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Abstract This paper attempts to reproduce the empir-
ical phenomena of congested traffic flow with an on-
ramp through a microscopic traffic model. First, an
improved two-lane lattice hydrodynamic traffic flow
model is proposed, which is capable of avoiding vehi-
cles backwardmoving in original lattice hydrodynamic
model. Then, the deterministic and stochastic on-ramps
are designed and mapped into the new lattice model to
reproduce the empirical phenomena. For the stochas-
tic case, many empirical congested patterns are repro-
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duced, such asmoving localized cluster, triggered stop-
and-go traffic (TSG), pinned localized cluster (PLC),
oscillating congested traffic (OCT) and homogeneous
congested traffic. For the deterministic case, a num-
ber of combination patterns of HST, PLC, TSG and
OCT are found. Taken together, these results suggest
that the present model is able to predict the congested
traffic patterns.

Keywords Lattice hydrodynamic model · Traffic
flow · Traffic phase · On-ramp

1 Introduction

Traffic congestion usually emerges at bottlenecks, such
as ramps, lane closures, intersections and sharp curves.
To date, considerable traffic models have been devel-
oped to explain the mechanism underlying the phe-
nomenon observed from the traffic congestion at bot-
tlenecks, especially traffic jam at on-ramps. The empir-
ical traffic patterns can mainly be summarized as mov-
ing local clusters (MLC), stop-and-go waves (SG),
oscillating congested traffic (OCT), widening synchro-
nized pattern (WSP), pinned localized cluster (PLC)
and homogeneous congested traffic (HCT). The study
on congested traffic pattern may provide a convenient
way to master the nature of jam formation, and phase
diagram is treated as a powerful approach to explore the
intrinsic evolution mechanism. Diverse traffic models
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Fig. 1 The schematic
model of traffic flow on a
two-lane highway

have been proposed to explain the inherent features of
different instability diagrams found in actual traffic [1].

Basedon extensive experiment investigation,Kerner
and Rehborn [1] referred two phase transitions (i.e.,
from free traffic flow to synchronized flow and from
synchronized traffic flow to jam) as the first-order phase
transitions. The synchronized flow can spread back-
ward; for instance, it can turn into free flow after being
self-maintained for several hours. Helbing and Treiber
[2] proposed a macroscopic traffic model to interpret
the synchronized flow along an on-ramp. In another
work [3], they presented a phase diagram nearby on-
ramp, and the analytical conditions for different type of
congestion states are stated. By using an open bound-
ary condition under on-ramp, Lee et al. [4] suggested
a phase diagram to investigate the congested traffic
states, in which various traffic patterns are reproduced.
Gupta and Katiyar [5] studied the congestion patterns
via a continuum traffic stream model under on-ramp.
The numerical simulation reproduces a wide diversity
of traffic patterns, and the congested patterns diagrams
can be deemed as a nonlinear function of main road
inflow flux and the on-ramp inflow flux. By adding
the on-ramp system into speed gradient model, Tang
et al. [6] compared the phase diagram of manual vehi-
cles with adaptive cruise control (ACC) vehicles. Some
congested traffic states disappear in phase ACC vehi-
cles diagram since the traffic flow stability is enhanced
by ACC vehicles. Tang et al. [7] presented a macro-
traffic flow model with ramps. Numerical simulation
results show that ramps usually have different effects
on themain road traffic during themorning and evening
rush hours. The traffic flow phases were carefully
investigated in the recent literature [8]. They repro-
duced not only the congestion patterns (such as LC,

SGW,OCT andHCT), but also the “widening synchro-
nized patterns (WSP) and thewideningmoving clusters
(WMC).”

The phase transition at on-ramp is also studied via
the microscopic method. Using car-following model,
Berg and Woods [9] investigated the solitary solution
in detail. The traffic states were found to be qualita-
tively alike as they were in continuum model. Jiang
et al. [10] studied the influence of main road on the
on-ramp flow using the cellular automata traffic flow
model. Treiber and Kesting [11] proposed a systematic
method to determine the spatiotemporal dynamics in
open systems with bottlenecks.

The lattice hydrodynamic model was initiated by
Nagatani (for simplicity, we referred lattice hydro-
dynamic model as lattice model in remaining text)
[12,13]. Latter, the lattice model was used to analyze
the characteristics of traffic stream on two-lane high-
way [14]. It is a simplified macroscopic hydrodynamic
model, while still incorporates themicroscopic concept
described in the optimal velocity model. For this rea-
son, the lattice hydrodynamic model has become quite
popular in traffic modelling. In the context of the intel-
ligent transportation system (ITS), various extended
models emerged by considering different traffic con-
ditions, such as physical delay [15,16], passing [17–
20], flux effect [21–24], driving behavior [25], control
method [26,27], stabilization effect [28–31] and road
condition [32–36].

Currently, the traffic congestion patterns at on-ramp
are investigated mainly by the continuum model, the
car-following model and the cellular automata traffic
flowmodel. Few studies investigate the congestion pat-
terns by using a two-lane lattice model under the on-
ramp system.
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(a) (b)

Fig. 2 Schematic illustration of the on-ramp system. a Deterministic on-ramp system, b stochastic on-ramp system

Fig. 3 The spatiotemporal evolutions of density and velocity for the homogeneous synchronized traffic (HST) with ρin = 0.10,
ρramp = 0.10

In this paper, the congestion traffic states regard-
ing the on-ramp traffic system with a two-lane lat-
tice hydrodynamic model are explored. Specifically, an
improved two-lane lattice hydrodynamic traffic model
is proposed first. Then, a new stochastic on-ramp sys-
tem is designed.After that, numerical simulation is con-
ducted to examine whether the lattice model can repro-
duce the empirical trafficphenomenonnearbyon-ramp,
as well as to test the validation of the new on-ramp sys-

tem. Finally, the combinatorial congested patterns of
PLC, TSG,HST andOCT under deterministic on-ramp
are stated and analyzed.

The remaining text is organized as follows. Section 2
elaborates on the two-lane density difference lattice
hydrodynamic model. The stochastic and determinis-
tic on-ramp systems are designed in Sect. 3. Numerical
analyses are performed in Sect. 4. Section 5 concludes
the whole study.
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Fig. 4 The spatiotemporal evolutions of density and velocity for the pinned localized clusters (PLC) with ρin = 0.21, ρramp = 0.07

2 Density difference lattice hydrodynamic model
for two-lane traffic

The single-lane traffic model is not able to capture the
real traffic since the road networks are almost con-
nected by two-lane or multi-lane roads. Based on the
single-lane lattice model, Nagatani [14] proposed a
two-lane lattice hydrodynamical model. Figure 1 illus-
trates the schematic diagram of the traffic flow on a
two-lane highway. If the density of site j − 1 in the
second lane is higher than that of site j in the first lane,
cars will change from the second lane to the first one
with a rate of γ

∣
∣ρ2

0V
′(ρ0)

∣
∣ (ρ2, j−1(t)−ρ1, j (t)), where

γ is a fixed dimensionless coefficient,
∣
∣ρ2

0V
′(ρ0)

∣
∣ is a

scale parameter, ρ0 is the average density, ρ1, j and ρ2, j
are the densities at site j in the first lane and second
lane, respectively. Accordingly, the lane-change rate in
the opposite case is γ

∣
∣ρ2

0V
′(ρ0)

∣
∣ (ρ1, j (t)−ρ2, j+1(t)).

The lattice hydrodynamic model for two-lane traffic
is governed by the following equation [14]. In our two-
lane traffic model, the continuity equation and the evo-
lution equation are independent. The continuity equa-
tion for the first lane is

∂tρ1, j (t) + ρ0(ρ1, j (t)v1, j (t) − ρ1, j−1(t)v1, j−1(t))

= S1, j = Sin1, j − Sout1, j , (1)

Similarly, the continuity equation for the second lane
is

∂tρ2, j (t) + ρ0(ρ2, j (t)v2, j (t) − ρ2, j−1(t)v2, j−1(t))

= S2, j = Sin2, j − Sout2, j . (2)

Sini, j (t)(i = 1, 2) is the inflow density of lattice j on

lane i at time t . Souti, j (t) is the outflow density from lat-
tice j on lane i at time t . Note that t will be omitted
in the following formulations for brevity. In Nagatani’s
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Fig. 5 The spatiotemporal evolutions of density and velocity for the moving localized clusters (MLC) with ρin = 0.05, ρramp = 0.11

model, the lane-changing behavior is described as fol-
lows

Sin1, j = γ

∣
∣
∣ρ

2
0V

′(ρ0)
∣
∣
∣ (ρ2, j−1 − ρ1, j ), (3)

Sout1, j = γ

∣
∣
∣ρ

2
0V

′(ρ0)
∣
∣
∣ (ρ1, j − ρ2, j+1), (4)

Sin2, j = γ

∣
∣
∣ρ

2
0V

′(ρ0)
∣
∣
∣ (ρ1, j−1 − ρ2, j ), (5)

Sout2, j = γ

∣
∣
∣ρ

2
0V

′(ρ0)
∣
∣
∣ (ρ2, j − ρ1, j+1). (6)

The original two-lane lattice model is an valuable
work, but it had a flaw, i.e., the phenomenon of vehicle
backward movement. Taking the inflow rate described
in Eq. (3) as an example, when ρ2, j−1 < ρ1, j , the
inflow density from lattice j−1 on lane 2 to lattice j on
lane 1 is negative, i.e., the density difference (ρ2, j−1 −
ρ1, j ) < 0. According to the lane-changing formula
(3), Sin1, j < 0, which means that vehicles in lattice j on
lane 1 move backward to lattice j −1 on lane 2. This is

unrealistic in actual traffic. An alternative to overcome
this drawback is to let lane changing occur only when
the density of inflow lattice is less than that of outflow
lattice. For example, in formula (3), we add a constraint
condition ρ2, j−1 > ρ1, j . Then, the new expressions of
Sini, j and Souti, j are rewritten as follows:

Sin1, j =
{

γ
∣
∣ρ2

0V
′(ρ0)

∣
∣ (ρ2, j−1 − ρ1, j ): ρ2, j−1 > ρ1, j

0: other
,

(7)

Sout1, j =
{

γ
∣
∣ρ2

0V
′(ρ0)

∣
∣ (ρ1, j − ρ2, j+1): ρ1, j > ρ2, j+1

0: other
,

(8)

Sin2, j =
{

γ
∣
∣ρ2

0V
′(ρ0)

∣
∣ (ρ1, j−1 − ρ2, j ): ρ1, j−1 > ρ2, j

0: other
,

(9)
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Fig. 6 The spatiotemporal evolutions of density and velocity for the triggered stop-and-go wave (TSG) with ρin = 0.05, ρramp = 0.12

Sout2, j =
{

γ
∣
∣ρ2

0V
′(ρ0)

∣
∣ (ρ2, j − ρ1, j+1): ρ2, j > ρ1, j+1

0: other
,

(10)

The evolution equation for two-lane traffic model is
described below,

∂t (ρ1, jv1, j ) = aρ0Ve(ρ1, j+1) − aρ1, jv1, j . (11)

∂t (ρ2, jv2, j ) = aρ0Ve(ρ2, j+1) − aρ2, jv2, j . (12)

With the help of ITS, density difference can be incorpo-
rated into two-lane latticemodel. Then, a new evolution
equation is obtained:

∂t (ρ1, jv1, j ) = aρ0Ve(ρ1, j+1) − aρ1, jv1, j

+ λ(ρ1, j − ρ1, j+1)/ρ0, (13)

∂t (ρ2, jv2, j ) = aρ0Ve(ρ2, j+1) − aρ2, jv2, j

+ λ(ρ2, j − ρ2, j+1)/ρ0, (14)

where λ is the reaction coefficient of density difference
between the current and leading vehicles.

Taken together, the present two-lane density differ-
ence lattice hydrodynamic model is described by Eqs.
(1)–(4).

Eliminating velocity v in Eqs. (1), (13) and (2), (14)
separately, we get an equation which is only related to
density

∂2t ρ1, j + aρ20 (Ve(ρ1, j+1) − Ve(ρ1, j )) − a
(

Sin1, j

− Sout1, j

)

+ a∂tρ1, j − λ(ρ1, j+1 − 2ρ1, j + ρ1, j−1)

−
(

∂t S
in
1, j − ∂t S

out
1, j

)

= 0. (15)

∂2t ρ2, j + aρ20 (Ve(ρ2, j+1) − Ve(ρ2, j )) − a
(

Sin2, j − Sout2, j

)

+ a∂tρ2, j − λ(ρ2, j+1 − 2ρ2, j + ρ2, j−1)

−
(

∂t S
in
2, j − ∂t S

out
2, j

)

= 0. (16)

To facilitate simulation, below we give the differ-
ence form
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Fig. 7 The spatiotemporal evolutions of density and velocity for the oscillating congested traffic (OCT) with ρin = 0.25, ρramp = 0.10

ρ1, j (t + 2τ) = 2ρ1, j (t + τ) − ρ1, j (t) − aτ 2ρ2
0 (V (ρ1, j+1)

− V (ρ1, j )) − aτ(ρ1, j (t + τ) − ρ1, j (t))

+ τ 2a
(

Sin1, j − Sout1, j

)

− λτ 2
(

2ρ1, j (t)

− ρ1, j+1(t) − ρ1, j−1(t)
)

+ τ 2
(

∂t S
in
1, j − ∂t S

out
1, j

)

, (17)

ρ2, j (t + 2τ) = 2ρ2, j (t + τ) − ρ2, j (t) − aτ 2ρ2
0 (V (ρ2, j+1)

− V (ρ2, j )) − aτ(ρ2, j (t + τ) − ρ2, j (t))

+ τ 2a
(

Sin2, j − Sout2, j

)

− λτ 2
(

2ρ2, j (t)

− ρ2, j+1(t) − ρ2, j−1(t)
)

+ τ 2
(

∂t S
in
2, j − ∂t S

out
2, j

)

, (18)

where

∂t S
in
1, j = γ

∣
∣ρ2

0V
′(ρ0)

∣
∣

τ
(ρ2, j−1(t + τ)

− ρ2, j−1(t) − ρ1, j (t + τ) + ρ1, j (t)), (19)

∂t S
out
1, j = γ

∣
∣ρ2

0V
′(ρ0)

∣
∣

τ
(ρ1, j (t + τ)

− ρ1, j (t) − ρ2, j+1(t + τ) + ρ2, j+1(t)),

(20)

∂t S
in
2, j = γ

∣
∣ρ2

0V
′(ρ0)

∣
∣

τ
(ρ1, j−1(t + τ)

− ρ1, j−1(t) − ρ2, j (t + τ) + ρ2, j (t)), (21)

∂t S
out
2, j = γ

∣
∣ρ2

0V
′(ρ0)

∣
∣

τ
(ρ2, j (t + τ)

−ρ2, j (t) − ρ1, j+1(t + τ) + ρ1, j+1(t)).

(22)

In addition, we employ the following form of opti-
mal velocity function:

V (ρ) = tanh

(

2

ρ0
− ρ

ρ2
0

− 1

ρc

)

+ tanh

(
1

ρc

)

. (23)
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Fig. 8 The spatiotemporal evolutions of density and velocity for the homogeneous congested traffic (HCT) with ρin = 0.30, ρramp =
0.10

V (·) is a monotonically decreasing function with upper
bound. There is an inflection point at ρ = ρc when
ρ0 = ρc. In order to facilitate the analysis, Ve(ρ) is
simplified as V (ρ) hereafter.

3 On-ramp

In this section, firstly, we design a stochastic and a
deterministic on-ramp system. As is shown in Fig. 2,
on-ramp is located at xon, and the region [xon, xon +
L ramp] is the fluxmerging section from on-ramp, where
L ramp is the length of the on-ramp. When the length of
inserting area is set as L ramp = 1 (see Fig. 2a), i.e., at
each time step, all the flux from on-ramp will enter the
main road by one lattice. So, we named the system in
Fig. 2a as “deterministic on-ramp.” When L ramp ≥ 1,

as is shown in Fig. 3b, it is named as “stochastic on-
ramp.” For the stochastic case, there is an accelerating
section at the merging section between on-ramp and
main road. Usually, the flux of on-ramp will distribute
on the merging section randomly. Accordingly, the flux
of on-ramp will enter the main road from accelerating
section randomly. Then, we design a new on-ramp sys-
tem to test whether the empirical spatiotemporal pat-
terns can be well reproduced.

The density difference lattice model for two-lane
traffic with on-ramp is described by a continuity equa-
tion and an evolution equation. The equations with
respect to the left lane do not change, i.e., the governing
equations are

∂tρ1, j (t) + ρ0(ρ1, j (t)v1, j (t) − ρ1, j−1(t)v1, j−1(t))

= S1, j = Sin1, j − Sout1, j , and (24)
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Fig. 9 The spatiotemporal evolutions of density and velocity for the combination of the triggered stop-and-go wave and the pinned
localized clusters (TSG + PLC) with ρin = 0.06, ρramp = 0.17

∂t (ρ1, jv1, j ) = aρ0Ve(ρ1, j+1) − aρ1, jv1, j

+ λ(ρ1, j − ρ1, j+1)/ρ0. (25)

While the equation on the right lane is related to
the on-ramp, the density difference model for the right
lane of two-lane traffic with on-ramp is described as
follows:

The governing equation of lane 2 is

∂tρ2, j (t) + ρ0(ρ2, j (t)v2, j (t) − ρ2, j−1(t)v2, j−1(t))

= S2, j = Sin2, j − Sout2, j + ρ0 Q̄ j , and (26)

∂t (ρ2, jv2, j ) = aρ0Ve(ρ2, j+1) − aρ2, jv2, j

+ λ(ρ2, j − ρ2, j+1)/ρ0. (27)

The on-ramp flux Q̄ j shown in Fig. 3b is described
as

Q̄ j =
{

Qon(t): j = si
0: j �= si

, (28)

where si is lattice of the accelerating section. The on-
ramp flux Q̄ j shown in Fig. 3c is described as

Q̄ j =
{

Qon(t) × pi∑n
i=1 pi

: j = si

0: j �= si
. (29)

By eliminating the velocity term, the difference forms
for lanes 1 and 2 are obtained.

ρ1, j (t + 2τ)

= 2ρ1, j (t + τ) − ρ1, j (t) − aτ 2ρ2
0 (V (ρ1, j+1) − V (ρ1, j ))

−aτ(ρ1, j (t + τ) − ρ1, j (t)) + τ 2a
(

Sin1, j − Sout1, j

)

− λτ 2(2ρ1, j (t) − ρ1, j+1(t) − ρ1, j−1(t))

+ τ 2
(

∂t S
in
1, j − ∂t S

out
1, j

)

, (30)

ρ2, j (t + 2τ)
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Fig. 10 The spatiotemporal evolutions of density and velocity for combination of the triggered stop-and-go wave and the homogeneous
synchronized traffic with ρin = 0.09, ρramp = 0.17

= 2ρ2, j (t + τ) − ρ2, j (t) − aτ 2ρ2
0 (V (ρ2, j+1) − V (ρ2, j ))

− aτ(ρ2, j (t + τ) − ρ2, j (t)) + τ 2a
(

Sin2, j − Sout2, j

)

− λτ 2
(

2ρ2, j (t) − ρ2, j+1(t) − ρ2, j−1(t)
)

+ τ 2
(

∂t S
in
2, j − ∂t S

out
2, j

)

+ aτ 2ρ0 Q̄ j . (31)

4 Numerical simulation

In this section,we display the simulation results. To this
end, the road is divided into N uniform lattices, and the
on-ramp locates at xon = 300. The initial density ρh
on main road is identical. The boundary condition is
open, which can be described as:

ρ1,1(t) = ρ1,2(t), ρ1,N−1(t) = ρ1,N (t), and (32)

ρ2,1(t) = ρ2,2(t), ρ2,N−1(t) = ρ2,N (t), (33)

where ρi,1(i = 1, 2) is the density of the first lattice
upstream, and ρN (t) is the density of the lattice located
at the downstream boundary. The simulation parame-
ters are a = 0.5 for ρi, j (i = 1, 2) ≤ 0.19, and a = 1
for ρi, j (i = 1, 2) > 0.19. γ = 0.1, λ = 0.1, τ = 0.1,
ρ0 = 0.25, ρc = 0.25, vmax = 2.

4.1 Stochastic on-ramp simulation

In this section, we simulate several open two-lane sys-
tems with different on-ramp bottlenecks. During the
simulation, we change inflow Qin and on-ramp flow
Qramp to generate various congestion traffic patterns.

Firstly, we conduct simulation for the stochastic
on-ramp and display the result in Fig. 2b. The five
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Fig. 11 The spatiotemporal evolutions of density and velocity for the combination of pinned localized clusters and the oscillating
congested traffic with ρin = 0.12, ρramp = 0.16

empirical congestion patterns are all reproduced under
this type of on-ramp system. The initial density of
main road is ρ = 0.10, and the density of on-ramp
is ρ = 0.10. Given these parameters, traffic flow in
the open system develops into slightly congested traf-
fic states showed in Fig. 3. The congested traffic caused
by the small bottleneck is moderate and homogeneous
in the density space. The velocity for either the left
lane or the right lane is not very low, and the den-
sity approximates to 0.2. Such a pattern is exactly
the homogeneous synchronized traffic (HST). Since
the densities in main road and on-ramp are relatively
small, the traffic stream doesn’t grow into heavy traf-
fic jam. The upstream density of on-ramp is almost
the same as the free flow branch in fundamental dia-
gram. The velocity tends to the synchronized state on

different lanes. This is because every driver needs to
reach a relatively high speed by lane change, and the
driver has to adjust the leading vehicle’s speed due
to significantly small passing probability in the same
lane.

Figure 4 shows that traffic jams occur at the region
upstream of on-ramp. The average density of the con-
gestion region is obviously larger than that of the non-
congestion region (see Fig. 4a, c). Accordingly, the
average velocity of traffic in that region ismuch smaller
than that in the rest (see Fig. 4b, d). The congested traf-
fic stays at the on-ramp for a longer period. This is the
pinned localized cluster (PLC). This congested pattern
is featured when the downstream front of the PLC is
fixed at the bottleneck and its upstream front does not
propagate upstream over time.
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1356 T. Wang et al.

Fig. 12 The spatiotemporal evolutions of density and velocity for the pinned localized clusters with ρin = 0.14, ρramp = 0.18

Unlike the PLC illustrated in Fig. 4, the moving
localized cluster (MLC) is an isolated single moving
traffic waves propagating upstream with a determined
speed (see Fig. 5). The single density (velocity) wave
increases (decrease) with the growth of distance from
on-ramp. Besides the single density (velocity) wave,
the traffic stream is free flow with relative high density
which corresponds to the end of free flow branch in the
fundamental diagram.

Compared with MLC, TSG can be described as sev-
eral moving localized clusters (see Fig. 6). As the den-
sity at the upstream inflow and on-ramp increases, the
speed fluctuation frequency of vehicles also gradually
rise up. When the density reaches a critical value, there
is no free flow between the moving traffic waves. Then,
the oscillatory congested traffic (OCT) formed (see
Fig. 7).

The density and velocity profiles of two-lane in
Fig. 8 are homogeneous over the space except the
downstream boundary. It is the homogeneous con-
gested state (HCT). Compared with HST, the den-
sity inside HCT is higher, and accordingly, the speed
inside the HCT is lower. This traffic pattern can only
be observed when there is an accident.

The above simulation results show that all the empir-
ical congested patterns (MLC, HST, TSG, OCT and
HCT) are reproduced. But there is a little difference
in the congested traffic states between the left lane
and the right lane. Traffic congestion of the left lane
is not so intensive as that of the right lane. In subse-
quent subsection, we show some unobserved phenom-
ena by simulating under the deterministic on-ramp sys-
tem.
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Fig. 13 The spatiotemporal evolutions of density and velocity for the oscillating congested traffic (OCT) with ρin = 0.18, ρramp = 0.20

4.2 Deterministic simulation

In this section, we carry out the simulation by using
the extended two-lane latticemodel under deterministic
on-ramp. However, these unknown traffic phenomena
may exist in real traffic. The simulation parameters here
are the same as those used in the stochastic case.

Firstly, let the density of inflow and on-ramp ρin =
0.06, ρramp = 0.17, respectively. The traffic states of
density and velocity in the left lane and right lane are
shown in Fig. 9, respectively. The traffic is HST pattern
near the on-ramp. The TSG and OCT patterns appear
successively at the upstream of the HST. After t =
1650, the OCT disappears, and the HST pattern arises
in the whole road. This state can keep self-maintained
for a very long time. Then, another TSG occurs at about
t = 1890. This state is replaced by HST state again

sooner. Finally, the TSG in which with PLCs occurs.
We call this congestion pattern a combination of TSG
and PLC.

Based on the combination mode of PLC and TSG,
we increase the main road density to 0.09 and decrease
the ramp density to 0.17. Then, TSG congestion pat-
tern appears, but this blocking state emerges at about
the 100th lattice of downstream and the duration only
exists about 3000 time steps; then, the system devel-
ops into synchronized state (see Fig. 10). This phe-
nomenonmay attribute to the initial density of themain
road is small and the on-ramp inflow is lower than that
in Fig. 9. So, the TSG pattern is not quite heavy for
a long time. The PLC pattern cannot emerge in this
parameter combination since PLC mainly occurs in
the case of smaller main road flow with larger ramp
flow.
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Using the same parameters in the TSG pattern, let
ρin = 0.12 and ρramp = 0.16. The TSG appears at
about the 100th lattice downstream of the on-ramp.
After a short synchronized flow pattern, the TSG pat-
tern reappears, and the PLC pattern accompany with
OCT style emerges. The wave shape of this special
PCL pattern will change over time (see Fig. 11). This
traffic congestion pattern is described as PLC and OCT
combination pattern.

After further increasing the flow both on the main
road upstream and on-ramp to 0.14 and 0.18, respec-
tively, the unexpected congestion patterns are observed
(see Fig. 12). As is shown in Fig. 12, the unit synchro-
nized traffic flow emerges within 100 lattices upstream
of on-ramp, while the intensive oscillate congestion
traffic occurs from the 220th lattice. However, the fluc-
tuations of this congestion pattern decrease along the
direction of traffic wave propagation and final the fluc-
tuation close to zero at the inflowboundary.We call this
combination of congestion pattern as the PLC pattern
associated with OCT.

When the densities of main road and on-ramp reach
ρin = 0.18 and ρramp = 0.20, respectively, the unre-
ported traffic phenomena are observed (see Fig. 13).
The traffic flow state within 100 lattices upstream of
on-ramp is HST, which is similar to the above simula-
tion results. Starting from the 200th lattice, the high
frequency of OCT emerges quickly and propagates
upstream.

In addition, we compare these simulation results
with that in stochastic on-ramp. It is found that the
reported congestion patterns can be reproduced by the
two different models. However, the stochastic on-ramp
model cannot obtain the complex combination of con-
gested patters. Actually, these new congested states are
not reported by scientist. So, we need empirical data to
explore whether they exist in the real traffic.

5 Conclusions

This paper investigates the congested traffic flow by
using a two-lane lattice hydrodynamic traffic flow
model under on-ramps.We propose an improved lattice
model on two-lane highway,which can avoid the unrea-
sonable vehicle backward phenomenon.We design two
types of on-ramps, i.e., the deterministic and stochastic
on-ramps, to construct the on-ramp traffic flow model.
The traffic model with stochastic on-ramp allows us

to study the observed empirical congested patterns.
It is found that all the observed empirical congested
traffic pattern can be reproduced under the stochas-
tic on-ramp. From the numerical experiments, some
unobserved traffic phenomena are also found under the
deterministic on-ramp.

This paper provides amethodology for management
of the traffic. But the simulation results are not com-
pared with the empirical data. Many works are worthy
of exploring based on the current model; for exam-
ple, the NGSIM trajectory data can be used to validate
the model and to calibrate the parameters. In addition,
the current model can be extended by considering the
mixed manual and automated traffic, as well as more
complex geometries.
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