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Abstract The model of varying mass function, inc-
luding periastron effect, in terms of Delaunay variables
will be expanded. The Hamiltonian of the problem is
developed in the extended phase space by introduc-
ing a new canonical pair of variable (q4, Q4). The first
“q4” is defined as explicit function of time and the ini-
tial mass of the system. The conjugate momenta “Q4”
is assigned as the momenta raises from the varying
mass. The short-period analytical solution through a
second-order canonical transformation using “Hori’s”
method developed by “Kamel” is obtained. The vari-
ation equations for the orbital elements are obtained
too. The results of the effect of the varying mass and
the periastron effect in the case n = 2 are analyzed.
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1 Introduction

Every star undergoes a continuous time-dependent
mass loss from the moment of its formation to its death
through complicated chemical and physical processes.
Mass loss remains one of the primary uncertainties in
the stellar evolution and one of the keys to the binary
systems evolution as well. Supernovae are excellent
probes for the existence as well as the nature of mass
loss process. In the binary systems, in addition to time-
dependent mass loss, there exists another mass loss due
to the gravitational interaction between the two com-
ponents of the binary close to periastron. There is an
appreciable enhancement of such type of mass loss in
the binary systems. It gives rise to secular trends in
the orbital elements of the binary system which can
be detected by carefully examining its light curve, see
[8]. This phenomenon is called the PAE, and it will
be more noticeable when the orbits of binary become
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more eccentric and the distance between the two binary
components becomes minimum. Such an effect could
possibly explain the relatively high eccentricity found
in some tidally strong interacting binary systems. In
fact, the PAE could counteract the tidal circularization
predicted by Zahn’s theory [28,29]. For more details,
refer to the analyses in the general context of double
and triple stars, [4–6], and [7]. In 1985, Salamassi [27],
the author studied the second-order adiabatic invari-
ants associated with the two-body problemwith slowly
varying mass. In his paper, using action—angle vari-
ables, adiabatic invariants to order one are found.

The PAE has the secular variations in the orbital
elements that lead to slight alterations in the light curve
in the eccentric eclipsing binaries.

In the framework of celestial mechanics, the prob-
lem of the two bodies with VM has roots going back in
the history since the middle of the nineteenth century,
and it known as Gylden–Mescerskij problem. It has
been exhaustively addressed by [2,11,13,14,22,23],
among others.

A number of binary systems show evidence of
enhanced activity of mass loss around periastron pas-
sage. Among these, η-Car is the extreme and best-
documented example of periodic brightening at X-ray,
visual and IR wave bands associated with periastron
passages. Recently, Van Genderen & Sterken, IBVS,
5782 (2007) suggested that these periastron events may
have the same physical cause as the milder “PAE”
exhibited by many less renowned eccentric binaries in
which small enhancement (�m ∼ 0.01−0.03) in the
visual brightness of the system around periastron pas-
sage are observed. They suggested that the fundamental
cause of the effects might reside in the enhanced tidal
force present during periastron passage.

In the astrophysical events, significant mass loss
occurs in two phases: The first is found in red giants
before large amplitude pulsation starts. Thesemass loss
rates are slow (<10−8 Msun/year). This is the dom-
inant form of mass loss in the lowest mass evolved
stars—globular cluster stars. It occurs mostly on the
RGB, also on the early-AGB. The second is discov-
ered inAGB starswith large amplitude pulsation. Rates
can be as high as 10−4 Msun/year. These are known as
superwinds.

A relatively extensive bibliography on the problem
can be found in the published works of [20,21]. The
specific case which results in a slow isotropic mass loss
has also been the focus of exhaustive studies carried

out by researchers , for instance, [13,14], to name but a
few. The vast majority of these, in search of the stellar
application, have taken the so-called Eddington–Jeans
law, Jeans (1924; 1925), as a law of the variation of
mass

ṁ = −αmn (1)

where α and n are real numbers, the first is positive and
proximate to zero and the second varying between 1.4
and 4.4, see [8].

Prieto and Docobo [22,23] intend to present an
approximate analytic solution of the two-body problem
with slowly decreasingmass which is obtained through
the integration of theHamilton equations usingDeprit’s
method of perturbations, [10]. The solution, obtained
through the Eddington–Jeans law, is put into practice
in a specific case and compared with Mestschersky’s
exact equation, n = 2, and with that which results from
numerically integrating the equations.

In the framework of celestial mechanics, this prob-
lem has been exhaustively addressed by [2,11], among
others.

Andrade [3] analyzed the dynamics of binary sys-
tems with time-dependent mass loss and PAE, i.e., a
supposed enhanced mass loss during periastron pas-
sage by means of analytical and numerical techniques.

Andrade and Docobo [4] studied the dynamics
of binary systems with small parameter perturbation
model. The time dependence of the whole set of orbital
elements concluded could be calculated over long
timescales and even for high eccentricities. In these
models, they studied the following time- and distance-
dependent mass loss law.

μ̇ (t; r; Pθ ) = μ̇ (t) − β
Pθ

r2
, (2)

where the first term represents time-dependent mass
loss, and the second one introduces the PAE, where
“r” is the distance between the two components, Pθ

is the total angular momentum and β is another small
parameter close to zero.

Rahoma et al. [25] published an interesting article
concerns with the two-body problem with VM in case
of isotropic mass loss from both components of the
binary systems. The law of mass variation used gives
rise to a perturbed Keplerian problem depending on
two small parameters. The problem is treated analyti-
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Second-order theory for the two-body problem 1725

cally in the Hamiltonian framework and the equations
of motion are integrated using the Lie series developed
and applied, separately by [9,15]. A second-order the-
ory of the two bodies eject mass was also constructed,
returning the terms of the rate of change of mass up to
second order in the small parameters of the problem.
The same author [26] studied the two-body problem
with VM in case of isotropic mass loss. In that work,
the problem is treated analytically in the Hamiltonian
framework and the equations ofmotionware integrated
using the Lie operator and Lie series.

El-Saftawy and Algethami [12] published a paper
treating the problem ofVM in the canonical framework
taking into consideration the PAE. It was assumed that
the PAE is of the same order of VM parameter. In that
work, the authors introduced the VM as unspecified
new canonical variable with a new unspecified con-
jugate momentum in the extended phase space. They
introduced a second-order solution for the problem of
VM using Delva–Hanslmeier canonical method.

In this work, we studied the averaged problem in
the case of VM, represented by small parameter α, and
PAE represented by small parameter β. The two small
parameters α and β are assumed of the same order
of magnitude. Surfaces for the rate of changes of mean
anomaly, argument of periastron and the VM conjugate
momenta are represented in three-dimensional graph-
ics in different cases using the values published by [4].

2 The Hamiltonian of the problem

The Hamiltonian for the two-body problem expressed
in terms of DV, which derived firstly by Deprit, A.,
1983, is:

H (q1, Q1, Q2; t) = −1

2

μ2

Q2
1

+ μ̇

μ
Q1 e sin E (3)

where the usual DV defined by:

q1 = Mean anomaly, q2 = ω, q3 = Ω,

Q1 = √
μa, , Q2 = Q1

√
1 − e2, Q3 = Q2 cos I,

q ′
i s are considered as the coordinates, while Q′

i s are
their corresponding conjugate momenta.

The variation of μ may be retained from one of the
two masses m1 or m2, and this is the case of one body

ejects mass. Otherwise, the case of the two bodies eject
masses. We will concern with the first case.

The Hamiltonian H represented by Eq. (3) is
depending implicitly on time through the variable mass
μ and its timederivative μ̇. BymodifyingDocobo’s law
for the rate of change of mass assigned by eq. (2) and
use Jeans law described by Eq. (1), we get:

μ̇(r, t, μ) = −αμn − β
Q2μ

2

Q4
1

(a
r

)2
(4)

Substituting from Eq. (4) into Eq. (3) yields:

H = −1

2

μ2

Q2
1

+ μ̇

μ
Q1e sin E − β

Q2eμ

Q3
1

(a
r

)2
sin E

(5)

Since the variable mass can be expressed as a Taylor
series expansion as:

μ = μ0 + dμ

dt

∣∣t=t0
(t − t0)

1! + d2μ

dt2
∣∣t=t0

(t − t0)2

2!
+ · · · , (6)

From Jeans law of VM, we have:

dμ

dt

∣∣t=t0 = μ̇0 = −αμn
∣∣t=t0 = −αμn

0 .

where μ0 is the mass of the system at time t0.

d2μ

dt2
∣∣t=t0 = μ̈0 = −αnμn−1μ̇

∣∣t=t0 = α2nμ2n−1
0 .

Substituting the last two equations into Eq. (6), retain-
ing orders up to α2, yields:

μ = μ0 − αμn
0 (t − t0) + 1

2!α
2μ2n−1

0 n (t − t0)
2 . (7)

With the help of Eq. (7), we can develop the Hamilto-
nian (5) to be:

H = − μ2
0

2 Q2
1

+ α

[
1

Q2
1

μn+1
0 (t − t0) − Q1eμ

n−1
0 sin E

]

+α2

[

− 1

2 Q2
1

μ2 n
0 (n + 1) (t − t0)

2

+ Q1eμ
2 n−2
0 (n − 1) (t − t0)

2 sin E

]
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+ β

[
Q2

Q3
1

eμ0

(a
r

)2
sin E

]

+ β α

[
Q2

Q3
1

e μn
0 (t − t0)

(a
r

)2
sin E

]

+β α2

[

− Q2

2 Q3
1

· e n μ2n−1
0 (t − t0)

2
(a
r

)2
sin E

]

(8)

Since the Hamiltonian represented by Eq. (8) is explic-
itly time dependence, so we extend the phase space by
introducing a new pair of variable (q4, Q4). The first
is “q4 = μn

0 (t − t0)” assigned as the variable mass
and the second is its conjugate momentum “Q4” which
describes the momentum rising due to the variation of
the mass.

The new systems of canonical equations of motion
will be:

q̇i = ∂K
∂Qi

and Q̇i = − ∂K
∂qi

i = 1, . . . , 4 (9)

With K is the new Hamiltonian in the extended phase
space that expressed as:

K = μn
o Q4 + H

= − μ2
0

2 Q2
1

+ μn
o Q4 + α

[
μ0

Q2
1

q4 − Q1eμ
n−1
0 sin E

]

α2

[

− 1

2 Q2
1

+ q24 (n + 1) + Q1 e

μ2
0

(n − 1) q24 sin E

]

+β

[
Q2

Q3
1

eμ0

(a
r

)2
sin E

]

+β α

[
Q2

Q3
1

e q4
(a
r

)2
sin E

]

−β α2

[
Q2

2 Q3
1

e n

μ0
q24

(a
r

)2
sin E

]

. (10)

The Hamiltonian (8) is explicit dependence of time
and completely different from the Hamiltonian derived
by [12]. The new Hamiltonian, described by Eq. (10),
includes higher-order terms such as O(α2), O(αβ) and
O(α2β) and the new pair of variables is defined implic-
itly.

The first term in equation (10) is the contribution
of the two bodies with the constant total mass of the
system “μo” which will be computed at specific time

“to.” The small parameter “β” is close to zero as well
as the small parameter “α.”

3 The solution of the averaged problem

If the Hamiltonian function K ≡ K (ui ,Ui ), the inte-
grable part of the Hamiltonian, K0, is function of U1.
So the variable u1 can be considered as the fast variable.

Hori’s method, [16], developed by [19] is used to
eliminate the short-period terms from the Hamiltonian.
We denote the transformed Hamiltonian by K∗, which
can be written up to kth orders as follows:

K∗
0 = K0

(
U ′
1

)
(11a)

K∗
k = K̃k + LkK∗

0 . (11b)

K̃k = Kk +
k−1∑

j=1

[(
k − 1

j

)
G jK∗

k− j +
(
k − 1
j − 1

)
L jKk− j

]

(11c)

where L j is the Lie derivative generated by the j com-
ponent of the generating function S, and G j can be
calculated using:

G j = L j −
j−2∑

m=0

(
j − 1
m

)
Lm+1G j−m−1, 1 ≤ j ≤ k.

Since u1 is considered as the fast variable in K, we
choose K∗

k to be the secular part of K̃k . Then, by aver-
aging over u′

1, we get:

K∗
k = 〈K̃k〉u′

1
. (11d)

While the periodic part of K̃k can be calculated from:

P=
k K̃k − K∗

k = (K0;Sk) , (11e)

and then the generating function, for different order,
can be calculated using:

Sk =
(

∂K0

∂U ′
1

)−1 ∫
Pkdu

′
1. (11f)

Noting that the prime over the variable indicates the
new variable in the transformed phase space.

Now applying the procedure described by Eq. (11)
to our problem noting that the small parameters, α and
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Second-order theory for the two-body problem 1727

β, close to zero, we assume that they have the same
order of magnitude.

To drive the variation in the canonical elements due
to the variation of mass in this case, we must rewrite
the Hamiltonian (10), up to O

(
α2

)
, to be in the form:

K =
2∑

i=0

αi

i !
Ki , (12)

where

Ko = − μ2
0

2Q2
1

+ μn
oQ4, (12a)

K1 = μ0

Q2
1

q4 − Q1eμ
n−1
0 sin E

+ β

α

[
Q2

Q3
1

eμ0

(a
r

)2
sin E

]

(12b)

K2 = − 1

Q2
1

q24 (n + 1) + 2Q1e

μ02
(n − 1) q24 sin E

+ β

α

[
2Q2

Q3
1

eq4
(a
r

)2
sin E

]
(12c)

Since “q2” and “q3” are ignorable variables, so Eq. (12)
tells us that “Q2” and “Q3” are constants of motion
while both “q2” and “q3” are linear function of time.

3.1 The averaged Hamiltonian

The Hamiltonian function, K, is a function of q1, q4,
Q1, Q2 and Q4. The integrable part of theHamiltonian,
K0, is a function of Q1 and Q4, so the variables q1 and
q4 can be considered as the fast variables.

3.1.1 Zero order

Applying Eq. (11a) to Eq. (12a), the zero-order trans-
formed Hamiltonian can be written as:

K∗
0 = K0

(
_; Q′

1, Q
′
4

) = −μ2
o

2Q′2
1

+ μn
oQ

′
4 (13)

3.1.2 First order

The first-order transformed Hamiltonian can be cal-
culated using Eqs. (11b)–(11d), with k = 1, and by

averaging the Hamiltonian,K1, over themean anomaly
q1. Therefore, the first-order transformed Hamiltonian,
K∗

1, is

K∗
1 = 1

2π

2π∫

0

K1∂q1. (14)

After calculating the required averages needed in the
last equation, we get:

K∗
1 = μ0

Q
′2
1

q ′
4, (15)

The primes over the variable indicate for the new phase
space variables, but for the sake of simplicity ofwriting,
we well drop it in the next subsections.

We need to calculate the generating function for the
first order. Using Eq. (11e) the periodic part is calcu-
lated,K∗

1P = K̃1−K∗
1 and then the generating function.

Using Eqs. (11f), (12b) and (15), the periodic part can
written as:

K∗
1p = −Q1eμn−1

0 sin E+ β

α

[
Q2

Q3
1

eμ0

(a
r

)2
sin E

]

= (S1;Ko) (16)

where (S1;Ko) is the Poisson Bracket for the two func-
tions S1 and Ko. After calculating the required deriva-
tives and mathematical manipulations, we get:

S1 =
1∑

i=0

Bc
i

( r
a

)i
cos i E, (17)

with, BC
1 = Q4

1eμ
n−3
o and BC

0 = β
α

Q2
μ0

.

3.1.3 Second order

To construct the function K̃2, Eq. (11c), we need first
the calculation of the Poisson bracket

(K1 + K∗
1; S1

)

after that we average the mathematical quantity, K2 +(K1 + K∗
1; S1

)
, over the mean anomaly q1. After com-

puting the required calculations and with the help of
Eqs. (11c), (11d), (12b), (15) and (17), we get:

K∗
2 = K∗

2α + β

α
K∗

2αβ . . . (18)
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where the first term, K∗
2α , is the contributions of the

second order due to VM, the second term, K∗
2αβ , is

the second-order coupling effect between the VM and
PAE. The contributions, in the second order, for differ-
ent parts in the Hamiltonian (18) are:

K∗
2α = −η−2,0 (n + 1) q24 + 1

2
μ2n−4
0

(
5η2,2 − 3η4,0

)

+μn−2
0

(
η−2,1 − η−1,0

)
(1 + e) . (18a)

K∗
2αβ = μn−2

0

[
5η1,2 + 8η2,1 − 4η3,0 − 10η0,3

η1,1 + η2,0

+ e

(
4η6,5 − 3η8,3
(
1 + η1,1

)2

)]

(18b)

where ηi, j = Qi
1Q

j
2

Using Eq. (13), (15) and (18), the transformed
Hamiltonian can be written as:

K∗ = −μ2
o

2Q′2
1

+ μn
oQ

′
4 + α

μ0

Q
′2
1

q ′
4 + α2

2
K∗

2α

+αβ

2
K∗

2αβ. (19)

According to the new treatment, the averaged Hamil-
tonian includes terms of the second order for VM (α2),
and second-order coupling effects between both (αβ).

Integrations of the form
∫ ( r

a

)i cos jE ln
( r
a

)k
dl

appeared during the averaging processes. The gen-
eral result of such kind of integration is added as
“Appendix” at the end of this paper.

3.2 The variation in the canonical elements

Tocalculate thevariation in the canonical elementswith
time, we can use Hamilton’s equations of motion, Eq.
(9). After deriving the required computations, the vari-
ation in the canonical variables can written as:

q̇1 = μ2
0 η−3,0 − 2αq4μ0η

−3,0 + α2

2

[
2 (n + 1) q24η

−3,0

+ μ2n−4
0

(
5 η1,2 − 6 η3,0

) + μn−2
0

1

e

·
(
η−2,0 − 2 η−3,1 − 2 η−4,2 + 3 η−5,3

+ e η−2,0 − 2 e η−3,1)] + α β

2

[
1

(
η1,0 + η0,2

)2

· (10 η−2,4 + 20 η−1,3 + 3 η0,2 − 8 η1,1 − 4 η2,0
)

+ 1

e
(
1 + η1,1

)3 .
(
24 η7,3 + 18 · η8,4

−45 η5,5 − 31 η6,6 + 20 η3,7 + 12 η4,8
)]

(20a)

q̇2 = α2

2
η−2,0

[
μn−2
0

(
1 + e + eη0,1

η1,0 + η0,1

)

+ 5μ2n−4
0 η4,1

]
+ αβ

2
μn−2
0

[
1

(
η1,0 + η0,1

)2

· (12η2,0 + 10η1,1 − 25η0,2 − 20η−1,3)

+ 1

e
(
1 + η1,1

)3
(
9η8,2 + 3η9,3 − 32η6,4−

− 18η7,5 + 24η4,6 + 16η5,7
)]

(20b)

q̇3 = 0. (20c)

q̇4 = μn
o . (20d)

Q̇1 = 0. (20e)

Q̇2 = 0. (20f)

Q̇3 = 0. (20g)

Q̇4 = −αμ0η
−2,0 + α2 (n + 1) η−2,0q4. (20h)

Equation (20a) tells us that the change in the mean
anomaly depends on the coupling effects (α β term) due
to the VM and the PAE too. The coupling terms usu-
ally arise from the evaluation of the Poisson brackets
in the Lie canonical perturbation theories. That effect
depends on both the initial mass of the system “μ0” and
the type ofVMrepresented by the parameter “n.” Equa-
tion (20b) indicates that there is no first-order effects,
for both the VM and the PAE, to the change of the
argument of periapsis. But the effect rises in the sec-
ond order due to VM and their coupling.

It was obvious from Eqs. (20c) and (20g) that there
is no variations in both of argument of ascending node
and its conjugate momentum. Finally, Eq. (20h) is new
mathematical form to calculate the momentum rises
from the VM. From such equation, that momentum
depends only on the VM but there is no contribution
for the PAE up to the second order.

The rate of changes of mean anomaly, the argument
of periapsis and the momentum associated with VM
are graphically represented for different closed orbits,
0 ≤ e < 1 and 1 < a < 1000, in the case (n = 2)
(Fig. 1a–c, Fig. 2a–c). The small parameters α and β

are chosen in the two cases as those chosen previously,
see Figure legends by [4].

As seen from Eq. (20) and the Figs. 1a–c, 2a–c, the
following remarks are obtained:
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Second-order theory for the two-body problem 1729

Fig. 1 a The variation in the mean anomaly for 0 ≤ e ≤ 0.9
& 1 ≤ a ≤ 1000 with β = α = 10−6 and n = 2 (Case D: M.
Andrade; [4]). b The variation in the argument of periside for
0 ≤ e ≤ 0.9 & 1 ≤ a ≤ 1000 with β = α = 106 and n = 2
(Case D: M. Andrade; 2003). c The variation in the momentum
conjugate to the VM for 0 ≤ e ≤ 0.9 & 1 ≤ a ≤ 1000 with
β = α = 10−6 (Case D: M. Andrade; [4])

Fig. 2 a The variation in the mean anomaly for 0 ≤ e ≤ 0.9
& 1 ≤ a ≤ 1000 with α = 106 & β = 10−7 and n = 2 (Case
C: M. Andrade; [4]). b The variation in the argument of periside
for 0 ≤ e ≤ 0.9 & 1 ≤ a ≤ 1000 with α = 106 & β = 107

and n = 2 (Case C: M. Andrade; 2003). c The variation in the
momentum conjugate to the VM for 0 ≤ e ≤ 0.9& 1 ≤ a ≤ 100
with and n = 2 (Case C: M. Andrade; [4])
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1730 M. I. El-Saftawy, F. A. Abd El-Salam

• The perturbation due to PAE is appeared as a second-
order effect. The first order vanishes through the
averaging process. The PAE perturbation induces a
secular variation in the orbital elements of the sys-
tem. The evolution of affected orbital elements will
depend on the fine adjustment of the small parame-
ters α and β.

• Since there are no terms factored by α or β, the first-
order secular effects in the argument of periapsis
for the VM as well as the PAE vanish. This may be
interpreted as the VM, and the PAE still preserve or
enhance the nature of slow variation of the argument
of periapsis.

• Equations (20e)–(20h) reveal that there is no contri-
bution due to the PAE in all the canonical momenta.
These perturbation may appear in higher-order the-
ories. Equation (20h) gives rise to first- and second-
order perturbations in Q̇4 due to VM only.

• The variation equations in themean anomaly and the
variation in the argument of periapsis [Eqs. (20a),
(20b)] are valid for all types of VM systems which
have closed orbits (0 < e < 1). As is clear from
the appearance of terms factored by 1

e4
which set

restrictions on the eccentricity, there is a singularity
at e = 0, i.e., for circular orbits.

• The variation in mass as well as its conjugate
momentum depends on the parameter “n” and its
value ranging between 1.4 and 4.4. see [8]. There-
fore, a precise determination of a specific value
from this range for certain binary system will affect
largely the interpretation of the obtained results.

3.3 The element of short-period transformation and
it’s inverse

The elements of short-period transformation can be cal-
culated using equations:

qi = q ′
i + α

∂S1
∂Q′

i
+ O(α2). (21a)

Qi = Q′
i + α

∂S1
∂q ′

i
+ O(α2). (21b)

The inverse transformation equations can be calculated
as follows:

q ′
i = qi − α

∂S1
∂Q′

i
− O(α2). (22a)

Q′
i = Qi + α

∂S1
∂q ′

i
+ O(α2). (22b)

Where ∂S1
∂Q′

1
, ∂S1
∂q ′

1
, ∂S1
∂q ′

4
and ∂S1

∂Q′
2
can be calculated using

Eq. (17).

4 Discussions and conclusion

We note that in the unperturbed problem, the mean
anomaly is a fast changeable parameter but when we
consider mass change, we have additional contribution
to change the mean anomaly rising from VM, PAE and
their coupling terms. That effect depends on both the
initial mass of the system “μ0” and the type of VM
represented by the parameter “n.” This actually opens
a chapter of interpretations for the researcherswhohave
interest in the problem.

The second-order theory changed the picture com-
pletelywith respect to the rate of changing the argument
of periastron, q̇2. Since the first order does not discover
the variation in argument of periastron, in the second
order it rises as a result of VM, PAE and their coupling.
That change depends on the initial mass of the system,
the type of VM, the semimajor axis and the eccentricity
of the orbit.

Finally, a new mathematical form to calculate the
momentum rises from the VM is investigated. From
such equation, the first-order effects decrease the
momentum of the system and depend only on the ini-
tial mass of the system. While in the second-order the-
ory, there is additional term increasing the variation
in the momentum, Q̇4, depending on the VM, q4 and
the type of the system, n. That momentum does not
depend on the PAE up to the second order. We can
guess that may be it will start to appear at third order or
higher.

For the sake of completeness, we well study, in
future work, the case of the two components with vary-
ing mass. In such case, the paper by M. [24] will be
considered to solve the system of differential equation.

Acknowledgements This work was supported by the Dean-
ship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, under Grant No. (130-051-D1434). The authors, there-
fore, gratefully acknowledge the DSR technical and financial
support.

123



Second-order theory for the two-body problem 1731

Appendix

Integral of the form
∫ ( r

a

)m cos jEln
( r
a

)p dl
Let,

�m
p, j =

( r
a

)m
cos jEln

( r
a

)p
dl (23)

The power series expansion for the function ln
( r
a

)m ,
in terms of the eccentric anomaly E , is:

ln
( r
a

)
= −

∞∑

n=1

en

n
(cosE)n . (24)

From Ahmed, M. K. [1], we have (cos E)n =
e−n ∑n

k=0 (−1)k+1Cn
k

( r
a

)k . Where Cn
k is the binomial

defined as Cn
k = n!

k!(n−k)! .
Substituting in Eq. (24) yields:

ln
( r
a

)
=

∞∑

n=1

n∑

k=0

(−1)k+2

n
Cn
k

( r
a

)k
. (25)

Then,

( r
a

)m
ln

( r
a

)p
dl = p

∞∑

n=1

n∑

k=0

(−1)k+2

n
Cn
k

( r
a

)k+m+1
dE .

But,
( r
a

)q = ∑q
β=0 (−1)β Cq

βe
β (cos E)β , then the

last equation will be:

( r
a

)m
ln

( r
a

)p = p
∞∑

n=1

n∑

k=0

k+m+1∑

β=0

(−1)k+β+2

n
Cn
k C

k+m+1
β eβ (cos E)β . (26)

From Ahmed, M. K. [1], we have:

(cos θ)k = 21−k
[k/2]∑

α=0

(
1 − 1

2
δ(k/2)′α

)
Ck

α cos (k − 2α) θ

Then, Eq. (26) will be:

( r
a

)m
ln

( r
a

)p
dl = p

∞∑

n=1

n∑

k=0

k+m+1∑

β=0

[β/2]∑

α=0

(−1)k+β+2

×21−β

n
Cn
k C

k+m+1
β Cβ

α e
β.

·
(
1 − 1

2
δ(β/2)′α

)

× cos (β − 2α) E dE (27)

where [S/2] is the greatest integer less than or equal to
S/2. The next step is to form the integrand (23) using
Eq. (27) such as:

�m
p, j =

k+m+1∑

β=0

[β/2]∑

α=0


p
β,α [cos (β − 2α + j) E

+ cos (β − 2α − j) E] dE

where


p
β,α = p

∞∑

n=1

n∑

k=0

(−1)k+β+2

2βn
Cn
k C

k+m+1
β Cβ

α

×
(
1 − 1

2
δ(β/2)′α

)
eβ

Finally, the required general form for the integration is:

∫ ( r
a

)m
cos j E ln

( r
a

)p
dl =

k+m+1∑

β=0

[β/2]∑

α=0


p
β,α.

.

[
sin (β − 2α + j) E

(β − 2α + j)
+ sin (β − 2α − j) E

(β − 2α − j)

]
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