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Abstract The Darboux transformation (DT) for the
super-integrable hierarchy has an essential difference
from the general system. As we know, the super-
integrable soliton equation hierarchies with four poten-
tials are discussed. Starting from the spectral problems
of super-AKNS hierarchy and super-Dirac hierarchy, a
DTmethod for two super-integrable hierarchies is con-
structed, which is more complex than the general inte-
grable system. Soliton solutions of super-Schrödinger
equation and super-Dirac equation are presented by
usingDT,which contain some bright, dark and breather
wave soliton solutions. Then, the properties of these
solutions in the inhomogeneous media are discussed
graphically to illustrate the influences of the variable
coefficients.

Keywords Darboux transformation ·
Super-Schrödinger equation · Super-Dirac equation ·
Exact solution

1 Introduction

With the development of soliton theory, super-
integrable systems and their super-Hamiltonian struc-
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tures associated with Lie super algebras have been
receiving growing attention. The super-integrable hier-
archy is a significant model in nonlinear phenomena,
such as super-Jaulent–Miodek hierarchy [1], super-
NLS–MKdV hierarchy [2], super-Yang–Mills hierar-
chy [3], [4–10], which describe such situations more
realistically than general integrable system in plasma
physics, arterial mechanics and long-distance optical
communications [11–14].

Supersymmetric extensions of the Schrödinger
group and its Lie algebra have also been discussed
in connection with various physical systems such as
fermionic oscillator [15,16], spinning particles [17],
nonrelativistic Chern–Simons matter [18–20], Dirac
monopole and magnetic vortex [19], many body quan-
tum systems [21]. It introduces a Z2-graded version
of the nonlinear Schrödinger equation that includes
one fermion and one boson at the same time, and
the solution exhibits a super-version form of the clas-
sical Rosales solution in [22]. In [23], the nonrela-
tivistic limits of the N = 3 Chern–Simons matter
system in 1 + 2 dimensions are investigated; then,
a family of super-Schrödinger-invariant field theories
produced from the parent relativistic theory is pre-
sented.

Soliton equations are nonlinear partial differen-
tial equations (PDEs) described by infinite dimen-
sional integrable systems and are important mod-
els describing nonlinear phenomena that occur in
nature. Some methods have been proposed to solve
the PDEs in Refs. [24–26], e.g., the Darboux trans-
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formation (DT) [27], inverse scattering transformation
[28], Bäcklund transformation (BT) [29,30], Painleve
test [31], Hirota method [32] and Adomian decom-
position method [33,34]. In Ref. [35], Wazwaz et al.
present an extended higher-order modified KdV equa-
tion and derive the one-soliton, two-soliton and three-
soliton solutions by using simplified Hirota’s direct
method. Three variants of nonlinear diffusion–reaction
equations with derivative-type and algebraic-type non-
linearities, short-range and long-range diffusion terms
are studied through the auxiliary equation method in
[36]. Among those methods, the BT can also be used
to obtain a nontrivial solution from a seed solution in
Refs. [30,31]). The DT is a powerful method to con-
struct the soliton solution for the super-integrable equa-
tions. There are different methods to derive the DT, for
instance, operator decomposition method [37], gauge
transformation [27,38], loop group method [39] and
Riemann–Hilbert method [40]. The DT can be used for
constructing multisoliton and localized coherent struc-
ture solutions of nonlinear integrable equations in both
(1 + 1) and (2 + 1) dimensions [41–44]. The DT of
the integrable coupling system composed by triangular
system has been discussed [45].

The integrable nonlinear Schrödinger (NLS) equa-
tion is an important model for a variety of physical
problems [46,47]. It is used in nonlinear optics [46],
condensed matter physics and in particular in model-
ing Bose–Einstein condensate (BEC) [47–50], and so
on [51–54]. Bagnato et al. offer a general introduction
to the theme of BEC and briefly discuss the evolution
of a number of relevant research directions during the
last two decades in [52].Multidimensional solitons and
their legacy in contemporary atomic, molecular and
optical physics are reported in [53]. An overview of
selected recent studies on the creation and the char-
acterization of localized optical structures in nonlinear
media is proved [54]. Optical solitons (bright and dark)
are created by a balance of group-velocity dispersion
(GVD) and self-phase modulation (SPM), whcih are
governed by the NLS equation in a fibers. There are
many works for the NLS equation with (time, space)-
modulated potential and nonlinearity [49,55]. For the
two-component coupled system with both focusing
cases, the coupled NLS equations admit bright–bright
solitons and bright–dark, breather, rogue wave, bright–
dark–breather and bright–dark–rogue wave solutions
[56,57].

In fact, the DT for the super-integrable hierarchy
has an essential difference from the general cases. As
we know, the super-integrable soliton equation hierar-
chies with four potentials are discussed. Consequently,
in order to obtain the analytic soliton solutions of a
super-NLS equation and a super-Dirac equation, we
will employ the DTmethod, which is an effective com-
puterization procedure and has been widely used to
construct soliton-like solutions for a class of nonlin-
ear evolution equations. In this paper, we construct
explicit solutions and dark-bright solutions for two
super-integrable equations.

This paper is organized as follows: In Sect. 2, we
construct DT for super-AKNS soliton hierarchy and
proof the procedure of DT, and some soliton solutions
are obtained. In Sect. 3, we apply the DT for super-
Dirac soliton hierarchy and obtain some soliton solu-
tions. The evolutions of the intensity distribution of the
soliton solutions are illustrated in figures.

2 Darboux transformation and exact solutions for
super-Schrödinger equation

The Schrödinger symmetry can accommodate super-
symmetries, in which case it enhanced a super-
Schrödinger symmetry. Super-Schrödinger-invariant
field theories would be important like superconformal
field theories. The super-AKNS soliton hierarchy has
already aroused widespread attention in physics and
mathematical applications [58]. Ma presents the super-
AKNS soliton hierarchy in [59], which includes not
only even elements but also the odd elements.

2.1 Darboux transformation for super-Schrödinger
equation

In this section, we introduce a graded formalism
allowing us to deal with a classical field containing
one bosonic and one fermionic component. And the
super-Schrödinger equation can describe some parti-
cles according to their collective behavior in high or
low temperature. Furthermore, the super-Schrödinger
equation can describe the movement of microscopic
particles, each microscopic system has a correspond-
ing equation, and the specific form of wave function
and the corresponding energy can be obtained by solv-
ing equations, so as to understand the nature of the
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microsystem. The super-Schrödinger equation can be
reduced from the super-AKNS soliton hierarchy,which
is as follows

rt = −1

2
rxx + r2s + 2rαβ − 2ααx ,

st = 1

2
sxx − rs2 − 2sαβ − 2ββx ,

αt = −αxx − rβx − 1

2
rxβ + 1

2
rsα,

βt = βxx + sαx + 1

2
sxα − 1

2
rsβ. (1)

We first consider the Lax pairs (or the linear isospec-
tral problems) of Eq. (1) in the form

ϕx = Uϕ =
⎛
⎝

λ r α

s − λ β

β − α 0

⎞
⎠ϕ, (2)

and

ϕt = Vϕ (3)

=

⎛
⎜⎜⎝

λ2 − 1
2 rs − αβ rλ + 1

2 rx αλ + αx

sλ − 1
2 sx − λ2 + 1

2 rs + αβ βλ − βx

βλ − βx − αλ − αx 0

⎞
⎟⎟⎠ ϕ,

here r(x, t), s(x, t), α(x, t), β(x, t) are potentials, λ

is a spectral parameter, ϕ = (ϕ1, ϕ2, ϕ3)
T is a column

vector solution of Eqs. (2) and (3) associated with an
eigenvalue λ.

The aimof this section is to constructDarboux trans-
formation for super-Schrödinger equations (2) and (3),
which are satisfiedwith the 3×3matrix transformation
of ϕ, Ũ and Ṽ . Now we recommend a gauge transfor-
mation T of the super-Schrödinger equations (2) and
(3):

ϕ̃n = Tϕn, T =
⎛
⎝
T11 T12 T13
T21 T22 T23
T31 T32 T33

⎞
⎠ , (4)

ϕx = Ũϕ, Ũ = (Tx + TU )T−1, (5)

ϕt = Ṽϕ, Ṽ = (Tt + T V )T−1. (6)

If the Ũ , Ṽ and U , V have the same types, sys-
tem(4) is called Darboux transformation of the super-
Schrödinger equations.

Let ψ = (ψ1, ψ2, ψ3)
T, φ = (φ1, φ2, φ3)

T, X =
(X1, X2, X3)

T are three basic solutions of systems (2)
and (3), then we give the following linear algebraic
systems:

N−1∑
i=0

(
A(i)
11 + A(i)

12M
(1)
j + A(i)

13M
(2)
j

)
λij = −λN

j ,

N−1∑
i=0

(
A(i)
21 + A(i)

22M
(1)
j + A(i)

23M
(2)
j

)
λij = −M (1)

j λN
j ,

N−1∑
i=0

(
A(i)
31 + A(i)

32M
(1)
j + A(i)

33M
(2)
j

)
λij = −M (2)

j λN
j ,

(7)

with

M (1)
j = ψ2 + ν

(1)
j φ2 + ν

(2)
j X2

ψ1 + ν
(1)
j φ1 + ν

(2)
j X1

,

M (2)
j = ψ3 + ν

(1)
j φ3 + ν

(2)
j X3

ψ1 + ν
(1)
j φ1 + ν

(2)
j X1

, 0 ≤ j ≤ 3N , (8)

where λ j and ν
(k)
j (i �= k, λi �= λ j , ν

(k)
i �= ν

(k)
j , k �=

1, 2) should choose appropriate parameters; thus, the
determinants of coefficients for Eq. (7) are nonzero.

Defining a 3 × 3 matrix T , and T is of the form as
following

T11 = λN +
N−1∑
i=0

A(i)
11λi , T12 =

N−1∑
i=0

A(i)
12λi ,

T13 =
N−1∑
i=0

A(i)
13λi ,

T21 =
N−1∑
i=0

A(i)
21λi , T22 = λN +

N−1∑
i=0

A(i)
22λi ,

T23 =
N−1∑
i=0

A(i)
23λi ,

T31 =
N−1∑
i=0

A(i)
31λi , T32 =

N−1∑
i=0

A(i)
32λi ,

T33 = λN +
N−1∑
i=0

A(i)
33λi , (9)

where N is a natural number, and the Ai
mn(m, n =

1, 2, 3.m ≥ 0) are the functions of x and t . Through
calculations, we can obtain 	T as follows

	T =
3N∏
j=1

(λ − λ j ) (10)

which proves that λ j ( j = 1 ≤ j ≤ 3N , ) are 3N
roots of 	T . Based on these conditions, we will proof
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that the Ũ and Ṽ have the same forms with U and V ,
respectively.

Proposition 1 The matrix Ũ defined by (5) has the
same type as U, that is,

Ũ =
⎛
⎝

λ r̃ α̃

s̃ −λ β̃

β̃ −α̃ 0

⎞
⎠ , (11)

in which the transformation formulas between old and
new potentials are shown as follows

r̃ = r − 2A12,

s̃ = s + 2A21,

α̃ = α − A13,

β̃ = β + A31. (12)

Transformations (12) are used to get a Darboux trans-
formation of the spectral problem (5).

Proof By assuming T−1 = T ∗
	T and

(Tx + TU )T ∗ =
⎛
⎝

B11(λ) B12(λ) B13(λ)

B21(λ) B22(λ) B23(λ)

B31(λ) B32(λ) B33(λ)

⎞
⎠,

(13)

it is easy to verify that Bsl(1 ≤ s, l ≤ 3) are 3N -order
or 3N + 1-order polynomials in λ.

Through some accurate calculations, λ j (1 ≤ j ≤
3, ) are the roots of Bsl(1 ≤ s, l ≤ 3). Thus, Eq. (13)
has the following structure

(Tx + TU )T ∗ = (	T )C(λ) (14)

where

C(λ) =
⎛
⎜⎝
C (1)
11 λ + C (0)

11 C (0)
12 C (0)

13

C (0)
21 C (1)

22 λ + C (0)
22 C (0)

23

C (0)
31 C (0)

32 C (1)
33 λ + C (0)

33

⎞
⎟⎠ ,

(15)

and C (k)
mn(m, n = 1, 2, k = 0, 1) satisfy the functions

without λ. Equation (14) is obtained as follows

(Tx + TU ) = C(λ)T . (16)

Through comparing the coefficients of λ in Eq. (16),
we can obtain

C (1)
11 = 1,C (0)

11 = 0, C (0)
12 = r − 2A12 = r̃ ,

C (0)
13 = α − A13 = α̃,

C (0)
21 = s + 2A21 = s̃, C (1)

22 = −1,C (0)
22 = 0,

C (0)
23 = β + A23 = β̃,

C (0)
31 = β + A31 = β̃, C (0)

32 = −α − A32 = −α̃,

C (1)
33 = 0,C (0)

33 = 0. (17)

In the following section, we assume that the new
matrix Ũ has the same type with U , which means that
they have the same structures only r, s, α, β ofU trans-
formed into r̃ , s̃, α̂, β̃ of Ũ . After careful calculation,
we compare the ranks ofλN , and get the objective equa-
tions as following:

r̃ = r − 2A12,

s̃ = s + 2A21,

α̃ = α − A13,

β̃ = β + A31. (18)

From Eqs. (11) and (12), we know that Ũ = C(λ). The
proof is completed. ��

Proposition 2 Under transformation (18), the matrix
Ṽ defined by (6) has the same form as V , that is,

Ṽ =

⎛
⎜⎜⎝

λ2 − 1
2 r̃ s − α̃β r̃λ + 1

2 r̃x α̃λ + α̃x

s̃λ − 1
2 s̃x − λ2 + 1

2 r̃ s + α̃β β̃λ − β̃x

β̃λ − β̃x − α̃λ − α̃x 0

⎞
⎟⎟⎠ .

(19)

Proof We assume the new matrix Ṽ also has the same
formwith V . If we obtain the similar relations between
r, s, α, β and r̃ , s̃, α̂, β̃ in Eq. (12), we can prove that
the gauge transformations under T turn the Lax pairs
U, V into new Lax pairs Ũ , Ṽ with the same types.

By assuming T−1 = T ∗
	T and

(Tt + T V )T ∗ =
⎛
⎝

E11(λ) E12(λ) E13(λ)

E21(λ) E22(λ) E23(λ)

E31(λ) E32(λ) E33(λ)

⎞
⎠ .

(20)

It is easy to verify that Esl(1 ≤ s, l ≤ 3) are 3N + 1-
order or 3N + 2-order polynomials in λ.

Through some calculations, λ j ( j = 1 ≤ j ≤ 3, )
are the roots of Esl(s, l = 1 ≤ j ≤ 3). Thus, Eq. (20)
has the following structure

(Tt + T V )T ∗ = (	T )F(λ), (21)

where

123



Darboux transformations for super-Schrödinger equation 1261

F(λ) =

⎛
⎜⎜⎝

F (2)
11 λ2 + F (1)

11 λ + F (0)
11 F (1)

12 λ + F (0)
12 F (1)

13 λ + F (0)
13

F (1)
21 λ + F (0)

21 F (2)
22 λ2 + F (1)

22 λ + F (0)
22 F (1)

23 λ + F (0)
23

F (1)
31 λ + F (0)

31 F (1)
32 λ + F (0)

32 F (2)
33 λ2 + F (1)

33 λ + F (0)
33

⎞
⎟⎟⎠ , (22)

and F (k)
mn (m, n = 1, 2, k = 0, 1) satisfy the functions

without λ. According to Eq. (21), the following equa-
tion is obtained

(Tt + T V ) = F(λ)T . (23)

Through comparing the coefficients of λ in Eq. (23),
we get the objective equations as follows:

F (2)
11 = 0, F (1)

11 = 0,

F (0)
11 = −1

2
rs − αβ + A12s + A13β − A21̃r − A31α̃

= −1

2
r̃ s̃ − α̃β̃,

F (1)
12 = r − 2A12 = r̃ ,

F (0)
12 = 1

2
rx + A11r − A13α − A22̃r − A32α̃ = 1

2
r̃x ,

F (1)
13 = α − A13 = α̃,

F (0)
13 = αx + A11α + A12β − A23̃r − A33α̃ = α̃x ,

F (1)
21 = s + 2A21 = s̃,

F (0)
21 = −1

2
sx + A22s + A23β − A11̃s − A31β̃

= −1

2
s̃x ,

F (2)
22 = −1, F (1)

22 = 0,

F (0)
22 = A21r + 1

2
rs + αβ − A23α − A12̃s − A32β̃

= 1

2
r̃ s̃ + α̃β̃,

F (1)
23 = β + A23 = β̃,

F (0)
23 = A21α − βx + A22β − A33β̃ − s̃ A13 = −β̃x ,

F (1)
31 = β + A13 = β̃,

F (0)
31 = A32s − βx + A33β − A11β̃ + A21α̃ = −β̃x ,

F (1)
32 = −α − A32 = −α̃,

F (0)
32 = A31r − αx − A33α − A12β̃ + A22α̃ = −α̃x ,

F (2)
33 = 0, F (1)

33 = 0, F (0)
33 = 0. (24)

In the above section, we assume the new matrix Ṽ
has the same type with V , which means they have the
same structures only r, s, α, β of V transformed into
r̃ , s̃, α̂, β̃ of Ṽ . From Eqs. (12) and (19), we know that
Ṽ = F(λ). The proof is completed. ��

2.2 Explicit solutions for super-Schrödinger equation

Propositions 1 and 2 show that the transformations
(4) and (12) are Darboux transformations connecting
super-Schrödinger equation. In what follows, we can
apply the above Darboux transformations (4) and (12)
to construct exact solutions of super-Schrödinger equa-
tion. Firstly, we give a set of seed solutions r = s =
α = β = 0 and substitute the solutions into Eqs. (2)
and (3), and we will get three basic solutions for these
equations:

ψ(λ) =
⎛
⎝
eλx+λ2t

0
0

⎞
⎠ , φ(λ) =

⎛
⎝
0

e−λx−λ2t

0

⎞
⎠ ,

X(λ) =
⎛
⎝
0
0
1

⎞
⎠ . (25)

Substituting Eq. (25) into Eq. (8), we obtain

M (1)
j = ν

(1)
j e−λx−λ2t

eλx+λ2t
= e

−2
(
λ j x+λ2j t+F (1)

j

)
,

M (2)
j = ν

(2)
j

eλx+λ2t
= e

−
(
λ j x+λ2j t+F (2)

j

)
, (26)

with ν
(i)
j = e

(
3i F (i)

j

)
(1 ≤ i ≤ 2, 1 ≤ j ≤ 3N ).

In order to calculate, we consider N = 1 in Eqs. (9)
and (10), and obtain the matrix T

T =
⎛
⎝

λ + A11 A12 A13

A21 λ + A22 A23

A31 A32 λ + A33

⎞
⎠ , (27)

and

λ j + A11 + M (1)
j A12 + M (2)

j A13 = 0,

A21 + M (1)
j (λ j + A22) + M (2)

j A23 = 0,

A31 + M (1)
j (λ j + A32) + M (2)

j (λ j + A33) = 0.

(28)

According to Eq. (28), we get

	 =

∣∣∣∣∣∣∣∣∣

1 e
−2

(
λ1x+λ21 t+F (1)

1

)
e
−

(
λ1x+λ21 t+F (2)

1

)

1 e
−2

(
λ2x+λ22 t+F (1)

2

)
e
−

(
λ2x+λ22 t+F (2)

2

)

1 e
−2

(
λ3x+λ23 t+F (1)

3

)
e
−

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
,
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	13 =

∣∣∣∣∣∣∣∣∣

1 e
−2

(
λ1x+λ21 t+F (1)

1

)
− λ1

1 e
−2

(
λ2x+λ22 t+F (1)

2

)
− λ2

1 e
−2

(
λ3x+λ23 t+F (1)

3

)
− λ3

∣∣∣∣∣∣∣∣∣
,

	12 =

∣∣∣∣∣∣∣∣∣

1 − λ1 e
−

(
λ1x+λ21 t+F (2)

1

)

1 − λ2 e
−

(
λ2x+λ22 t+F (2)

2

)

1 − λ3 e
−

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
,

	21 =

∣∣∣∣∣∣∣∣∣

−λ1e
−2

(
λ1x+λ21 t+F (1)

1

)
e
−2

(
λ1x+λ21 t+F (1)

1

)
e
−

(
λ1x+λ21 t+F (2)

1

)

−λ2e
−2

(
λ2x+λ22 t+F (1)

2

)
e
−2

(
λ2x+λ22 t+F (1)

2

)
e
−

(
λ2x+λ22 t+F (2)

2

)

−λ3e
−2

(
λ3x+λ23 t+F (1)

3

)
e
−2

(
λ3x+λ23 t+F (1)

3

)
e
−

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
,

	31 =

∣∣∣∣∣∣∣∣∣

−λ1e
−

(
λ1x+λ21 t+F (2)

1

)
e
−2

(
λ1x+λ21 t+F (1)

1

)
e
−

(
λ1x+λ21 t+F (2)

1

)

−λ2e
−

(
λ2x+λ22 t+F (2)

2

)
e
−2

(
λ2x+λ22 t+F (1)

2

)
e
−

(
λ2x+λ22 t+F (2)

2

)

−λ3e
−

(
λ3x+λ23 t+F (2)

3

)
e
−2

(
λ3x+λ23 t+F (1)

3

)
e
−

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
.

(29)

Based on Eqs. (8) and (32), we can obtain the fol-
lowing systems

A12 = 	12

	
, A13 = 	13

	
,

A21 = 	21

	
, A31 = 	31

	
; (30)

the analytic soliton solutions of super-Schrödinger
equation are obtained by the DT method as follows

r̃ = −2
	12

	
,

s̃ = 2
	21

	
,

α̃ = −	13

	
,

β̃ = 	31

	
. (31)

To illustrate the wave propagations of the obtained
soliton solutions (31), we can choose these free param-
eters in the forms λ1, λ2, λ3, F

(k)
m (m = 1, 2, 3, k =

1, 2, 3) and the intensity distributions for the soliton
solutions given by Eq. (31) are illustrated in Figs. 1
and 2.

It is shown that solitary waves in nonautonomous
nonlinear and dispersive systems can propagate in the
form of so-called nonautonomous solitons or soliton-
like similaritons. From the single soliton, we can find
that the amplitude of the bright-dark soliton grows
and decays with time depending on the parameters
λ1, λ2, λ3, F

(k)
m (m = 1, 2, 3, k = 1, 2, 3). We can

also see that the soliton velocity is related to all the
parameters presented in the equation. For illustration,
the propagations and evolutions of |r̃ |, |s̃|, |α̃|, |β̃| are
shown in Figs. 1 and 2.

In Fig. 1, the soliton is central symmetric around
the peak point. The width experiences the process of
decreasing–increasing with time, while the amplitude
experiences increasing–decreasing with time. In Fig. 2,
the amplitude of the bright soliton also grows and
decays with time. But the velocities before and after the
peak time are different, which can be observed clearly
from the nonsymmetric contour plot. The collapsing
process after the largest amplitude is quicker, and it
vanishes rapidly.

3 Darboux transformation and exact solution for
super-Dirac soliton hierarchy

Super-Dirac soliton hierarchy has already aroused
widespread attention in physics and mathematical
applications [60]. Ma had presented the super-Dirac
soliton hierarchy in the theory of super-integrable sys-
tems, which include not only even elements but also
the odd elements [59,61–63].

3.1 Darboux transformation for super-Dirac soliton
hierarchy

We note that the super-Dirac equation is decomposed
into two equations in the nonrelativistic limit. We can
replace thefirst component of the nonrelativistic spinor;
then, the nonrelativistic equation for the second com-
ponent of the fermion is given by the Pauli equation.
In the same way, the Dirac equation can be given by
[20]. The super-Dirac equations can reduced from the
super-Dirac soliton hierarchy, which are as follows

rt = 1

2
sxx − (r2 + s2)s − 2sαβ + ααx − ββx ,

st = −1

2
rxx + r(s2 + r2) + 2rαβx − βxβ,

αt = βxx − rβx + sαx − 1

2
rxβ

+1

2
sxα − 1

2
(r2 + s2)β,

βt = −αxx − rαx − sβx − 1

2
qxα

−1

2
sxβ + 1

2
(r2 + s2)α. (32)

Considering the isospectral problem of super-Dirac
hierarchy, the Lax pairs of the system are given as fol-
lows
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Fig. 1 (Color online) Profiles of a the intensity distribution |r̃ |
of Eq. (31); b the intensity distribution |s̃| of Eq. (31) with
λ1 = 0.1i, λ2 = 0.4i, λ3 = 0.3i, F (1)

1 = 0.3i, F (2)
2 = 0.2i,

F (3)
3 = 0.1i, F (2)

1 = 0.2i, F (3)
1 = 0, F (1)

2 = 0.5i, F (3)
2 = 0,

F (1)
3 = 0.4i, F (2)

3 = 0, c the intensity distribution |α̃| of
Eq. (31); d the intensity distribution |β̃| of Eq. (31) with λ1 = 2i,
λ2 = 3i, λ3 = 5i, F (1)

1 = i , F (2)
2 = 2i, F (3)

3 = 4i, F (2)
1 = 3i,

F (3)
1 = 0, F (1)

2 = 3i, F (3)
2 = 0, F (1)

3 = 7i, F (2)
3 = 0

ϕx = Uϕ =
⎛
⎝
r λ + s α

−λ + s − r β

β − α 0

⎞
⎠ ϕ, (33)

ϕt = Vϕ

=
⎛
⎝
rλ − 1

2 sx λ2 + sλ + 1
2rx + 1

2 (r
2 + s2) + αβ αλ − βx

−λ2 + sλ + 1
2rx − 1

2 (r
2 + s2) − αβ − rλ + 1

2 sx βλ + αx

βλ + αx − αλ + βx 0

⎞
⎠ ϕ, (34)

here r(x, t), s(x, t), α(x, t), β(x, t) are potentials, λ
is a spectral parameter, ϕ = (ϕ1, ϕ2, ϕ3)

T is a column

vector solution of Eqs. (33) and (34) associated with
an eigenvalue λ.

The aimof this section is to constructDarboux trans-
formation for the super-Dirac hierarchy with Eqs. (33)
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Fig. 2 (Color online) Profiles of a the intensity distribution |r̃ |
of Eq. (31); b the intensity distribution |s̃| of Eq. (31) with λ1 =
0.2+ 0.1i, λ2 = 0.3+ 0.2i, λ3 = 0.5+ 0.4i, F (1)

1 = 0.1+ 0.1i,

F (2)
2 = 0.2+0.1i, F (3)

3 = 0.4+0.3i, F (2)
1 = 0.3+0.3i, F (3)

1 = 0,

F (1)
2 = 0.3 + 0.1i, F (3)

2 = 0, F (1)
3 = 0.7 + 0.4i, F (2)

3 = 0, c the

intensity distribution |α̃| of Eq. (31); d the intensity distribution
|β̃| of Eq. (31) with λ1 = 0.1, λ2 = 0.4, λ3 = 0.2, F (1)

1 = 0.3,

F (2)
2 = 0.2, F (3)

3 = 0.4, F (2)
1 = 0.6, F (3)

1 = 0.5, F (1)
2 = 0,

F (3)
2 = 0.4, F (1)

3 = 0, F (2)
3 = 0

and (34), which is satisfied with the 3×3 matrix trans-
formation on ϕ, Ũ and Ṽ . Nowwe recommend a gauge
transformation T of the super-Dirac hierarchy(33) and
(34):

ϕ̃n = Tϕn, T =
⎛
⎝
T11 T12 T13
T21 T22 T23
T31 T32 T33

⎞
⎠ , (35)

ϕx = Ũϕ, Ũ = (Tx + TU )T−1, (36)

ϕt = Ṽϕ, Ṽ = (Tt + T V )T−1. (37)

If the Ũ , Ṽ and U , V have the same types, system(35)
is called Darboux transformation of super-Dirac hier-
archy.

Let ψ = (ψ1, ψ2, ψ3)
T, φ = (φ1, φ2, φ3)

T, X =
(X1, X2, X3)

T are three basic solutions of the super-
Dirac hierarchy (33) and (34); thus, we give the fol-
lowing linear algebraic system:

N−1∑
i=0

(
A(i)
11 + A(i)

12M
(1)
j + A(i)

13M
(2)
j

)
λij = −λN

j ,

N−1∑
i=0

(
A(i)
21 + A(i)

22M
(1)
j + A(i)

23M
(2)
j

)
λij = −M (1)

j λN
j ,

N−1∑
i=0

(
A(i)
31 + A(i)

32M
(1)
j + A(i)

33M
(2)
j

)
λij = −M (2)

j λN
j ,

(38)
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Darboux transformations for super-Schrödinger equation 1265

with

M (1)
j = ψ2 + ν

(1)
j φ2 + ν

(2)
j X2

ψ1 + ν
(1)
j φ1 + ν

(2)
j X1

,

M (2)
j = ψ3 + ν

(1)
j φ3 + ν

(2)
j X3

ψ1 + ν
(1)
j φ1 + ν

(2)
j X1

, 0 ≤ j ≤ 3N , (39)

where λ j and ν
(k)
j (i �= k, λi �= λ j , ν

(k)
i �= ν

(k)
j , k �=

1, 2) should choose some appropriate parameters, so
that the determinants of coefficients for Eq. (38) are
nonzero.

Defining a 3 × 3 matrix T , and the T is of the form
as following

T11 = λN +
N−1∑
i=0

A(i)
11λi , T12 =

N−1∑
i=0

A(i)
12λi ,

T13 =
N−1∑
i=0

A(i)
13λi ,

T21 =
N−1∑
i=0

A(i)
21λi , T22 = λN +

N−1∑
i=0

A(i)
22λi ,

T23 =
N−1∑
i=0

A(i)
23λi ,

T31 =
N−1∑
i=0

A(i)
31λi , T32 =

N−1∑
i=0

A(i)
32λi ,

T33 = λN +
N−1∑
i=0

A(i)
33λi , (40)

where N is a natural number, and the Ai
mn(m, n =

1, 2, 3.m ≥ 0) are the functions of x and t . Through
calculations, we find

	T =
3N∏
j=1

(λ − λ j ) (41)

whichproves thatλ j ( j = 1 ≤ j ≤ 3N ) are 3N roots of
	T . Based on these conditions,wewill proof that the Ũ
and Ṽ have the same forms withU and V , respectively.

Proposition 3 The matrix Ũ defined by (36) has the
same type as U, that is,

Ũ =
⎛
⎝
r̃ λ + s̃ α̃

−λ + s̃ − r̃ β̃

β̃ − α̃ 0

⎞
⎠ , (42)

in which the transformation formulas between old and
new potentials are shown

r̃ = r − A12 − A21,

s̃ = s + A11 − A22,

α̃ = α − A23,

β̃ = β + A13. (43)

Transformation (43) is used to get a Darboux transfor-
mation of spectral problem (36).

Proof By assuming T−1 = T ∗
detT and

(Tx + TU )T ∗ =
⎛
⎝

B11(λ) B12(λ) B13(λ)

B21(λ) B22(λ) B23(λ)

B31(λ) B32(λ) B33(λ)

⎞
⎠ .

(44)

It is easy to verify that Bsl(1 ≤ s, l ≤ 3) are 3N -order
or 3N + 1-order polynomials in λ.

Through some accurate calculations, λ j (1 ≤ j ≤ 3)
are the roots of Bsl(1 ≤ s, l ≤ 3). Then, Eq. (44) has
the following structure

(Tx + TU )T ∗ = (detT )C(λ) (45)

where

C(λ) =
⎛
⎜⎝
C (0)
11 C (1)

12 λ + C (0)
12 C (0)

13

C (1)
21 λ + C (0)

21 C (0)
22 C (0)

23

C (0)
31 C (0)

32 0

⎞
⎟⎠ ,

(46)

and C (k)
mn(m, n = 1, 2, k = 0, 1) satisfy the functions

without λ. So the following equation is obtained

(Tx + TU ) = C(λ)T . (47)

Through comparing the coefficients of λ in Eq. (47),
we see

C (0)
11 = r − A12 − A21 = r̃ ,C (1)

12 = 1,

C (0)
12 = s − A22 + A11 = s̃,C (0)

13 = α − A23 = α̃,

C (1)
21 = −1,C (0)

21 = s + A11 − A22 = s̃,

C (0)
22 = −r + A12 + A21 = −r̃ ,

C (0)
23 = β + A13 = β̃,

C (0)
31 = β − A32 = β̃, C (0)

32 = −α − A31 = −α̃.

(48)

In the following section, we assume the new matrix
Ũ has the same typewithU ,whichmeans that theyhave
the same structures only r, s, α, β ofU transformed into
r̃ , s̃, α̂, β̃ of Ũ . After careful calculation, we compare
the ranks of λN and get the objective equations as fol-
lows:

r̃ = r − A12 − A21,
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s̃ = s + A11 − A22,

α̃ = α − A23,

β̃ = β + A13. (49)

From Eqs. (42) and (43), we know that Ũ = C(λ). The
proof is completed. ��
Proposition 4 Under transformation (49), the matrix
Ṽ defined by (37) has the same form as V , that is,

Ṽ =
⎛
⎜⎝
r̃λ − 1

2 s̃x λ2 + s̃λ + 1
2 r̃x + 1

2 (̃r
2 + s̃2) + α̃β̃ α̃λ − β̃x

−λ2 + s̃λ + 1
2rx − 1

2 (̃r
2 + s̃2) − α̃β̃ − r̃λ + 1

2 s̃x β̃λ + α̃x

β̃λ + α̃x − α̃λ + β̃x 0

⎞
⎟⎠ . (50)

Proof We assume the new matrix Ṽ also has the same
formwith V . If we obtain the similar relations between
r, s, α, β of V and r̃ , s̃, α̂, β̃ of Ṽ in Eq. (43), we can
prove the gauge transformation under T turns the Lax
pairsU, V into newLaxpairs Ũ , Ṽ with the same types.

By assuming T−1 = T ∗
	T , and we can obtain the

following equation

(Tt + T V )T ∗ =
⎛
⎝

E11(λ) E12(λ) E13(λ)

E21(λ) E22(λ) E23(λ)

E31(λ) E32(λ) E33(λ)

⎞
⎠ .

(51)

It is easy to verify that Esl(1 ≤ s, l ≤ 3) are 3N + 1-
order or 3N + 2-order polynomials in λ.

Through an accurate calculation, λ j ( j = 1 ≤ j ≤
3, ) are the roots of Esl(s, l = 1 ≤ j ≤ 3). Then,
Eq. (51) has the following structure

(Tt + T V )T ∗ = (detT )F(λ), (52)

where

F(λ) =

⎛
⎜⎜⎝

F (1)
11 λ + F (0)

11 F (2)
12 λ2 + F (1)

12 λ + F (0)
12 F (1)

13 λ + F (0)
13

F (2)
21 λ2 + F (1)

21 λ + F (0)
21 F (1)

22 λ + F (0)
22 F (1)

23 λ + F (0)
23

F (1)
31 λ + F (0)

31 F (1)
32 λ + F (0)

32 0

⎞
⎟⎟⎠ , (53)

and F (k)
mn (m, n = 1, 2, k = 0, 1) satisfy the functions

without λ. So the following equation is obtained

(Tt + T V ) = F(λ)T . (54)

Through comparing the coefficients of λ in Eq. (54),
we get the objective equations as follows:

F (1)
11 = r − A12 − A21 = r̃ ,

F (0)
11 = −1

2
sx + A11r + A12s + A13β − A11̃r

−A21̃s − A31α̃ = −1

2
s̃x ,

F (2)
12 = 1, F (1)

12 = s + A11 − A22 = s̃,

F (0)
12 = 1

2
rx + 1

2
(r2 + s2) + αβ + A11s

−A12r − A13α − A12̃r − A22̃s − A32α̃

= 1

2
r̃x + 1

2
(̃r2 + s̃2) + α̃β̃,

F (1)
13 = α − A23 = α̃,

F (0)
13 = −βx + A11α + A12β − A13̃r

−A23̃s − A33α̃ = −β̃x ,

F (2)
21 = −1, F (1)

21 = s − A22 + A11 = s̃,

F (0)
21 = A21r + 1

2
rx − 1

2
(r2 + s2) − αβ

+A22s + A23β − A11̃s + A21̃r − A31β̃

= 1

2
r̃x − 1

2
(̃r2 + s̃2) − α̃β̃,

F (1)
22 = A21 − r + A12 = −r̃ ,

F (0)
22 = A21s + 1

2
sx − A22r − A23α − A12̃s

+A22̃r − A32β̃ = 1

2
s̃x ,

F (1)
23 = β + A13 = β̃,

F (0)
23 = A21α − αx + A22β − A13̃s

+A23̃r − β̃A33 = α̃x ,

F (1)
31 = β − A32 = β̃,

F (0)
31 = A31r + A32s − αx + A33β

−A11β̃ − A21β̃ = α̃x ,
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F (1)
32 = −α + A31 = −α̃,

F (0)
32 = A31s − A32r + βx − A33α

−A12β̃ + A22α̃ = β̃x ,

A11 = −A22, A12 = −A21, A31 = A23,

A13 = −A32,

2A2
12 − 2r A12 + αA13 − A23A13

−A23β + 2A2
11 + 2s A11 = 0. (55)

In the following section, we assume the new matrix
Ṽ has the same type with V , which means they have
the same structures about r, s, α, β of V transformed
into r̃ , s̃, α̂, β̃ of Ṽ . From Eqs. (43) and (50), we know
that Ṽ = F(λ). The proof is completed. ��

3.2 Exact solution for super-Dirac equation

Propositions 3 and 4 show that the transformations (35)
and (43) are Darboux transformation connecting super-
Dirac hierarchy. In what follows, we can apply the
above Darboux transformation (35) and (43) to con-
struct some exact solutions of super-Dirac equation.
Firstly, we give a set of seed solutions r = s = α =
β = 0 and substitute the solutions into Eqs. (33) and
(34), and we will get three basic solutions for these
equations:

ψ(λ) =
⎛
⎝
0

eλx+λ2t

0

⎞
⎠ , φ(λ) =

⎛
⎝
e−λx−λ2t

0
0

⎞
⎠ ,

X(λ) =
⎛
⎝
0
0
1

⎞
⎠ . (56)

Taking (56) into (39), we obtain

M (1)
j = ν

(1)
j e−λx−λ2t

eλx+λ2t
= e

2
(
λ j x+λ2j t+F (1)

j

)
,

M (2)
j = ν

(2)
j

eλx+λ2t
= e

(
λ j x+λ2j t+F (2)

j

)
, (57)

with ν
(i)
j = e(3i F (i)

j )
(1 ≤ i ≤ 2, 1 ≤ j ≤ 3N ).

In order to calculate, we consider N = 1 in Eqs. (40)
and (41), and obtain the T as follows

T =
⎛
⎝

λ + A11 A12 A13

A21 λ + A22 A23

A31 A32 λ + A33

⎞
⎠ , (58)

and

λ j + A11 + M (1)
j A12 + M (2)

j A13 = 0,

A21 + M (1)
j (λ j + A22) + M (2)

j A23 = 0,

A31 + M (1)
j (λ j + A32) + M (2)

j (λ j + A33) = 0. (59)

According to Eq. (59), we get

	 =

∣∣∣∣∣∣∣∣∣

1 e
2
(
λ1x+λ21 t+F (1)

1

)
e

(
λ1x+λ21 t+F (2)

1

)

1 e
2
(
λ2x+λ22 t+F (1)

2

)
e

(
λ2x+λ22 t+F (2)

2

)

1 e
2
(
λ3x+λ23 t+F (1)

3

)
e

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
,

	11 =

∣∣∣∣∣∣∣∣∣

−λ1 e
2
(
λ1x+λ21 t+F (1)

1

)
e

(
λ1x+λ21 t+F (2)

1

)

−λ2 e
2
(
λ2x+λ22 t+F (1)

2

)
e

(
λ2x+λ22 t+F (2)

2

)

−λ3 e
2
(
λ3x+λ23 t+F (1)

3

)
e

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
,

	22 =

∣∣∣∣∣∣∣∣∣

1 − λ1e
2
(
λ1x+λ21 t+F (1)

1

)
e

(
λ1x+λ21 t+F (2)

1

)

1 − λ2e
2
(
λ2x+λ22 t+F (1)

2

)
e

(
λ2x+λ22 t+F (2)

2

)

1 − λ3e
2
(
λ3x+λ23 t+F (1)

3

)
e

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
.

	13 =

∣∣∣∣∣∣∣∣∣

1 e
2
(
λ1x+λ21 t+F (1)

1

)
− λ1

1 e
2
(
λ2x+λ22 t+F (1)

2

)
− λ2

1 e
2
(
λ3x+λ23 t+F (1)

3

)
− λ3

∣∣∣∣∣∣∣∣∣
,

	12 =

∣∣∣∣∣∣∣∣∣

1 − λ1 e

(
λ1x+λ21 t+F (2)

1

)

1 − λ2 e

(
λ2x+λ22 t+F (2)

2

)

1 − λ3 e

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
,

	21 =

∣∣∣∣∣∣∣∣∣

−λ1e
2
(
λ1x+λ21 t+F (1)

1

)
e
2
(
λ1x+λ21 t+F (1)

1

)
e

(
λ1x+λ21 t+F (2)

1

)

−λ2e
2
(
λ2x+λ22 t+F (1)

2

)
e
2
(
λ2x+λ22 t+F (1)

2

)
e

(
λ2x+λ22 t+F (2)

2

)

−λ3e
2
(
λ3x+λ23 t+F (1)

3

)
e
2
(
λ3x+λ23 t+F (1)

3

)
e

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
,

	31 =

∣∣∣∣∣∣∣∣∣

−λ1e

(
λ1x+λ21 t+F (2)

1

)
e
2
(
λ1x+λ21 t+F (1)

1

)
e

(
λ1x+λ21 t+F (2)

1

)

−λ2e

(
λ2x+λ22 t+F (2)

2

)
e
2
(
λ2x+λ22 t+F (1)

2

)
e

(
λ2x+λ22 t+F (2)

2

)

−λ3e

(
λ3x+λ23 t+F (2)

3

)
e
2
(
λ3x+λ23 t+F (1)

3

)
e

(
λ3x+λ23 t+F (2)

3

)

∣∣∣∣∣∣∣∣∣
.

(60)

Depending on Eqs. (38) and (39), we can obtain that

A11 = 	11

	
, A22 = 	22

	
, A12 = 	12

	
,

A13 = 	13

	
, A21 = 	21

	
, A31 = 	31

	
; (61)

the analytic soliton solutions of super-Dirac hierarchy
are obtained by the DT method as follows

r̃ = −	12

	
− 	21

	
,

s̃ = 	11

	
− 	22

	
,

α̃ = −	23

	
,

β̃ = 	13

	
. (62)

To illustrate the wave propagations of the obtained
soliton solutions (62), we can choose these free param-
eters λ1, λ2, λ3, F

(k)
m (m = 1, 2, 3, k = 1, 2, 3) and the
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Fig. 3 (Color online) Profiles of a the intensity distribution |r̃ |
of Eq. (62); b the intensity distribution |s̃| of Eq. (62); c the inten-
sity distribution |α̃| of Eq. (62); d the intensity distribution |β̃|

of Eq. (62) with λ1 = 0.2i, λ2 = 0.3i, λ3 = 0.8i, F (1)
1 = 0.1i,

F (2)
2 = 0.2i, F (3)

3 = 0.4i, F (2)
1 = 0.3i, F (3)

1 = 0.2i, F (1)
2 = 0.3i,

F (3)
2 = 0, F (1)

3 = 0.7i, F (2)
3 = 0

evolutions of the intensity distribution for the soliton
solutions given by Eq. (62) are illustrated in Figs. 3
and 4.

The DT of Eq. (32) gives the required solution, and
the explicit soliton solutions under different cases are
portrayed in Figs. 3 and 4. Some special soliton solu-
tions are localized both in space and time in Fig. 3.
They exhibit the similar features of the so-called rogue
waves, but they are based on zero background rather
than a plane wave background. Figure 4 exhibits the
similar features of the so-called breather waves; this
figure indicates a sharp compression and strong ampli-
fication of the nonautonomous soliton under the action
of inhomogeneity.

4 Conclusions

In this paper, we have constructed DT for super-AKNS
hierarchy and super-Dirac hierarchy which have four
commuting variables, such that some soliton solu-
tions are found. The wave profiles of those solutions
have been discussed in detailed for distinct parame-
ters, which possess the bright and dark soliton struc-
tures. Moreover, we also study the dynamical behav-
iors of these solutions. These results might be helpful
for understanding physical phenomena described by
Eqs. (1) and (32) and finding possible applications of
solitons. The method is also appropriate for more non-
linear soliton equations in physics and mathematics.
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Fig. 4 (Color online) Profiles of a the intensity distribution |r̃ |
of Eq. (62); b the intensity distribution |s̃| of Eq. (62) with λ1 =
0.2+ 0.1i, λ2 = 0.3+ 0.2i, λ3 = 0.5+ 0.4i, F (1)

1 = 0.1+ 0.1i,

F (2)
2 = 0.2+0.1i, F (3)

3 = 0.4+0.3i, F (2)
1 = 0.3+0.3i, F (3)

1 = 0,

F (1)
2 = 0.3 + 0.1i, F (3)

2 = 0, F (1)
3 = 0.7 + 0.4i, F (2)

3 = 0, c the

intensity distribution |α̃| of Eq. (62); d the intensity distribution
|β̃| of Eq. (62) with λ1 = 0.2, λ2 = 0.3, λ3 = 0.7, F (1)

1 = 0.1,

F (2)
2 = 0.2, F (3)

3 = 0.4, F (2)
1 = 0.3, F (3)

1 = 0.4, F (1)
2 = 0.3,

F (3)
2 = 0.6, F (1)

3 = 0.7, F (2)
3 = 0.9
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