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Abstract Hierarchies of Peregrine solution and
breather solution are derived in a (2+1)-dimensional
variable-coefficient nonlinear Schrödinger equation
with partial nonlocality. Based on these solutions, we
study the control of the excitation of Peregrine solu-
tion and breather solution in different planes. In par-
ticular, the localized Peregrine solution and breather
solution are firstly reported in two-dimensional space.
It is expected that our analysis and resultsmay give new
insight into higher-dimensional localized rogue waves
in nonlocal media.

Keywords Localized Peregrine solution and breather
solution · Nonlinear Schrödinger equation · Partial
nonlocality

1 Introduction

Localized structures based on different nonlinear evo-
lution equations were intensively studied [1–6]. Pere-
grine solution and breather solution based on the
nonlinear Schrödinger equation (NLSE) have become
important prototypes to describe rogue wave motions
in different fields of physics and ocean engineering
[10–13]. Localized structures based on quintic and
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cubic-quinticNLSEswere extensively discussed [7–9].
Rogue waves are also called as freak waves, monster
waves, killer waves. One of important characteristics of
rogue waves is their unpredictability that “waves that
appear from nowhere and disappear without a trace”
[14].

In ocean, rogue waves exhibit harmful aspects,
and they destroy ships and marine structures [15,16].
Many mainstream media such as Nature News, BBC
News, Reuters, ScienceDaily, Physicsworld, Financial
Express. have reported their extreme hazards in differ-
ent sea areas. However, rogue waves can occur in other
media than water. In particular, optical rogue waves
allow study of the phenomenon in the laboratory. In
optics, scientists excite roguewaves in the useful fields,
e.g., harnessing and control of optical rogue waves in
supercontinuum generation [17,18].

Relative to a reference frame co-moving with the
optical pulse, the basic nonlinear model describing the
rogue wave phenomenon is the focusing NLSE

iUT + UXX + 2|U |2U = 0. (1)

Based on this model, the theoretical study for rogue
wave began with the pioneering work of Akhmediev’s
group [14,19–22]. By means of the Darboux transfor-
mation, hierarchies of Peregrine solution and breather
solution forNLSEhave been reported to describe rogue
waves [14,19–22].

Considering the concept of nonautonomous solitons
[23], nonautonomous Peregrine solution and breather
solution and the related control of excitation have
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been discussed [24–26]. Moreover, nonautonomous
Peregrine solution and breather solution in higher-
dimensional case have also been studied [27–29]. How-
ever, all higher-dimensional Peregrine solution and
breather structures in previous literatures [27–29] are
not completely localized in space (such as x-y space).

In this paper, we consider the propagation of local-
ized Peregrine solution and breather structures in a
medium with partially nonlocal inhomogeneous non-
linearities by the following (2+1)-dimensional NLSE

iut + β(t)uxx + χ(t)u
∫ +∞

−∞
|u|2dy = 0, (2)

with the normalized complex field envelope u(t, x, y),
diffraction coefficient β(t) and nonlinear coefficient
χ(t). Here the subscripts denote the derivation to the
corresponding variables. In this case, x-direction is
localized, however, y-direction is nonlocal because the
quantity at point y is related to other vicinal points.
Equation (2) is a nonlinear differential–integral equa-
tion, and it is a variable-coefficient extension of the
(2+1)-dimensional equation [30,31]. As reported in
[30], Eq. (2) can be considered as the vector NLSE
with infinitely many components. When β and χ are
both constant, the Gram-type determinant solution and
localized soliton interactions were studied [30]. More
physical interpretation of Eq. (2) can also be found in
Refs. [30,31].

2 Similarity reduction between nonlocal equation
(2) and local equation (1)

Inserting the transformation

u(t, x, y) = ρ(y, t)U [X (x, t), T (t)]
× exp [iφ(t, x, y)], (3)

into Eq. (2), when function U [X (x, t), T (t)] satisfies
Eq. (1), we obtain the following set of equation

ρt + βρφxx = 0, Xt + β Xxφx = 0,

φt + βφ2
x = 0, Tt − 2β X2

x = 0, Xxx = 0, (4)∫ +∞

−∞
ρ2dy = 2Tt/χ. (5)

After some algebra from Eqs. (4) and (5), we obtain
the result: If β(t) and χ(t) satisfy the relation

χ(t) = − 2

w2
0

β(t)Π(t), (6)

then the amplitude, accumulated time, similarity vari-
able and phase read

ρ(y, t) = A(y)�(t), T (t) = �(t)Π(t)

w2
0

,

X (x, t) = x

w(t)
,

φ(t, x, y) = − s0�(t)

4
x2 + ϕ(y), (7)

and function A(y) satisfies∫ +∞

−∞
|A(y)|2dy = 1, (8)

with the width w(t) = w0
�(t) , the accumulated diffrac-

tion Π(t) = ∫ t
0 β(τ)dτ , chirp function �(t) = [1 −

s0Π(t)]−1 and initial constantsw0, s0 and free function
ϕ(y).

The normalization condition (8) for A(y) hints that
many types of function A(y) can be selected. Function
A(y) can be the hyperbolic secant function as A(y) =
sech(y)/π . Moreover, function A(y) can also be the
Hermite–Gaussian function

A(y) = 1√
n!2n

√
π

Hn(ωy)e−ω2 y2/2, (9)

with the Hermite polynomial Hn(ωy) and nonnegative
integer n.

Therefore, if β(t) and χ(t) satisfy the relation (6),
via the transformation (3) with (7), nonlocal equation
(2) is reduced to the local equation (1).

3 Hierarchy of Peregrine solution

According to the modified Darboux transformation
(DT) technique in Ref. [19] and choosing the plane-
wave solution u0 = exp(2iT ) as seed solution, from
the one-to-one correspondence (3), we have the first-
order rational solution (Peregrine solution)

u(t, x, y) = �(t)√
n!2n

√
π

Hn(ωy)e−ω2 y2/2

[
−1 + G1 + iK1

D1

]

× exp
{
i[(2 − v2)Ts + vX

− s0�(t)

4
x2 + ϕ(y)]

}
, (10)

where G1 = 4, K1 = 16Ts, D1 = 1 + 4X2
s + 16T 2

s
with Ts = T − T0 and Xs = X − vTs , and T and X
are given in the expression (7).
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Using solution (10) as the seed solution in DT tech-
nique, we obtain the second-order rational solution

u(t, x, y) = �(t)√
n!2n

√
π

Hn(ωy)e−ω2 y2/2

[
1 + G2 + iK2

D2

]

× exp
{
i[(2 − v2)Ts + vX

− s0�(t)

4
x2 + ϕ(y)]

}
, (11)

where

G2 = 36 − 15360T 4
s − 3456T 2

s − 192X4
s

−288X2
s − 4608T 2

s X2
s ,

K2 = Ts(720 − 12288T 4
s − 1536T 2

s − 768X4
s

+1152X2
s − 6144T 2

s X2
s ),

D2 = 9 + 4096T 6
s + 6912T 4

s + 1584T 2
s + 64X6

s

+48X4
s + 108X2

s + 3072T 4
s X2

s

+768T 2
s X4

s − 1152T 2
s X2

s

with Ts = T − T0 and Xs = X − vTs , and T and X
are given in the expression (7).

Similarly, using solution (11) as the seed solution in
DT technique, we obtain the third-order rational solu-
tion

u(t, x, y) = �(t)√
n!2n

√
π

Hn(ωy)e−ω2 y2/2

[
−1 + G3 + iK3

D3

]

× exp

{
i[(2 − v2)Ts + vX

− s0�(t)

4
x2 + ϕ(y)]

}
, (12)

whereG3 = 24576 Xs
10+(

92160 + 1474560 Ts
2
)

Xs
8

+ (−1474560 Ts
2 + 322560 +19660800 Ts

4)Xs
6 +

(−172800 + 2764800 Ts
2 − 14745600 Ts

4 + 1101
00480 Ts

6)Xs
4 + (−64800 − 20736000 Ts

2 + 16588
8000 Ts

4 + 165150720 Ts
6 + 283115520 Ts

8)Xs
2 +

276824064 Ts
10 + 778567680 Ts

8 + 215285760 Ts
6 −

47001600 Ts
4 − 777600 Ts

2 + 16200, K3 = 98
304 Xs

10Ts + (−368640 Ts + 1966080 Ts
3
)

Xs
8 +

(−921600 Ts − 13762560 Ts
3 +15728640 Ts

5)Xs
6 +

(−2073600 Ts −11059200 Ts
3−82575360 Ts

5+6291
4560 Ts

7)Xs
4 + (1814400 Ts −38707200 Ts

3 +16809
9840Ts

5 − 94371840 Ts
7 + 125829120 Ts

9)Xs
2 +

100663296 Ts
11 + 157286400 Ts

9 − 342097920 Ts
7 −

236666880 Ts
5 − 3801600 Ts

3 + 453600 Ts, D3 =
4096 Xs

12 + (6144 + 98304 Ts
2)Xs

10 + (34560 −
368640 Ts

2 + 983040 Ts
4)Xs

8 + (149760 + 552
960 Ts

2−2949120 Ts
4+5242880 Ts

6)Xs
6+(54000+

3456000 Ts
2 − 5529600 Ts

4 + 3932160 Ts
6 + 1572

8640 Ts
8)Xs

4+(48600−2332800 Ts
2+80179200 Ts

4+
221184000 Ts

6+70778880 Ts
8+25165824 Ts

10)Xs
2+

16777216 Ts
12 + 132120576 Ts

10 + 244776960 Ts
8 +

62668800 Ts
6 + 36806400 Ts

4 + 1490400 Ts
2 + 2025

with Ts = T − T0 and Xs = X − vTs , and T and X
are given in the expression (7).

Therefore, along this procedure, for anym-order, we
can write the solution of Eq. (2) as follows

u(t, x, y) = �(t)√
n!2n

√
π

Hn(ωy)e−ω2 y2/2

×
[
(−1)m + Gm + iKm

Dm

]

× exp

{
i[(2 − v2)Ts + vX

− s0�(t)

4
x2 + ϕ(y)]

}
, (13)

where Gm, Km and Dm are polynomials in the two
variables T and X . For the limit of length, we do not
list these expressions here.

4 Hierarchy of breather solution

According to the modified DT technique in Ref. [22]
and choosing the plane-wave solution u0 = exp(2iT )

as seed solution, from the one-to-one correspondence
(3), we derive the first-order breather solution

u(t, x, y) = �(t)√
n!2n

√
π

Hn(ωy)e−ω2 y2/2

×
[
−1 + L1 + iM1

N1

]

× exp
{
i[(2 − v2)Ts + vX

− s0�(t)

4
x2 + ϕ(y)]

}
, (14)

where L1 = 2κ2
1 cosh δ1(T − T1), M1 = 4κ1ν1 sinh

δ1(T − T1), N1 = 4[cosh δ1(T − T1) − ν1 cos κ1(X −
X1)] with ν1 = Im(λ1) and δ1 = ν1κ1. Here T and
X are given in the expression (7). When 0 < ν1 < 1,
this solution (14) describe breather, and when ν1 >

1 (κ1 is imaginary), this solution (14) describes KM
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soliton. Specifically, if ν1 → 1, this solution (14) can
degenerate into the first-order rational solution (11) via
the l’Hôpital’s rule.

When we consider the second-order solution, two
independent frequencies of modulation, κ1 and κ2, are
combined in the solution via the next step of the DT.
Along the procedure in Ref. [22], we derive the second-
order breather solution

u(t, x, y) = �(t)√
n!2n

√
π

Hn(ωy)e−ω2 y2/2

×
[
1 + L2 + iM2

N2

]

× exp

{
i[(2 − v2)Ts + vX

− s0�(t)

4
x2 + ϕ(y)]

}
, (15)

where L2 = −κ12[κ2
1 δ2 cosh(δ1Ts1) cos(κ2Xs2)/κ2 −

κ2
2 δ1 cosh(δ2Ts2) cos(κ1Xs1)/κ1 − κ12 cosh(δ1Ts1)

cosh(δ2Ts2)], M2 = −2κ12[δ1δ2 sinh(δ1Ts1) cos(κ2
Xs2)/κ2 − δ2δ1 sinh(δ2Ts2) cos(κ1Xs1)/κ1 − δ1
sinh(δ1Ts1) cosh(δ2Ts2)+δ2 cosh(δ1Ts1) sinh(δ2Ts2)],
N2 = 2(κ2

1+κ2
2 )δ1δ2 cos(κ1Xs1) cos(κ2Xs2)/(κ1κ2)−

(2κ2
1 − κ2

1κ2
2 + 2κ2

2 ) cosh(δ1Ts1) cosh(δ2Ts2) + 4δ1δ2
[sin(κ1Xs1) sin(κ2Xs2) + sinh(δ1Ts1) sinh(δ2Ts2)] −2
κ12[δ1 cos(κ1Xs1) cosh(δ2Ts2)/κ1 − δ2 cos(κ2Xs2)

cosh(δ1Ts1)/κ2] with Tsj = 2(T − Tj ), Xsj = X −
X j , δ j = κ j

√
4 − κ2

j /2, κ12 = κ2
1 − κ2

2 , κ j =
2
√
1 + λ2j , j = 1, 2. Here κ is the modulation fre-

quency, Tj and X j determine the center of solution in
t-x coordinates, and T and X are given in the expres-
sion (7).

When the values of Im(λ1) and Im(λ2) are both
between 0 and 1, this solution (15) describes two
breathers. When the values of Im(λ1) and Im(λ2) are
both bigger than 1, this solution (15) describes two
Kuznetsov-Ma solitons. For the values of Im(λ1) and
Im(λ2), if one of them is bigger than 1, and another
is between 0 and 1, a breather and a Kuznetsov-Ma
soliton can be constructed together.

Especially, if κ1 �= 0 and κ2 → 0, solution (15)
describes a breather or a Kuznetsov-Ma soliton with a
Peregrine solution. In this case, expressions of L2, M2

and N2 in solution (15) has the form

L2 = κ{κ[κ2(4T 2
s2 + 4X2

s2 + 1) − 8]
× cosh(δTs1) + 8δ cos(κ Xs1)}/8,

M2 = κ{8Ts2[δ cos(κ Xs1) − κ cosh(δTs1)]

+ δκ(4T 2
s2 + 4X2

s2 + 1) sinh(δTs1)}/4,
N2 = −{δ[κ2(4T 2

s2 + 4X2
s2 + 1) − 16]

× cos(κ Xs1) + κ([κ2(4T 2
s2 + 4X2

s2 − 3) + 16]
× cosh(δTs1)

− 16δ[Ts2 sinh(δTs1)

+ Xs2 sin(κ Xs1)])}/(4κ) (16)

with Tsj = 2(T − Tj ), Xsj = X − X j , δ =
κ
√
4 − κ2/2, κ = 2

√
1 + λ21, j = 1, 2. When 0 <

Im(λ1) < 1 and Im(λ1) > 1 in solution (16), we can
obtain the Peregrine solution combined by a breather
and Kuznetsov-Ma soliton, respectively.

Similarly, along theprocedure inRef. [22],wederive
m-order solution

u(t, x, y) = �(t)√
n!2n

√
π

Hn(ωy)e−ω2 y2/2

×
[
(−1)m + Lm + iMm

Nm

]

× exp
{
i[(2 − v2)Ts + vX

− s0�(t)

4
x2 + ϕ(y)]

}
, (17)

where Lm, Mm and Nm are polynomials in the two vari-
ables T and X . For the limit of length, we do not list
these expressions here.

5 Controllable behaviors of localized structures

The controllable behaviors of localized structures are
studied in the following soliton control system [32,33]

β(t) = β0 exp(−σ t), (18)

which is the exponentially modulated control system.
Parameter β0 describes the initial diffraction. This sys-
tem is a typical diffraction decreasing system (DDS)
for σ > 0. Moreover, if σ = 0, Eq.(18) is a constant
diffraction system.

At first, we reconsider the excitation of Peregrine
solution (10) in the framework of the focusing NLSE
(1). As reported in Ref. [19], Peregrine solution reaches
its maximum at center point (X0 = 0, T0). Along T -
axis, Peregrine solution is excited from a continuous-
wave background (emerging at T ≈ T0) and disappears
soon.

Note that the accumulated time T and similarity
variable X are not real time t and real spatial vari-
able x in our study, respectively. From the expression
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2D localized Peregrine solution and breather 1377

Fig. 1 Complete excitation
of Peregrine solution in
DDS at a x-t plane with
y = 3 and b–f x-y space
with b, c n = 0, t = 8,
d n = 0, t = 100,
e n = 1, t = 8, and
f n = 2, t = 100.
Parameters are chosen as
w0 = 0.5, β0 = 0.1, σ =
0.05, s0 = 0.02, v =
0.2, T0 = 5, ω = 1 –4 –2 0 2 4x
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T (t) = �(t)Π(t)
w2
0

in Eq. (7), we know that the value of

T (t) is not free, and it is limited to a certain range. In the
DDS, T (t) = β0[1−exp(−σ t)]

w2
0{σ−s0β0[1−exp(−σ t)]} , which indicates

that T (t) → Tm ≡ β0

w2
0[σ−s0β0] as real time t → ∞.

Therefore, the relation between T0 and Tm is crucial
to determine the degree of excitation. As reported in
our previous study [24,25,27], if Tm > T0, Peregrine
solution is completely and quickly excited; if Tm = T0,
Peregrine solution is excited to peak and maintain this
shape a long time; if Tm < T0, Peregrine solution is

only excited to initial shape. Note that here we dis-
cuss the control for the excitation of two-dimensional
localized Peregrine solution, which is hardly studied
to the best of our knowledge, and different from two-
dimensional line rogue waves reported in [27–29].

Figure1 shows the complete excitation of Peregrine
solutionwith Tm = 16.67 > T0 = 5. Figure1a exhibits
the complete excitation of Peregrine solution at the
range of 5 < t < 11 in the x-t plane. In x-y space,
the combined structure is made up of the Hermite–
Gaussian structure in y-component and Peregrine solu-
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Fig. 2 Peak excitation of
Peregrine solution in DDS
at a x-t plane with y = 3
and b–f x-y space with
b n = 0, t = 10,
c n = 0, t = 100,
d n = 1, t = 10,
e n = 2, t = 100, and
f n = 3, t = 100.
Parameters are chosen as
w0 = 0.5, β0 = 0.1, σ =
0.162, s0 = 0.02, v =
0.2, T0 = 5, ω = 1
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tion. During the stage of complete excitation, the com-
bined structure in x-y space appear a localized struc-
ture at the range of −0.5 < x < 0.5 in Fig. 1b when
n = 0. Corresponding to Fig. 1b, the detailed structures
in x-direction (when y = 0) and y-direction (when
x = 0) are shown in Fig. 1c. When t > 11, there is
a constant plane in the x-t plane, and thus only the
Gaussian structure is shown in x-y space in Fig. 1d.
For n = 1, when t = 8, two localized wave packets
[like structures in Fig. 1c] appear in the x-t plane in
Fig. 1e. When t = 100, there is a constant plane in the
x-t plane, and thus only the Hermite–Gaussian struc-
ture is shown in x-y space. For other values of n, if

t > 11, there are only the Hermite–Gaussian struc-
tures in x-y space. Figure1f is another example of the
Hermite–Gaussian structure in x-y space when n = 2.

If Tm = T0 = 5, the peak excitation of Peregrine
solution can maintain a long time with a self-similar
propagating behavior in Fig. 2a, where its amplitude
and width self-similarly change after a short propaga-
tion time from the initial condition. Corresponding to
the initial stage of excitation in Fig. 2a, a wave packet
is embedded in a line Gaussian structure in x-y space
in Fig. 2b at t = 10 when n = 0. Corresponding to
the peak stage of excitation in Fig. 2a, the combined
structure in x-y space appear localized structure [like
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2D localized Peregrine solution and breather 1379

Fig. 3 Initial excitation of
Peregrine solution in DDS
at a x-t plane with y = 3
and b–f x − y space with
b n = 0, t = 10,
c n = 0, t = 100,
d n = 1, t = 10,
e n = 2, t = 100, and
f n = 4, t = 100.
Parameters are chosen as
w0 = 0.5, β0 = 0.1, σ =
0.4, s0 = 0.02, v =
0.2, T0 = 5, ω = 1
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structure in Fig. 1c] at the range of −0.5 < x < 0.5
in Fig. 2c when t = 100. Similarly, for other values
of n, if t > 11, there are all localized structures [like
structures in Fig. 1c] in x-y space, and the number of
localized structures is decided by n + 1 for n-th order
ofHermite polynomial. Figure2d–f demonstrates these
localized structures [like structures in Fig. 1c] for dif-
ferent n.

If Tm = 2.01 < T0 = 5, the excitation of Pere-
grine solution is restrained and only excited to ini-
tial shape in Fig. 3a because the threshold of excit-

ing Peregrine solution is never reached. This struc-
ture looks like a bright optical similariton and sep-
arated bright similariton pairs [34] with very small
amplitudes propagating stably on a non-zero back-
ground. In x-y space, no localized structures appear.
From Fig. 3b (t = 10) to Fig. 3c (t = 100), only a
small packet is superimposed on a line Gaussian struc-
ture when n = 0. For other values of n, only small
packets are also superimposed on the line Hermite–
Gaussian structures. Some examples are shown in
Fig. 3d–f.
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Fig. 4 Complete excitation of superposed breather in DDS at
a x-t plane with y = 3 and x-y space with b n = 0, t = 7, c
n = 0, t = 100; peak excitation of superposed breather in DDS
at d x-t plane with y = 3 and x-y space with e n = 0, t = 100,
f n = 5, t = 100; initial excitation of superposed breather

in DDS at g x-t plane with y = 3 and x-y space with h
n = 0, t = 100, i n = 6, t = 100. Parameters are chosen as
κ1 = 0.4, κ2 = 1.4, w0 = 0.5, β0 = 0.1, s0 = 0.02, v = 0.2,
T1 = T2 = 5, ω = 1 with a–c σ = 0.05, d–f σ = 0.162 and
g–i σ = 0.4

For other order rational solutions, when Tm > T0,
Tm = T0 and Tm < T0, complete excitation, peak exci-
tation and initial excitation will happen. These cases
are similar to Peregrine solution in Figs. 1–3. For the
limit of length, we omit the related plots.

In the following, we consider the control of the
excitation of superposed breather. Solution (15) can
describe twoarrays of separatedbreathers. Eachbreathers
are composed of Peregrine solution-like structures. In

each arrays, the numbers of Peregrine solution-like
structures are decided by the ratio of κ1 and κ2. When
two arrays of separated breathers share the same ori-
gin, we can construct superposed breathers. Similarly
to these excitations of Peregrine solution in Figs. 1–
3, when Tm > T1 = T2, Tm = T1 = T2 and
Tm < T1 = T2, complete excitation, peak excita-
tion and initial excitation of superposed breather will
occur.
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Fig. 5 Numerical rerun of Peregrine solution (10) in Figs. 1c, 2d and 3e at time t = 100. An added 5% white noise is added to the
initial values. The parameters are the same as those in the corresponding analytical plots

Here we choose κ1 = 0.2 and κ2 = 1.4, namely,
the number of Peregrine solution-like structures in two
array is 1 : 7. When they share the same origin,
two Peregrine solution-like structures with the same
value of x form a parallel Peregrine solution-like pair,
and three Peregrine solution-like structures triangu-
larly laying out become a second-order rational solu-
tion.

If Tm is remarkably bigger than T1 = T2, the
full superposed breather is excited completely. Fig-
ure4a shows the complete excitation at the range of
0 < t < 17 in the x-t plane. In x-y space, the combined
structure is made up of the Hermite–Gaussian struc-
ture in y-direction and breather in x-direction. Dur-
ing the stage of complete excitation, in x-y space, the
combined structure appears a breather in x-direction
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with Gaussian structures in y-direction in Fig. 4b when
n = 0. When t > 17, there is a constant plane in the x-
t plane, and thus only the Gaussian structure is shown
in x-y space in Fig. 4c. For other values of n, (n + 1)-
arrays of breathers appear at the range of 0 < t < 17,
and the Hermite–Gaussian structure appears at t > 17
in x-y space.

If Tm = T1 = T2, in x-t plane, the peak excita-
tion of superposed breather can maintain a long time
with self-similar propagating behaviors (see Fig. 4d).
The amplitude and width of sustained breather self-
similarly change after a short propagation time from
the initial condition. Corresponding to the initial stage
of excitation in Fig. 4d, the combined structure in x-
y space appears a breather in Fig. 4e when t = 100.
Similarly, for other values of n, if t > 11, there are
(n + 1)-arrays of breathers in x-y space. For exam-
ple, Fig. 4f displays six arrays of breathers in x-y space
when n = 5.

If Tm < T1 = T2, the threshold of exciting
superposed breather is never reached, its excitation is
restrained an d only initial part is excited in the x-t
plane (see Fig. 4g), which looks like a periodic wave
with very small amplitudes propagating stably with the
time. In x-y space, only some small packets are super-
imposed on the line Hermite–Gaussian structures. Fig-
ure4h, demonstrate two examples when n = 0 and
n = 6, respectively.

At last, we discuss the stability of these Peregrine
solutions with different controllable excitations. We
study analytical solutions evolving with time when
they are disturbed from their analytically given forms.
We perform the direct numerical simulation (the split-
step Fourier technique) with initial white noise for
Eq. (2) with initial fields coming from solution (10)
in some cases. Figure5 displays the numerical rerun
of Peregrine solution (10) in Figs. 1c, 2d and 3e at
time t = 100. From Fig. 5a, one can find that Pere-
grine solution with complete excitation for n = 1
stably evolves with time in both x and y directions,
and the white noise hardly influences the evolution
of Peregrine solution. In Fig. 5b, the white noise has
a stronger influence on Peregrine solution with peak
excitation for n = 2, especially two sides of Pere-
grine solution in x-direction. From Fig. 5c, Peregrine
solution with initial excitation for n = 3 is unstable
and broken down the initial shape after evolving time
t = 100, and at last turns into noise especially for its
shape in x-direction. Compared these Peregrine solu-

tions in Fig. 5a–c, the stability attenuates with the add
of n.

6 Conclusions

In conclusion, we obtain hierarchies of Peregrine
solution and breather solution excited in a (2+1)-
dimensional variable-coefficient NLSE with partial
nonlocality. Based on these solutions,we study the con-
trol of the excitation of Peregrine solution and breather
solution in different planes. If Tm > T0(orT1 = T2),
Peregrine solution or breather solution is completely
and quickly excited; if Tm = T0(orT1 = T2), Pere-
grine solution or breather solution is excited to peak
andmaintain this shape a long time; if Tm < T0(orT1 =
T2), Peregrine solution or breather solution is only
excited to initial shape. In particular, we report firstly
the localizedPeregrine solution andbreather solution in
two-dimensional space. Numerical rerun for analytical
solution indicates that the stability of Peregrine solu-
tion attenuates with the add of n. It is expected that our
analysis and results may give new insight into higher-
dimensional localized rogue waves in nonlocal media.
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