convergence
of θ3(t) is 408.4070 rad = 2π × 65 rad which is 0 rad
under modulo operation with divisor 2π .

The simulation result under controller (26) for t ∈
[0, 0.2] s is depicted in Fig. 15, which indicates that
controller (26) did not stabilize the APP robot to the
UEP from initial condition (29). The maximal value of
τ1(t) in t ∈ [0, 0.2] s was 9.0179 × 105 Nm. It can
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Fig. 11 Time responses of V (t), E(t) − Er , and τ1(t) under
controllers (15) and (26) with initial condition (29), where the
dashed vertical line indicates the switching time
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Fig. 12 Time responses of θ1(t), θ2(t), and θ3(t) under con-
trollers (15) and (26)with initial condition (29),where thedashed
vertical line indicates the switching time

be seen that the linear control law (26) achieves only
local stabilization of the UEP from initial conditions
in the close neighborhood of the UEP. Only the com-
bination of both control laws (15) and (26) with the
switching rule (27) practically achieves almost global
stabilization.

6 Conclusion

For a 3-link planar robot with only the first joint
being active (the APP robot), we presented a nonlinear
energy-based controller whose objective is to drive the
APP robot into an invariant set where the first link is
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Fig. 13 Time responses of V (t), E(t)−Er , and τ1(t) under con-
trollers (15) and (26) with initial condition (29) after the switch-
ing at t = 107.701 s
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Fig. 14 Time responses of θ1(t), θ2(t), and θ3(t) under con-
trollers (15) and (26) with initial condition (29) after the switch-
ing at t = 107.701 s

in the upright position and the total mechanical energy
converges to its value at the UEP. By presenting and
using a new property of the motion of the APP robot,
without any condition on the mechanical parameters
of the robot, we proved that if the control gains are
larger than specific lower bounds, then only a measure-
zero set of initial conditions converges to three strictly
unstable equilibriumpoints instead of converging to the
invariant set Wr in (24). The new property described
in Lemma 3 is that if link 1 of the APP robot does
not move under a constant torque on joint 1, then links
2 and 3 do not move. Three strictly unstable equilib-
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Fig. 15 Time responses of θ1(t), θ2(t), and θ3(t) under con-
troller (26) with initial condition (29)

riumpoints are the up–up–down, up–down–up, andup–
down–down equilibrium points of the APP robot. The
presented energy-based control law achieves objectives
(1) and (2) corresponding to the UEP for almost all
initial conditions but does not achieve objective (3),
since the UEP becomes strictly unstable. We presented
numerical results for the physical 3-link planar robot
in [20] to validate the obtained theoretical results and
to show a successful application to the swing-up and
stabilizing control of the APP robot.

Even though the UEP is contained in the invariant
setWr in (24), we are unable to formally prove that the
solution is ALWAYS guaranteed to come into a small
neighborhood of the UEP at some time. Nevertheless,
simulations under physically realistic parameter values
show that this is indeed satisfied in practical scenarios.
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Appendix 1: Proof of Lemma 1

Using E(θ(t), θ̇(t)) ≥ P(θ(t)) and η(θ(t), θ̇(t)) in
(16), we obtain η(θ(t), θ̇(t)) ≥ P(θ(t)) − Er +
kDbTM−1(θ(t))b. Thus, if (17) holds, then η(θ(t),
θ̇(t)) > 0.

To show that (17) is also necessary such that
η(θ(t), θ̇(t)) > 0, for any given kD satisfying 0 <
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kD ≤ kDm , we just need to show that there exists an
initial condition (θ(0), θ̇(0)) at which η(θ(0), ˙θ(0)) =
0. Indeed, letting ζ ∈ R

3 be a value of θ(t) with
−π ≤ θi (t) ≤ π (i = 1, 2, 3) that maximizes
the function in the right-hand side of (17); that is,
kDm = (Er − P(ζ ))(bTM−1(ζ )b)−1.

Choosing ζ d ∈ R
3 such that

1

2
ζT
dM(ζ )ζ d = (kDm − kD)bTM−1(ζ )b ≥ 0,

we obtain

η(ζ , ζ d) = E(ζ , ζ d) − Er + kDbTM−1(ζ )b = 0.

Thus, η(θ(t), θ̇(t)) > 0 for any (θ(t), θ̇(t)) if and only
if (17) holds. �	

Appendix 2: Proof of Lemma 2

First, take the following Lyapunov function candidate:

V (t) = 1

2
(E(θ(t), θ̇(t)) − Er )

2

+ kD
2

θ̇21 (t) + kP
2

θ21 (t), (30)

where scalars kD > 0 and kP > 0 are control gains.
Using (12), we obtain the time derivative of V along
the trajectories of (4) as follows:

V̇ (t) = θ̇1(t)
(
(E(θ(t), θ̇(t)) − Er )τ1(t)

+ kD θ̈1(t) + kPθ1(t)
)
. (31)

Under the control law of τ1(t) defined in (15) which is
well defined for all initial conditions when kD satisfies
(17) (see Lemma 1), by obtaining θ̈1(t) from (4), we
can show that the following relation holds

(E(θ(t), θ̇(t)) − Er )τ1(t) + kD θ̈1(t) + kPθ1(t)

= −kV θ̇1(t), (32)

which implies

V̇ (t) = −kV θ̇21 (t) ≤ 0. (33)

Second, from V̇ (t) ≤ 0 in (33), it follows that V (t)
is monotonically nonincreasing and is thus bounded.
Using LaSalle’s invariance principle [14] shows that
the solution of the closed-loop system consisting of (4)
and (15) converges to the largest invariant setW where
V̇ (t) ≡ 0; that is, θ̇1(t) ≡ 0 holds. Thus, V (t) and θ1(t)
are constants inside the invariant set W . From V (t) in
(30), E(t) is also a constant inside the invariant set W .
By denoting the constants corresponding to θ1(t) and
E(t) as θ∗

1 and E
∗, respectively, and putting E(t) ≡ E∗

and θ1(t) ≡ θ∗
1 into (9), we show that W is expressed

as in (20).

Appendix 3: Proof of Lemma 3

To start with, we provide two lemmas for proving
Lemma 3 in “Eq. 34 of Appendix 3.” Then, we present
two steps of the proof of Lemma 3 in “Eq.35 of
Appendix 3” and describe the details of two steps
in “Eq.36 of Appendix 3” and “Eq. 37 of Appendix
3.” Some algebraic manipulations are carried out with
the aid of Mathematica. Please see Sect. 4.2 for the
discussion about this proof.

Two preliminary results

Io order to prove Lemma 3,we provide two preliminary
results below. Define

a = β2

β3
, b = α22

α23
, d = β3

α23
, e = α33

α23
, (34)

which are determined by the mechanical parameters of
links 2 and 3 of the APP robot. We recall a property
of the mechanical parameters of a 2-link planar robot
presented in Lemma 1 of [32] for links 2 and 3 of the
APP robot.

Lemma 6 For the parameters in (34), the following
statements hold:

a ≥ b > 0, (35)

ae > 1. (36)

Note that mili lci ≥ Ji +mil2ci is shown for i = 1 in
[32] which is critical for showing (35). Equation (36)
can be shown by using (8) directly. Using Lemma 6,
we obtain the following lemma.

Lemma 7 If

e = 1 + a2 − ab

a
, (37)

then

a �= 1, a > b. (38)

Proof If a = 1, from (37), we have b + e = 2. From

(34), we have b + e ≥ 2
√
be = 2

√
α22α33/α

2
23 > 2,

where α22α33 > α2
23 can be shown by using (8). This

raises a contradiction. Thus, a �= 1. If a = b, then from
(37), ae = 1 which contradicts (36). Thus, from (35),
we have a > b. �	
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Two steps

Using θ1(t) ≡ θ∗
1 and (12), we obtain Ė(t) = 0. Thus,

E(t) is a constant, which is denoted as E∗. Define the
following coordinate transformation:

φ2(t) = θ2(t) − θ∗
1 , φ3(t) = θ3(t) − θ∗

1 , (39)

we prove (21) by the following two steps.
Step 1 Obtain a holonomic constraint of the angle of
link 2 described by the following polynomial equation:

L =
N∑

i=0

ξi sin
i φ2(t) = 0, for ∀t, (40)

in terms of sin φ2(t), where N is a positive integer to
be determined and ξi (i = 0, 1, . . . , N ) are functions
of the mechanical parameters in (8), any possible θ∗

1
and E∗.
Step2Bycontradiction,we assume φ̇2(t) = θ̇2(t) �≡ 0.
Since differentiable function φ2(t) is not constant, the
polynomial equation in (40) in terms of sin φ2(t) has
infinite number of solutions which shows

ξi = 0, i = 0, 1, . . . , N . (41)

Otherwise, if there exists at least one i (0 ≤ i ≤ N )
such that ξi �= 0, then (40) has finite number of solu-
tions.We prove that (41) does not hold for anymechan-
ical parameters described in (8), any possible θ∗

1 and
E∗. Thus, φ̇2(t) = θ̇2(t) ≡ 0. Moreover, we prove
φ̇3(t) = θ̇3(t) ≡ 0.

We present the details of two steps in the following
two subsections. For brevity, the time argument t of a
variable is omitted below.

Details of Step 1

We carry out Step 1 further by the following substeps.
Step 1.1 Integrate the dynamics of (4) related to joint
1 with θ1 ≡ θ∗

1 and τ1 ≡ τ ∗
1 to obtain

aφ̇2 cosφ2 + φ̇3 cosφ3 = 0, (42)

a sin φ2 + sin φ3 = λ, (43)

where λ is a constant. Moreover, if sin θ∗
1 = 0, then

λ = 0.
Step 1.2 Eliminate φ̈2 and φ̈3 from (4) to obtain

F2φ̇
2
2 + F3φ̇

2
3 + F1 = 0, (44)

where Fi (i = 1, 2, 3) are functions of sin φ2, cosφ2,
and cosφ3. Moreover, obtain the following equation
using E = E∗ with (39) and (43):

b

2
φ̇2
2 + φ̇2φ̇3 cos(φ3 − φ2)

+ e

2
φ̇2
3 + (a cosφ2 + cosφ3)d cos θ∗

1 = γ, (45)

where γ is a constant defined by

γ = E∗ − β1 cos θ∗
1

α23
+ λd sin θ∗

1 . (46)

Step 1.3 Eliminate φ̇2 and φ̇3 from (42), (44), and (45)
to obtain

Q1 + Q2 cosφ3 = 0, (47)

where Qi (i = 1, 2) are functions of sin φ2 and cosφ2.
Step 1.4 Eliminate cosφ3 from (47) by using (43) to
obtain

Q2
1 − Q2

2(1 − sin2 φ3) = R1 + R2 cosφ2 = 0, (48)

where R1 and R2 are polynomials of sin φ2 with the
highest orders of 14 and 13, respectively. If cos θ∗

1 = 0,
then R2 = 0, and we obtain (40) as:

L = R1 = 0, with N = 14. (49)

If cos θ∗
1 �= 0, deleting cosφ2 from (48) yields that

(40), we obtain a polynomial equation of sin φ2, as:

L = R2
1 − R2

2(1 − sin2 φ2) = 0, with N = 28. (50)

Regarding Step 1.1, using a = β2/β3 = α12/α13

due to (8) and using (4) with θ1 ≡ θ∗
1 , τ1 ≡ τ ∗

1 , and
(39), we obtain

aφ̈2 cosφ2 + φ̈3 cosφ3 − aφ̇2
2 sin φ2 − φ̇2

3 sin φ3

= τ ∗
1 + β1 sin θ∗

1

α13
, (51)

bφ̈2 + φ̈3 cos(φ3 − φ2) − φ̇2
3 sin(φ3 − φ2)

= ad sin(φ2 + θ∗
1 ), (52)

φ̈2 cos(φ3 − φ2) + eφ̈3 + φ̇2
2 sin(φ3 − φ2)

= d sin(φ3 + θ∗
1 ). (53)

Integrating (51) gives

aφ̇2 cosφ2 + φ̇3 cosφ3 = (τ ∗
1 + β1 sin θ∗

1 )t

α13
+ λ1,

(54)

where λ1 is a constant. Since E = E∗ is bounded, the
left-hand side term of (54) is bounded for all t . Thus,

τ ∗
1 = −β1 sin θ∗

1 ; (55)
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otherwise, the right-hand side term of (54) is infinite
as t → ∞. Integrating (54) yields

a sin φ2 + sin φ3 = λ1t + λ. (56)

Since the left-hand side term of (56) is bounded for
all t , λ1 = 0 must hold; otherwise, the right-hand side
term of (56) is infinite as t → ∞. Thus, (42) and (43)
hold.

If sin θ∗
1 = 0, summing (52) and (53) and using (56)

with λ1 = 0 yields
d

dt
(bφ̇2 + eφ̇3 + (φ̇2 + φ̇3) cos(φ2 − φ3)) = ±dλ,

(57)

where “+” and “−” correspond to θ∗
1 = 0 and θ∗

1 = π

(mod 2π ), respectively. Integrating (57) with respect to
time t gives

bφ̇2 + eφ̇3 + (φ̇2 + φ̇3) cos(φ2 − φ3) = ±dλt + λ2,

(58)

where λ2 is a constant. Since the left-hand-side term
of (58) is bounded due to the boundedness of E∗, we
obtain λ = 0; otherwise, the right-hand side term of
(58) is infinite as t → ∞.

To obtain the polynomial in (40) in terms of sin φ2, in
the following derivation, we eliminate sin φ3 by using
sin φ3 = λ − a sin φ2 due to (43), and we eliminate
cosi φ2 or cosi φ3 with i ≥ 2 if exists via using

cos2 φ2 = 1 − sin2 φ2, or

cos2 φ3 = 1 − sin2 φ3 = 1 − (λ − a sin φ2)
2, (59)

which guarantees the highest order of cosφ2 or cosφ3

if exists equal to one.
Regarding Step 1.2, using (51)–(53) with (55) gives

⎡

⎣
a cosφ2 cosφ3 σ11
b cos(φ3 − φ2) σ12
cos(φ3 − φ2) e σ13

⎤

⎦

⎡

⎣
φ̈2

φ̈3

1

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ ,

(60)

where

σ11 = −aφ̇2
2 sin φ2 − φ̇2

3 sin φ3,

σ12 = −φ̇2
3 sin(φ3 − φ2) − ad sin(φ2 + θ∗

1 ),

σ13 = φ̇2
2 sin(φ3 − φ2) − d sin(φ3 + θ∗

1 ).

Thus, the determinant of the 3 × 3 matrix in (60) is
0; otherwise,

[
φ̈2, φ̈3, 1

] = [
0, 0, 0

]
which raises a

contradiction. By computing the determinant and using
(59), we obtain (44), where

F1 = d

(
sin

(
θ∗
1

) (
−2a + b + a2e + 2aλ2 − bλ2

− 2aλ (2a − b + cos (φ2) cos (φ3))

× sin (φ2) + a
(
2 + 2a2 − a(b + e) − 2λ2

+ 2a cos (φ2) cos (φ3)
)
sin2(φ2)

+ 4a2λ sin3 (φ2) − 2a3 sin4 (φ2)
)

+ cos
(
θ∗
1

)

×
(
a(−1 + ae) cos (φ2) sin (φ2)

+ (a − b) cos (φ3) (−λ + a sin (φ2))
))

,

F2 = −(a − b) cos (φ2) cos (φ3) (−λ + a sin (φ2))

+ sin (φ2)
(
aλ2 − b

(
−1 + ae + λ2

)

+ 2a(−a + b)λ sin (φ2) + a2(a − b) sin2 (φ2)
)
,

F3 = (a − b)eλ + (a(−a + b)e + (1 − ae) cos

× (φ2) cos (φ3)) sin (φ2)

+ λ(1 − ae) sin2 (φ2) + a(−1 + ae) sin3 (φ2) .

Writing out E = E∗ with (9), θ1 ≡ θ∗
1 , (34), (39)

and (43), we obtain (45) directly.
Regarding Step 1.3, first, we eliminate φ̇3. To this

end, by computing ((44)×e/2−(45)×F3)×cosφ3 and
using (42) to eliminate φ̇3 cosφ3, we obtain

G11 + G12φ̇
2
2 = 0, (61)

where G1i (i = 1, 2) are the following functions of
sin φ2, cosφ2, and cosφ3:

G11 = 1

2

(
−2 cos (φ2) sin (φ2)

(
−1 + λ2

−2aλ sin (φ2) + a2 sin2 (φ2)
)

× (
γ − aeγ + ade sin

(
θ∗
1

)
(−λ + a sin (φ2))

)

+ d cos
(
θ∗
1

) ((
−1 + λ2 − 2aλ sin (φ2) + a2 sin2 (φ2)

)

× (
3(a − b)eλ + a(2 − 5ae + 3be) sin (φ2)

− 2(−1 + ae)λ sin2 (φ2)

+ 4a(−1 + ae) sin3 (φ2)
) + cos (φ2) cos

(φ3)
(
2a(−a + b)eλ

+
(
2a3e + a2e(−2b + e) + 2

(
−1 + λ2

)

+ a
(
e − 2eλ2

))
sin (φ2)

+ 6a(−1 + ae)λ sin2 (φ2) − 4a2(−1 + ae) sin3 (φ2)
))
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+ cos (φ3)

(
−2γ (λ − a sin (φ2)) ((−a + b)e

+(−1 + ae) sin2 (φ2)
)

+ de sin
(
θ∗
1

) (
b + a2e − bλ2 + 2a

(
−1 + λ2

)

+ 2a(−2a + b)λ sin (φ2)

+ a
(
2 + 2a2 − a(b + e) − 2λ2

)
sin2 (φ2)

+ 4a2λ sin3 (φ2) − 2a3 sin4 (φ2)
)))

, (62)

G12 = 1

2

(
cos (φ3)

((
2a2 − 3ab + b2

)
eλ

− e
(
2a3 − 3a2b + a

(
b2 + be − λ2

)

+ b
(
−1 + λ2

))
sin (φ2)

+
(
−b − 8a2e + a(4 + 5be)

)
λ sin2 (φ2)

+ a
(
b + 7a2e − 4a(1 + be)

)
sin3 (φ2)

+ 4a(−1 + ae)λ sin4 (φ2)

− 4a2(−1 + ae) sin5 (φ2)

)

+ cos (φ2)

(
−(a − b)eλ

(
−1 + λ2

)

+
(
b

(
−1 + λ2

)
+ a2e

(
−3 + 7λ2

)

− 2a
(
−1 + λ2 + be

(
−1 + 3λ2

)))

× sin (φ2)

+ a
(
−2b − 11a2e + a(4 + 9be)

)
λ sin2 (φ2)

+ a
(
−2 + 5a3e − 2a2(1 + 2be) + 4λ2

+a
(
b + 2e − 4eλ2

))
sin3 (φ2)

+ 8a2(−1 + ae)λ sin4 (φ2) − 4a3(−1 + ae) sin5 (φ2)

))
.

(63)

Next, multiplying cos2 φ3 to (45) and using (42) to
eliminate φ̇3 cosφ3 to obtain

G21 + G22φ̇
2
2 = 0, (64)

where G2i (i = 1, 2) are the following functions of
sin φ2, cosφ2, and cosφ3:

G21 = (
γ − d cos

(
θ∗
1

)
(a cos (φ2) + cos (φ3))

)

×
(
−1 + λ2 − 2aλ sin (φ2) + a2 sin2 (φ2)

)
,

(65)

G22 = 1

2

(
b + a2e − bλ2 + 2a

(
−1 + λ2

)

− 2aλ (2a − b + cos (φ2) cos (φ3))

× sin (φ2) + a
(
2 + 2a2 − a(b + e)

− 2λ2 + 2a cos (φ2) cos (φ3)
)
sin2 (φ2)

+ 4a2λ sin3 (φ2) − 2a3 sin4 (φ2)

)
. (66)

Eliminating φ̇2
2 from (61) and (64) yields

G11G22 − G12G21 = 0. (67)

By using (59), we can guarantee that the highest order
of cosφ3 of the left-hand side term of the above equa-
tion is less than or equal to one. Thus, (67) can be
expressed by (47), where

Q1 = Q11 + Q12 cos θ∗
1 , (68)

Q2 = Q21 + Q22 cos θ∗
1 , (69)

where Qi j (i, j = 1, 2) are the following functions of
sin φ2 and cosφ2:

Q11 = 2 cos (φ2)
(
−1 + λ2 − 2aλ sin (φ2) + a2 sin2 (φ2)

)

(
(a − b)γ λ

(
−1 + λ2

)

+ a
(
γ

(
a

(
ae − 3λ2

)
+ b

(
−1 + 3λ2

))

+ 2dλ
(
b + a2e − bλ2

+ 2a
( − 1 + λ2

))
sin

(
θ∗
1
))

sin (φ2) + a2
(
3(a − b)γ λ

− 2d
(
b + a2e − 3bλ2 + a

(
−2 + 6λ2

))
sin

(
θ∗
1
))

sin2 (φ2)

+ a2
((

1 − a2 + a(b − e)
)

γ

− 2dλ
(
−2 − 6a2 + 3ab + ae + 2λ2

)
sin

(
θ∗
1
))

× sin3 (φ2) + 2a3d
(
−2 − 2a2 + a(b + e) + 6λ2

)
sin

(
θ∗
1
)

sin4 (φ2) − 12a4dλ sin
(
θ∗
1
)
sin5 (φ2)

+ 4a5d sin
(
θ∗
1
)
sin6 (φ2)

)
, (70)

Q12 = −d
(
−1 + λ2 − 2aλ sin (φ2) + a2 sin2 (φ2)

)

(
−(a − b)λ

(
b + 3a2e − bλ2

)

+
(
5a4e − a3(2 + 3be) − 2b

(
−1 + λ2

)2

+ a2
(
b − 3bλ2

)

+ a
(
−2be

(
−1 + λ2

)
+ 2λ2

(
−1 + λ2

)

+ b2
( − 1 + 3λ2

)))
sin (φ2)

+ aλ
(
3a2(b + e) + a

(
4 − 3b2 + be − 8λ2

)

+ 8b
(
−1 + λ2

))
sin2 (φ2)
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+ a2
(
−a2(b + 7e) + 4b

(
1 − 3λ2

)
+ a

(
2 + b2

+be + 12λ2
))

sin3 (φ2)

+ 8a3(−a + b)λ sin4 (φ2) + 2a3

(
−1 + a2 + a(−b + e)

)
sin5 (φ2)

)
, (71)

Q21 = −2γ

(
a2(−a + b)eλ −

(
−a

(
a3e − λ2 + λ4

)

+ b
(
a3e + ae

(
−1 + λ2

)

+
(
−1 + λ2

)2))
sin (φ2)

+ aλ
(
2a2e + a

(
1 + be − 4λ2

)
+ 4b

(
−1 + λ2

))

× sin2 (φ2) + 2a2
(
b − 3bλ2 + a

(
−ae + 3λ2

))
sin3 (φ2)

+ a2
(
1 − 4a2 + 4ab − ae

)
λ sin4 (φ2)

+ a3
(
−1 + a2 + a(−b + e)

)

× sin5 (φ2)

)
+ d sin

(
θ∗
1
)

((
b + a2e − bλ2 + 2a

(
−1 + λ2

))2

− 4a(2a − b)λ
(
b + a2e − bλ2 + 2a

(
−1 + λ2

))
sin (φ2)

+ 2a
(
2a4e − a3

(
4 + be + e2 − 12λ2

)
+ 2b

(
−1 + λ2

)2

− 4a2
(
e
(
−1 + λ2

)
+ b

(
−1 + 3λ2

))

+ a
(
−4 + 10λ2 − 6λ4 + be

(
−1 + λ2

)
+ b2

(
−1 + 3λ2

)))
sin2 (φ2)

− 4a2λ
(
4a3 − 4a2(b + e) + a

(
10 + b2 + be − 12λ2

)

+4b
(
−1 + λ2

))

× sin3 (φ2) + a2
(
4 + 4a4 − 4a3(b + 2e) − 12λ2 + 8λ4

+ a2
(
20 + b2 + 2be + e2 − 72λ2

)
+ 4a

(
e
(
−1 + λ2

)

+b
(
−2 + 6λ2

)))

× sin4 (φ2) + 8a3λ
(
3 + 6a2 − a(2b + e) − 4λ2

)
sin5 (φ2)

+ 4a4
(
−3 − 3a2 + a(b + e) + 12λ2

)
sin6 (φ2)

− 32a5λ sin7 (φ2) + 8a6 sin8 (φ2)

)
, (72)

Q22 = d cos (φ2)

(
−2(a − b)λ

(
a3e +

(
−1 + λ2

)2)

+ a
(
−a2e + a3e(−2b + e)

+ 2a4e − a
(
2 + 3be − 10λ2

) (
−1 + λ2

)

− 5b
(
1 − 3λ2 + 2λ4

))
sin (φ2)

+ 2a2λ
(
2a2e + a

(
5+2be−10λ2

)
+ b

(
−9 + 10λ2

))
sin2 (φ2)

− a3
(
−7b − e + 4a2e + 20bλ2

+a
(
2 + be + e2 − 20λ2

))
sin3 (φ2)

− 2a3
(
−1 + 5a2 + a(−5b + e)

)
λ sin4 (φ2)

+ 2a4
(
−1 + a2 + a(−b + e)

)
sin5 (φ2)

)
.

(73)

Regarding Step 1.4, from (47), we obtain Q2
1 −

Q2
2 cos

2 φ3 = Q2
1 − Q2

2(1 − sin2 φ3) = 0, which
can be expressed as (48) by using (59), where the
expressions of R1 and R2 are omitted for brevity. If
cos θ∗

1 = 0, we can show that R2, the coefficient of
cosφ2 of Q2

1 − Q2
2 cos

2 φ3, is 0. Indeed, from (68)
and (70), we obtain Q1 = Q11 = cos(φ2)Q̂11 with
Q̂11 not containing cosφ2; from (69) and (72), we
know that Q2 = Q21 does not contain cos(φ2). Thus,
Q2

1 − Q2
2(1 − sin2 φ3) = Q2

11 − Q2
21(1 − sin2 φ3) =

(1 − sin2 φ2)Q̂2
11 − Q2

21(1 − sin2 φ3) does not con-
tain cosφ2. Hence, this shows that if cos θ∗

1 = 0, then
R2 = 0.

Details of Step 2

Regarding Step 2, we prove that (41) does not hold by
showing that there exists 0 < i ≤ N such that ξi �= 0
for anymechanical parameters a, b, d, and e defined by
(34), and parameters θ∗

1 , λ, and γ . To start, regarding
(50), from

ξ28 = 256a20d4(a2 − ab − ae + 1)4 sin2 θ∗
1 (74)

and ξ28 = 0, we need to consider whether

a2 − ab − ae + 1 �= 0; (75)

that is, e �= (1 + a2 − ab)/a, and we analyze Cases 1
and 2 below:
Case 1: e �= (1 + a2 − ab)/a

From (74) and ξ28 = 0, we have sin θ∗
1 = 0. This

yields

ξ24 = 16a16d4(a2 − ab + ae − 1)2

(a2 − ab − ae + 1)4 > 0, (76)
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which contradicts (41). Indeed, a2 − ab + ae − 1 > 0
due to a ≥ b > 0 and ae > 1 from Lemma 6.
Case 2: e = (1 + a2 − ab)/a

From Lemma 7, we have a �= 1 and a > b. In this
case, we obtain

ξ24 = 256a18(a − b)2d2λ2 sin2(θ∗
1 )ε, (77)

where

ε =(1 − 7a2 + 6ab)2d2λ2 cos2 θ∗
1

+ ((1 − 3a2 + 2ab)γ − 4a(a − b)dλ sin θ∗
1 )2.

(78)

From (77) and ξ24 = 0, we consider two cases of λ = 0
and λ �= 0, separately.
Case 2.1: e = (1 + a2 − ab)/a and λ = 0

We obtain

ξ0 = (−1 + a2)8(a − b)8d4 sin4 θ∗
1 . (79)

Since a �= 1 and a > b from Lemma 7, we see that
ξ0 = 0 shows sin θ∗

1 = 0. This yields

ξ18=16a14(−1+a2)2(a−b)4(1+3a2−4ab)2d2γ 2.

(80)

Regarding whether 1 + 3a2 − 4ab �= 0 holds or not,
we consider Cases 2.1.1 and 2.1.2 below:
Case 2.1.1: e = (1 + a2 − ab)/a, λ = 0, and b �=
(1 + 3a2)/(4a)

From (80) and ξ18 = 0,we obtain γ = 0. This yields

ξ16=9a12(−1+a2)4(a−b)4(1+3a2−4ab)2d4 > 0,

(81)

which contradicts (41).
Case 2.1.2: e = (1 + a2 − ab)/a, λ = 0, and b =
(1 + 3a2)/(4a)

We have

ξ12 = a4(−1 + a2)10(1 + a2)2d4

1024
> 0, (82)

which contradicts (41).
Case 2.2: e = (1 + a2 − ab)/a and λ �= 0

We show sin θ∗
1 �= 0. On the contrary, assume

sin θ∗
1 = 0, from Step 1.1, we have λ = 0 which

raises a contradiction. Thus, from (77) and ξ24 = 0,
we have ε = 0 yielding 1 − 3a2 + 2ab �= 0 due
to (78); otherwise, if 1 − 3a2 + 2ab = 0, then ε ≥
(4a(a − b)dλ sin θ∗

1 )2 > 0. Thus, ε = 0 shows

(1 − 7a2 + 6ab) cos θ∗
1 = 0, (83)

γ = 4a(a − b)dλ sin θ∗
1

1 − 3a2 + 2ab
. (84)

We treat cos θ∗
1 �= 0 and cos θ∗

1 = 0, separately.
Case 2.2.1: e = (1+a2−ab)/a,λ �= 0, and cos θ∗

1 �= 0
From (83), we obtain b = (7a2 − 1)/(6a). This

together with (84) gives

ξ22 = 16

9
a14(−1 + a2)2d4λ2 sin2(θ∗

1 )ρ, (85)

where

ρ = 9((−1 + a2)2 − 2(1 + a2)λ2)2 cos2 θ∗
1

+(5(−1 + a2)2 − 6(1 + a2)λ2)2 sin2 θ∗
1 ≥ 0.

From (85) and ξ22 = 0, we have ρ = 0 which yields
(−1 + a2)2 − 2(1 + a2)λ2 = 0 and 5(−1 + a2)2 −
6(1+a2)λ2 = 0. Deleting λ2 from these two equalities
yields −1 + a2 = 0 which contradicts a �= 1 in (38).
Case 2.2.2: e = (1+a2−ab)/a,λ �= 0, and cos θ∗

1 = 0
From Step 1.4, using cos θ∗

1 = 0 shows R2 = 0,
below we study L = R1 = 0 in (49) rather than L =
R2
1 = 0 in (50). Though the highest order of R1 in (49)

is 14, when e = (1 + a2 − ab)/a and (84) hold, we
find that ξ14 = ξ13 = ξ12 = 0 holds, and

ξ11 = 16a8(a−b)d2λ
(
12a(1+a2)(a−b)λ2 − (−1+a2)2(1+3a2−4ab)

)

−1+3a2 − 2ab
.

(86)

Using ξ11 = 0, a > b, and λ �= 0, we obtain

λ2 = (−1 + a2)2(1 + 3a2 − 4ab)

12a(1 + a2)(a − b)
. (87)

Using (87), we have

ξi = ki ξ̂i , i = 10, 9, 8, (88)

where ki are nonzero terms due to a �= 1 and λ �= 0,
and

ξ̂10 = 6 − 14a2 − 23a4 − 14a6 + 21a8

+ a(23 + a2 + 31a4 − 7a6)b

− 8a2(1 + a2 + a4)b2, (89)

ξ̂9 = 11 − 2a2 − 125a4 − 97a6 + 138a8 + 315a10

+ a(8 + 196a2 + 94a4 + 80a6 − 570a8)b

+ 2a2(−89 + 17a2 − 163a4 + 67a6)b2

+ 96a3(1 + a2 + a4)b3, (90)

ξ̂8 = 35 − 209a2 − 240a4 + 1420a6 + 2159a8

− 933a10 − 3042a12 + 2538a14
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+ (185a−a3(266+2211a2+1808a4

+3193a6 − 7050a8 + 4941a10))b

+ 2a2(−11 + 1091a2 − 678a4 + 2714a6

− 1439a8 + 915a10)b2

+ 96a3(3 − 10a2 − 6a4 − 9a6 + 4a8)b3. (91)

Thus, ξi = 0 (i = 10, 9, 8) are equivalent to

ξ̂i = 0, i = 10, 9, 8. (92)

Below we show that there do not exist a �= 1 and b
satisfying (92). To this end, first, we use ξ̂10 = 0 and
ξ̂9 = 0 to delete b to obtain the following polynomial
equation:

δ1=3703−7609z+3744z2−7609z3+3703z4 = 0,

with z = a2 > 0. (93)

Indeed, to derive δ1 in (93), since the highest order of
b in (89) is 2, we divide ξ̂9 by ξ̂10 with respect to b to
obtain ξ̂9 = p9ξ̂10 +r9, where p9 is the quotient and r9
is the remainder with the highest order of b being equal
to 1. Using r9 = k̂9̂r9, where k̂9 �= 0 due to a �= 1, and

r̂9 = −338 + 512a2 + 1437a4 + 2795a6 + 1945a8

+1785a10 − a
(
1447 + 1010a2

+3222a4 + 1010a6 + 1447a8
)
b. (94)

From ξ̂10 = 0 and ξ̂9 = 0, we have r9 = 0 and r̂9 = 0.
Moreover,wedivide ξ̂10 by r̂9 with respect tob to obtain
ξ̂10 = p10̂r9 + r10 with p10 being the quotient and r10
being the remainder. From ξ̂10 = 0 and r̂9 = 0, we
have r10 = 0. Using r10 = ψ10δ1 with ψ10 �= 0 due to
a �= 1 yields δ1 = 0 in (93).

Next, we use ξ̂10 = 0, ξ̂8 = 0, and r̂9 = 0 to delete
b to obtain the following polynomial equation:

δ2 =244 + 355z − 1726z2 + 355z3 + 244z4 = 0,

with z = a2 > 0. (95)

To derive δ2 in (95), we divide ξ̂8 by ξ̂10 with respect to
b to obtain ξ̂8 = p8ξ̂10 + r8, where p8 is the quotient
and r8 is the remainder with the highest order of b being
equal to 1. Using r8 = k̂8̂r8, where k̂8 �= 0 due to a �= 1
and

r̂8 = 2558 − 5332a2 − 12433a4 − 9329a6

+ 13432a8 + 29542a10

+ 36075a12 + 25839a14 +
(
10873a

+ 1174a3 + 3937a5 − a7

× (
19216 + 35113a2 + 21046a4 + 20961a6

))
b.

(96)

From ξ̂10 = 0 and ξ̂8 = 0, we have r8 = 0 and r̂8 = 0.
Finally, we divide r̂8 by r̂9 with respect to b to obtain
r̂8 = p̂8̂r9+d8 with p̂8 being the quotient and d8 being
the remainder. Thus, from r̂8 = 0 and r̂9 = 0,we obtain
d8 = 0. Using d8 = ψ8δ2 with ψ8 �= 0 due to a �= 1
yields δ2 = 0 in (95).

Since z = a2 > 0 and the positive real solutions of
(93) and (95) are

z = 0.5148, z = 1.9425, (97)

z = 0.5486, z = 1.8228, (98)

respectively, (93) and (95) do not have a common pos-
itive solution; thus, they do not hold simultaneously.
This contradicts (92), equivalently, (88), and thus con-
tradicts (41).

For Cases 1 and 2, we have shown that (41) does
not hold for any mechanical parameters a, b, d, and e
defined by (34), and any possible parameters θ∗

1 , λ, and
γ . Thus, θ̇2 = φ̇2 ≡ 0. From (42), we have φ̇3 cosφ3 =
0. Integrating it with respect to time yields sin φ3 = λ0
with λ0 being a constant. Thus, φ3 is a constant and
θ̇3 = φ̇3 ≡ 0. This completes the proof of Lemma 3. �	

Appendix 4: Proof of Lemma 4

We characterize the invariant setW in (20) by studying
E∗ = Er and E∗ �= Er , separately. To start, putting
E(θ(t), θ̇(t)) ≡ E∗ and θ1(t) ≡ θ∗

1 into (32) (from
which we derived controller (15)) yields

(E∗ − Er )τ1(t) + kPθ∗
1 ≡ 0. (99)

If E∗ = Er , then θ∗
1 = 0 from (99). Putting θ∗

1 = 0
into the W in (20), we obtain the Wr in (24). Putting
θ̇2(t) = 0 and θ̇3(t) = 0 into the Wr in (24) to
obtain equilibrium points in the Wr in (24), we obtain
cos θ2(t) = 1 and cos θ3(t) = 1. This shows that
θ2(t) = 0 and θ3(t) = 0 (mod 2π ). Thus, the UEP
is the only equilibrium point in Wr .

If E∗ �= Er , then τ1(t) is a constant from (99),
denoted as τ ∗

1 . From Lemma 3, links 2 and 3 do not
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move. Thus, the APP robot stays at an equilibrium an

equilibrium configuration θ∗ = [
θ∗
1 , θ∗

2 , θ∗
3

]T
. Below

we show that if kP satisfies (22), then the APP robot
stays at an equilibrium point belongs to �s in (25).
Using (4) and (32) (from which we derived controller
(15)) with equilibrium torque τ ∗

1 = −β1 sin θ∗
1 and the

energy at the point E∗ = P(θ∗), we have

sin θ∗
2 ≡ 0, sin θ∗

3 ≡ 0, (100)

β1(Er − P(θ∗)) sin θ∗
1 + kPθ∗

1 = 0. (101)

Note that (100) gives

θ∗
i = 0 or π (mod 2π), i = 2, 3. (102)

Clearly, θ∗
1 = 0 is a solution of (101). When θ∗

1 �= 0,
we rewrite (101) as

kP = f0(θ
∗
1 ), (103)

where

f0(θ
∗
1 ) = −β1(Er − P(θ∗)) sin θ∗

1

θ∗
1

, θ∗
1 �= 0. (104)

Since f0(θ∗
1 ) is an even function of θ∗

1 , we can see that
(103) has no solution θ∗

1 if and only if

kP > max
θ∗
1>0

f0(θ
∗
1 ). (105)

Since the numerator of f0(θ∗
1 ) is a periodic function

with period 2π and is nonnegative in [π, 2π ], we have
max
θ∗
1 >0

f0(θ
∗
1 ) = max

π≤θ∗
1 ≤2π

f0(θ
∗
1 ). (106)

For all θ∗
2 and θ∗

3 in (102), since P(θ∗) ≥ β1 cos θ∗
1 −

β2 − β3, we can see that (103) has no solution if and
only if kP satisfies (22).

Thus, under controller (15) with the bounds on the
gains in (17), (18), and (22), the closed-loop solution
(θ(t), θ̇(t)) converges to either the Wr in (24) when
E∗ = Er or the �s in (25) when E∗ �= Er . �	

Appendix 5: Proof of Lemma 5

The proof of the four equilibrium points being strictly
unstable is similar to that in [30]. First, let Juuu be
the Jacobian matrix evaluated at the UEP (θ1, θ2, θ3,

θ̇1, θ̇2, θ̇3) = (0, 0, 0, 0, 0, 0). Straightforward calcula-
tion of the characteristic polynomial of that point yields

|s I − Juuu | = s6 + a1s
5 + a2s

4 + a3s
3

+a4s
2 + a5s + a6,

where

a1 = kV
kD

,

a2 = kP
kD

− α33β2 + α22β3

α22α33 − α2
23

,

a3 = −kV (α33β2 + α22β3)

kD(α22α33 − α2
23)

,

a4 = −kP (α23β2 + α22β3) + kDβ2β3

kD(α22α33 − α2
23)

,

a5 = kVβ2β3

kD(α22α33 − α2
23)

,

a6 = kPβ2β3

kD(α22α33 − α2
23)

.

Since α22α33 − α2
23 > 0 which can be verified directly

by using (8), a3 < 0 holds for all mechanical parame-
ters of the APP robot in (8) and control gains kD > 0,
kP > 0, and kV > 0. Therefore, Juuu has at least one
eigenvalue in the open right-half plane. This shows that
the UEP is strictly unstable.

Second, let Juud be the Jacobian matrix evalu-
ated at the up–up–down equilibrium point (θ1, θ2,

θ3, θ̇1, θ̇2, θ̇3) = (0, 0, π, 0, 0, 0). Straightforward cal-
culation of the characteristic polynomial of that point
yields

|s I − Juud | = s6 + a1s
5 + a2s

4 + a3s
3

+a4s
2 + a5s + a6,

where

a1� = (α22α33 − α2
23)kV ,

a2� = (α22α33 − α2
23)kP + (−α33β2 + α22β3)kD

+ 2β3((α22α33 − α2
23)β1 + (α11α33 − α2

13)β2

− (α11α22 − α2
12)β3),

a3� = (−α33β2 + α22β3)kV ,

a4� = 2β3(α11β1β2 + α22β1β3 − α33β1β2)

+ (−α33β2 + α22β3)kP − β2β3kD,

a5� = −β2β3kV ,

a6� = −β2β3(kP + 2β1β3),

with � = (α22α33 − α2
23)kD + 2(α2

12α33 + α22α
2
13 −

2α12α13α23 − α11(α22α33 − α2
23))β3.
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Below we show � > 0. From condition (17), we
have kD > kuud , where

kuud = (Er − P(θ)) (bTM−1(θ)b)−1|θ1=0, θ2=0, θ3=π

= ρ1

α22α33 − α2
23

,

with ρ1 = 2β3(α11α22α33 − α2
12α33 − α22α

2
13 +

2α12α13α23 − α11α
2
23). Thus, we have � = (kD −

kuud)(α22α33 − α2
23) > 0. This shows that a5 < 0

and a6 < 0 for all mechanical parameters of the APP
robot in (8) and control gains kD > 0, kP > 0, and
kV > 0. Therefore, Juud has at least one eigenvalue
in the open right-half plane. This shows that the up–
up–down equilibrium point is strictly unstable. Simi-
larly, we can show that the up–down–up equilibrium
point (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) = (0, π, 0, 0, 0, 0) is also
strictly unstable; the detail is omitted for brevity.

Finally, regarding the up–down–down equilibrium
point (θ1, θ2, θ3, θ̇1, θ̇2, θ̇3) = (0, π, π, 0, 0, 0), differ-
ent from the other two equilibrium points in �s , we
cannot show its instability from the signs of coefficients
of the characteristic polynomial of that point, and we
need to compute the Hurwitz determinants (see, e.g.,
[16]). Let Judd be the Jacobian matrix evaluated at that
point. Straightforward calculation of the characteristic
polynomial of that point yields

|s I − Judd | = s6 + a1s
5 + a2s

4 + a3s
3

+ a4s
2 + a5s + a6,

where

a1� = (α22α33 − α2
23)kV ,

a2� = (α22α33 − α2
23)kP + (α33β2 + α22β3)kD

+ 2(β2 + β3)

× (
(α22α33 − α2

23)β1 − (α11α33 − α2
13)β2

− (α11α22 − α2
12)β3

)
,

a3� = (α33β2 + α22β3)kV ,

a4� = (α33β2 + α22β3)kP + β2β3kD

− 2(α11β2β3 − α22β1β3 − α33β1β2)(β2 + β3),

a5� = β2β3kV ,

a6� = β2β3(kP + 2β1(β2 + β3)),

with� = (α22α33−α2
23)kD−2(α11α22α33−α2

12α33−
α22α

2
13 + 2α12α13α23 − α11α

2
23)(β2 + β3).

Similar to� > 0, we can show� > 0. In fact, from
condition (17), we have kD > kudd , where

kudd = (Er − P(θ)) (bTM−1(θ)b)−1|θ1=0, θ2=π, θ3=π

= ρ2

α22α33 − α2
23

,

where ρ2 = 2(β2 + β3)(α11α22α33 − α2
12α33 −

α22α
2
13 + 2α12α13α23 − α11α

2
23). Thus, � = (kD −

kudd)(α22α33 −α2
23) > 0. Using � > 0 shows a1 > 0,

a3 > 0, a5 > 0, and a6 > 0 for any mechanical param-
eters described in (8) for the APP robot, and control
gains kD > 0, kP > 0, and kV > 0. However, the
sign of a2 or a4 depends on the mechanical and control
gains. We obtain the Hurwitz determinant

D3 =
∣∣
∣∣∣∣

a1 a3 a5
1 a2 a4
0 a1 a3

∣∣
∣∣∣∣
= a1a2a3 − a23 − a21a4 + a1a5,

which satisfies

D3�
3

= −2k2V (β2 + β3)
(
2α23β2β3(α12α23 − α22α13)

(α12α33 − α13α23) + α33β
2
2 (α12α33 − α13α23)

2

+ α22β
2
3 (α22α13 − α12α23)

2
)
.

Using Lemma 6 shows α12α23 − α22α13 ≥ 0 and
α12α33 − α13α23 > 0. Thus, D3 < 0. Therefore, Judd
has at least one eigenvalue in the open right-half plane.
This shows that the up–down–down equilibrium point
is strictly unstable. �	
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