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Abstract The new action of a nonstandard S =∫ b
a e[pq̇−H(p,q,t)]dt with a nonstandard Hamiltonian
is introduced. The nonstandard Hamiltonian equations
are obtained by using the standard variational method.
Some new dynamical properties that the nonlinear sys-
tems hold are obtained. It is demonstrated that several
constrained Hamiltonian systems have been identified
to possess some interesting properties, and some addi-
tional features are discussed in details.
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1 Introduciton

It is well known that the differential equations of
motion in physics, mechanics and engineering can
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be derived from the Hamiltonian principle δS =
δ
∫ t2
t1

L(q, q̇, t)dt = 0, which can be rewritten in the

form δS = δ
∫ t2
t1
[pq̇ − H(q, p, t)] dt = 0; L and H

are the standard Lagrangian and Hamiltonian, and q
is the generalized coordinate with q̇ = dq/dt , and p
is the generalized momentum corresponding to gener-
alized coordinate q. But for the description of nonlin-
ear evolution equations [1], dissipative dynamical sys-
tems with nonconstant coefficients [2–6], Friedmann–
Robertson–Walker model [7,8], the problem of quan-
tization of a classical theory [9], etc., introducing the
nonstandard Hamiltonian and Lagrangian will make
the descriptions more easier. The nonstandard Hamil-
tonian (NSH) differs from the standard Hamiltonians
that are expressed as the sum of the kinetic and the
potential energy terms. In other words, there is no obvi-
ous identification of the kinetic and potential energy
terms in NSH. The idea of nonstandard dynamics can
be traced back to thework of Arnold [10]. The nonstan-
dard Hamiltonian dynamics has its roots in the work of
Feynman reported by Dyson [11] and its extension by
Hojman and Shepley [9,12].

Recently, the researches about nonstandard
Lagrangian(NSL) have obtained a series of important
results, Musielak [13,14] studied the method of getting
the NSL for dissipative system and its existence con-
ditions, El-Nabulsi [15] introduced two nonstandard
actions with NSL and obtained the dynamical equa-
tions. Zhang [16], studied the Routh method of reduc-
tion for dynamic systems with NSL. But there are few
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results about the nonstandard Hamiltonian (NSH) and
its dynamical equations. NSH may take exponential
forms, and so on, and itmay ormay not depend on time.
In this work, we will introduce exponential forms of
NSH and apply it in the nonlinear dynamical systems.

The outline of this paper is as follows: we obtain
the equations of motion for the nonstandard Hamilto-
nian by adopting the contemporaneous variation for the
action with an exponential Hamiltonian in Sect. 2. We
show the application of nonstandardHamiltonian equa-
tions for the nonlinear dynamical systems in Sect. 3,
and conclusions are given in Sect. 4.

2 Action and equations of motion with exponential
Hamiltonian

In this section, we will introduce the action with expo-
nential Hamiltonian and give out the equations named
nonstandard Hamiltonian equations for exponential
Hamiltonian.

Definition 2.1 Defined the action with an exponential
Hamiltonian as

S =
∫ b

a
e[pq̇−H(p,q,t)]dt (1)

where (p, q, t) → H(p, q, t) is assumed to be a C2

functions:

q, p ∈ C1 (
[a, b] ; Rn)

H(p, q, t) ∈ C2([a, b] × Rn × Rn; R)

Suppose that the admissible function q ∈ C1 [a, b]
for which the action functional (1) subject to the given
boundary conditions q (a) = qa, q (b) = qb has an
extremum. So through the Hamiltonian principle

δS = δ

∫ b

a
e[pq̇−H(p,q,t)]dt = 0 (2)

we can obtain the nonstandard Hamiltonian equations
(NSHE).

Theorem 2.1 If q (t) are the solutions of the action
with an exponential Hamiltonian, then q (t) satisfies
the following NSHE:
{
q̇ = ∂H

∂p

ṗ
(
1 + p ∂H

∂p

)
= − ∂H

∂q − p2 d
dt

(
∂H
∂p

)
+ p dH

dt

(3)

Making use of the total differential of H(p, q, t)

dH

dt
= ∂H

∂t
+ ∂H

∂p
ṗ + ∂H

∂q
q̇ (4)

Equations (3) can be expressed as
{
q̇ = ∂H

∂p

ṗ = − ∂H
∂q − p2 d

dt

(
∂H
∂p

)
+ p ∂H

∂q
∂H
∂p + p ∂H

∂t

(5)

Equations (5) are named as the NSHE for the exponen-
tial Hamiltonian.

Proof Adopting the contemporaneous variation to the
action with an exponential Hamiltonian, and consider-
ing the boundary conditions q (a) = qa, q (b) = qb
and taking the conditions of extremum, the NSHE (5)
can be obtained. ��

If the Hamiltonian H has no explicit time depen-
dence, that is ∂H/∂t = 0, then the Eq. (5) can be
reduced to
{
q̇ = ∂H

∂p

ṗ = − ∂H
∂q − p2 d

dt

(
∂H
∂p

)
+ p ∂H

∂q
∂H
∂p

(6)

Moreover, if we define

p
d

dt

(
∂H

∂P

)

≡ ∂H

∂q

∂H

∂p
(7)

Then by computation, we can obtain that

d

dt

(

p
∂H

∂p

)

=
(

ṗ + ∂H

∂q

)
∂H

∂p

If taking p ∂H
∂p = K , where K is a constant, the Eq.

(6) are reduced to the standard Hamiltonian equations:
{
q̇ = ∂H

∂p

ṗ = − ∂H
∂q

(8)

Corollary 2.1 When H = H (p, q), the Hamiltonian
H is not a constant of motion for the Eq. (6).

Proof If we differentiate the Hamiltonian H (p, q)

with respect to time, we obtain

dH (p, q)

dt
= ∂H(p, q)

∂p
ṗ + ∂H(p, q)

∂q
q̇

= ∂H

∂p

[

−∂H

∂q
− p2

d

dt

(
∂H

∂p

)

+ p
∂H

∂q

∂H

∂p

]

+∂H

∂q

∂H

∂p

= p

(
∂H

∂p

)2 ∂H

∂q
− p2

∂H

∂p

d

dt

(
∂H

∂p

)

= p
∂H

∂p

[
∂H

∂q

∂H

∂p
− p

d

dt

(
∂H

∂p

)]
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So only when the expression (7) holds, that is, p ∂H
∂p =

K holds, dH (p, q) /dt = 0, the Hamiltonian H =
H (p, q) is a conserved quantity of motion. ��
Corollary 2.2 When H = H (p, t), the time-dependent
canonical momentum p is not a constant of motion.

Proof Because the NSH is independent of q, then Eq.
(5) are reduced to
{
q̇ = ∂H

∂p

ṗ = −p2 d
dt

(
∂H
∂p

)
+ p ∂H

∂t

(9)

Obviously, the expression −p2 d
dt

(
∂H
∂p

)
+ p ∂H

∂t is not

always zero, so the momentum p is not a constant of
motion. If we change the second formula of (9) into

ṗ

(

1 − p
∂H

∂p

)

= −p
d

dt

(

p
∂H

∂p

)

+ p
∂H

∂t
(10)

only when the constraint p ∂H
∂p = K �= 1 and the

Hamiltonian is independent of time t , then the Eq. (9)
become the following equations
{
q̇ = ∂H

∂p
ṗ = 0

(11)

Here the momentum p is a conservative quantity. ��
To show the interesting properties for NSH, we shall

illustrate both time-dependent and time-independent
Hamiltonians, and in all examples, theCi , i = 1, 2, · · ·
are the constants of integration.

3 The application of NSHE in the nonlinear
dynamical systems

3.1 Time-dependent Hamiltonians

Example 1 We consider the NSH as follows

H = pQ (t) q (12)

Substituting the Hamiltonian (12) into equations (5),
we can obtain the following NSHE
{
q̇ = Q (t) q
ṗ = −pQ (t)

(13)

Taking H(p, q, t) = pqt forExample, the equations of
motion can be obtained easily by using equations(13).
{
q̇ = qt
ṗ = −pt

(14)

where the analytic solutions are given by
{
q = C1exp(t2/2)
p = C2 exp(−t2/2)

, (15)

Taking the initial conditions q (0) = 1, p (0) = 1, we
show the variations of the solutions of equations (14)
with time in Fig. 1a. Figure1b illustrates the behavior
of equations (15) on the plane of q–p.

Fig. 1 a Variations of the solutions of equations (14) with time, b behavior of the motion equations (15) on the plane q–p
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Fig. 2 a Variations of the solutions of equations (16) with time, b trajectory of the motion equations (17) on the plane q–p

Example 2 If we take the NSH to be H = t−1(p − q)

with t �= 0, the NSHE can be obtained by using the
equations (5)
{
q̇ = 1/t
ṗ = 1/t − p/t2 − pq/t2

(16)

They have the analytic solutions
{
q = ln(t) + C3

p =
(∫ exp(

∫
(1+q)/t2dt)

t dt + C4

)
exp

(∫ −(1 + q)/t2dt
)

(17)

Taking q(1) = 0, p(1) = 1 as the initial value, we can
obtain the variations of the solutions of equations (16)
with time in Fig. 2a and the trajectory of motion for the
Eq. (17) in Fig. 2b.

Example 3 Taking the NSH H(p, q, t) = p sin t + q,
then from equations (5), we can obtain the equations
of motion
{
q̇ = sin t
ṗ = −1 + p sin t

(18)

Its analytic solutions are
{
q(t) = − cos(t) + C5

p(t) = −e− cos(t)
(∫

ecos(t)dt + C6
) (19)

If taking q(0) = −1, p(0) = 0 as the initial value, the
variations of the solutions with time and the trajectory

on the plane q–p for the equations (19) are illustrated
in Fig. 3a, b, respectively.

3.2 Time-independent Hamiltonians

Example 4 Taking the NSH H(p, q) = pq, by using
the equations (6), we can obtain the NSHE as
{
q̇ = q
ṗ = −p

(20)

Its analytic solutions are
{
q = C7et

p = C8e−t (21)

If taking q (0) = 1, p (0) = 1 as the initial-value for
the equations (20), then the variations of the solutions
with time and the trajectory on the plane q–p for the
equations (20) can be shown in Fig. 4a, b, respectively.

Example 5 We choose a special Hamiltonian which
satisfies the condition p (∂H/∂p) = K and its time
independence is assumed to be verified. Let H(p, q) =
K ln p + √

q and subsequently from equation (8), we
can find that
{
q̇ = K/p
ṗ = −1

2
√
q

(22)
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Fig. 3 a Variations of the solutions of equations (18) with time, b trajectory of the motion equations (19) on the plane q–p

Fig. 4 a Variations of the solutions of equations (20) with time, b trajectory of the motion equations (21) on the plane q–p

there are analytic solutions for equations (22)
{
q(t) = 4K 2

(
LambertW

(
C9t+C10
8K 2e

)
+ 1

)2

p= 2K /q̇
(23)

where the LambertW represents the Lambert W func-
tion [17–19]. When taking the initial values q(0) =

1, p(0) = 1, and K = 2, we can obtain the variations
of the solutionswith time and the trajectory on the plane
q–p for the equations (22) which are shown in Fig. 5a,
b, respectively.

Example 6 We also choose the time-independent
H(p, q) = K ln qp that satisfies the condition
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Fig. 5 a Variations of the solutions of equations (22) with time, b trajectory of the motion equations (23) on the plane q–p

p (∂H/∂p) = K , so equations (8) gives
{
q̇ = K/p
ṗ = −K/q

(24)

There are analytic solutions for the equations (23)
{
q = −2K/ ṗ
p(t) = C11 exp(C12t)

(25)

When K = 2, and q (0) = 1, p (0) = 1 as the initial
value, we obtain the variations of solutions in the three-
dimensional time-space and the trajectory on the two-
dimensional plane q–p for the system (24) in Fig. 6a,
b, respectively.

3.3 q-Independent Hamiltonians

Example 7 Taking the NSH H(p, t) = p sin t + sin t ,
we have the NSHE by using the equations (9)
{
q̇ = sin t
ṗ = p cos t

(26)

Equations (26) have the analytic solutions as follow
{
q = − cos t + C13

p = C14 exp(sin t)
(27)

When taking q(0) = 0, p(0) = 1 as the conditions of
initial value, we can obtain variations of solutions in

the three-dimensional time-space and the trajectory on
the two-dimensional plane q–p for system (26) which
are shown in Fig. 7a, b, respectively.

Example 8 Taking the NSH H(p, q, t) = p sin t , with
the equations (9), we can obtain the equations
{
q̇ = sin t
ṗ = 0

(28)

Equations (28) have the analytic solutions as follows
{
q = − cos t + C15

p = C16
(29)

Obviously, the solution of q varies as cosines, and p is
a conservative quantity.

Example 9 Taking the NSH H(p) = K ln p, through
the equations (11), we can obtain the NSHE
{
q̇ = K/p
ṗ = 0

(30)

Equations (30) have the analytic solutions as follows
{
q = Kt

C18
+ C17

p = C18
(31)

So the solution of q varies linearly with time t , and p
is a conservative quantity.

123



The nonlinear dynamics based on the nonstandard Hamiltonians 1235

Fig. 6 a Variations of the solutions of equations (24) with time, b trajectory of the motion equations (25) on the plane

Fig. 7 a Variations of the solutions of equations (26) with time, b trajectory of the motion equations (27) on the plane

4 Conclusions

We successfully obtained the equations of motion for a
kind of particular dynamical systems characterized by
NSH. The NSHE differ completely from the standard

Hamiltonian equations in essence, but under some spe-
cial conditions, they can be simplified into the standard
Hamiltonian equations. Particularly for the dissipative
dynamical systems, the nonlinear evolution equations,
etc., the NSHE can obviously give out an uncompli-
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cated, simple way to solve the complex dynamical sys-
tems. It is noteworthy that when applying the standard
Hamiltonian equations to the systems which hold a
NSH, the equations of motion will be reasonable in
some time as Example 1 and 4, but for the most of
conditions, the equations of motion will be absolutely
different from what we obtained and even sometimes
nonreasonable, such as Example 3; it can be seen easily
that the standard Hamiltonian equations is p = con-
stant, and hence, it is not realistic. We argue that the
dynamical systems with NSH are important and they
exist in some complex dynamical systems, such as the
physics, mechanics and engineering applications. The
main advantage of the NSHE is that they offer a new
kind of dynamical systems to study and can be used to
the nonlinear dynamical systems, dissipative dynami-
cal systems, problem of quantization of a classical the-
ory and cosmology as well.
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