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Abstract In this paper, we focus on Boubaker poly-
nomials in fractional calculus area and obtain the oper-
ational matrix of Caputo fractional derivative and the
operational matrix of the Riemann–Liouville fractional
integration for the first time. Also, a general formu-
lation for the operational matrix of multiplication of
these polynomials has been achieved to solve the non-
linear problems. Then, these matrices are applied to
solve fractional optimal control problems directly. In
fact, the functions of the problem are approximated by
Boubaker polynomials with unknown coefficients in
the constraint equations, performance index and condi-
tions. Thus, a fractional optimal control problem con-
verts to an optimization problem, which can then be
solved easily. Convergence of the algorithm is proved.
Numerical results are given for several test examples
to demonstrate the applicability and efficiency of the
method.
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1 Introduction

Polynomial expansion methods are applied in many
mathematical and engineering problems to obtain
good results. Among the most frequently used poly-
nomials, the Boubaker polynomials are one of the
non-orthogonal polynomial sequences established by
Boubaker in 2007 [1]. In [2,3], the authors pre-
sented temperature profiling theoretical investigations
in cylindrical coordinates and solved the related prob-
lems using Boubaker polynomials. Kumar solved the
Love’s equation via the Boubaker polynomials expan-
sion scheme [4], and the Boltzmann diffusion equa-
tion was solved using these polynomials in [5]. In [6],
the authors used these polynomials to solve the opti-
mal control problems that have a long history, and this
papermotivated us to use these polynomials for solving
the fractional order optimal control problems (FOCPs)
that involve at least one fractional derivative, and they
are a very new field in mathematics. Optimality con-
ditions for FOCPs with Riemann–Liouville derivative
were achieved byAgrawal in [7]. Since analytical solu-
tion of Hamiltonian system is very complicated, some
researchers have presented several numerical methods
to solve this system; for example in [8] the author
approximated fractional dynamic systems using the
Grunwald–Letnikovdefinition and then applied numer-
ical method for solving the obtained algebraic equa-
tions, and in [9]Agrawal introducedHamiltonian equa-
tions for a class of FOCPs with Caputo derivative and
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then presented an approach based on the equivalence
of the Euler–Lagrange and the Volterra integral equa-
tions. In [10], a central difference numerical scheme
was used to solve these equations. In [11], the authors
used rational approximation to solve fractional order
optimal control problems. In [12], the Legendre multi-
wavelet collocationmethodwas introduced, and in [13]
another numerical method was applied to solve a class
of FOCPs by the authors. [14] presented a quadratic
numerical scheme, and in [15] Legendre spectral col-
location method was used to solve some type of frac-
tional optimal control problems.A discretemethodwas
used to solve fractional optimal control problem in [16].
Recently, the fractional optimal control problems have
been solved directly without using Hamiltonian equa-
tion by some authors [17,18]; in fact, in these papers
the authors have converted fractional optimal control
problems to a system of algebraic equations, which
should be solved by some methods similar to the meth-
ods presented in [19–22] for solving nonlinear system.
The organization of this paper is as follows. Section 2
contains three subsections that present some prelim-
inaries needed later. In Sects. 3 and 4, the Boubaker
operational matrices of the Caputo fractional deriva-
tive and Riemann–Liouville fractional integration are
presented. In Sect. 5, we introduce the operational
matrix of multiplication. Section 6 contains problem
statement by using the obtained operational matrices.
In Sect. 7, the convergence analysis is discussed, and
Sect. 8 presents several numerical examples to show
validity of our method. Finally, conclusion is presented
in Sect. 9.

2 Preliminaries and notations

In this section, we will recall some basic definitions
and auxiliary results that will be needed later in our
discussion. Here we give the standard definitions of
left and right Riemann–Liouville fractional integrals
and Caputo fractional derivatives.

2.1 The fractional integral and derivative

Definition 1 Let x : [a, b] → R be a function,α > 0 a
real number and n = �α�, where �α� denotes the small-
est integer greater than or equal to α, the left and right
Riemann–Liouville fractional integrals are defined by
[23]:

I α
t x(t) = 1

Γ (α)

∫ t

a
(t − τ)α−1x(τ )dτ,

I α
b x(t) = 1

Γ (α)

∫ b

t
(τ − t)α−1x(τ )dτ.

For the Riemann–Liouville fractional integrals, we
have:

I α
t t

n = Γ (n + 1)

Γ (n + 1 + α)
tn+α, n > −1. (1)

Moreover, the left and right Caputo fractional
derivatives are defined by means of:

Dα
t x(t) = 1

Γ (n − α)

∫ t

a
(t − τ)n−α−1x (n)(τ )dτ,

Dα
b x(t) = (−1)n

Γ (n − α)

∫ b

t
(τ − t)n−α−1x (n)(τ )dτ. (2)

The left Caputo fractional derivative has the property,

Dα
t t

n =
{
0, n ∈ N0 and n < �α�,

Γ (n+1)
Γ (n+1−α)

tn−α, n ∈ N0 and n ≥ �α�,
where N0 = {0, 1, 2, . . .}, and Dα

t C = 0, holds for
constant C .

2.2 Boubaker polynomials

In this section, Boubaker polynomials, which are used
in the next sections, are reviewed briefly. The Boubaker
polynomials were established for the first time by
Boubaker et al. to solve heat equation inside a physical
model. The first monomial definition of the Boubaker
polynomials on interval t ∈ [0, 1] was introduced by
[1]:

Bi (t) =
�i/2�∑
r=0

(−1)r
(
i − r
r

)
i − 4r

i − r
t i−2r , i ≥ 2

where �·� is the floor function. The Boubaker polyno-
mials have also a recursive relation:

Bm(t) = t Bm−1(t) − Bm−2(t) m > 2,

and the first few Boubaker polynomials are

B0(t) = 1, B1(t) = t,

B2(t) = t2 + 2, B3(t) = t3 + t, . . . .

2.3 Function approximation

It is clear that

Y = span{B0(t), B1(t), . . . , Bm(t)},
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is a finite dimensional and closed subspace of the
Hilbert space H = L2[0, 1], and therefore, Y is a com-
plete subspace and there is a unique best approximation
out of Y such as f̃ ∈ Y for each f ∈ H , that is

∀y ∈ Y, ‖ f − f̃ ‖≤‖ f − y ‖ .

Since f̃ ∈ Y, there exist unique coefficients c0, c1, . . . ,
cm , such that [24]

f (t) � f̃ (t) =
m∑
j=0

c j B j (t) = CTΨ (t),

where T shows transposition, C and Ψ (t) are the fol-
lowing vectors:

C = [c0, c1, . . . , cm]T,

Ψ (t) = [B0(t), B1(t), . . . , Bm(t)]T. (3)

We let

f j = 〈 f, Bj 〉 =
∫ 1

0
f (t)Bj (t)dt,

where 〈, 〉 denotes inner product, and then, we have

f j �
∑m

i=0
ci

∫ 1

0
Bi (t)Bj (t)dt =

∑m

i=0
cidi j ,

j = 0, 1, . . . ,m,

with

di j =
∫ 1

0
Bi (t)Bj (t)dt, i, j = 0, 1, . . . ,m.

Now we suppose that

F = 〈 f, Ψ 〉 =

⎡
⎢⎢⎢⎣

f0
f1
...

fm

⎤
⎥⎥⎥⎦ , and D = [di j ],

where

f j = CT[d0 j , d1 j , . . . , dm, j ]T,

so we can write

FT = CTD,

and C can be calculated as

C = D−1〈 f, Ψ 〉, (4)

where D is the following (m + 1) × (m + 1) matrix

D = 〈Ψ (t), Ψ (t)〉 =
∫ 1

0
Ψ (t)(Ψ (t))Tdt.

3 Boubaker operational matrix of the Caputo
fractional derivative

The Caputo fractional derivative of vector Ψ (t) men-
tioned in Eq. (3) can be expressed by:

DαΨ (t) = DαΨ (t), (5)

where Dα is the (m + 1) × (m + 1) Caputo fractional
operationalmatrix of derivative that will be constructed
in this section. The Boubaker polynomials basis can be
considered as:

Ψ (t) = ΛTm(t), (6)

where Tm(t) = [1, t, . . . , tm]T, and Λ = (Υi, j )
m
i, j=0,

is an (m + 1) × (m + 1) matrix.
Considering the following terms

Bi (t) =
�i/2�∑
r=0

(−1)r
(
i − r
r

)
i − 4r

i − r
t i−2r=

m∑
j=0

Υi, j t
j ,

or

Bi (t) =
i∑

j=i−2�i/2�
(−1)

i− j
2

(
i+ j
2

i− j
2

)
2 j − i
i+ j
2

t j

=
m∑
j=0

Υi, j t
j ,

we can obtain the entries of thematrixΛ for i ≥ 2, j =
i − 2�i/2�, . . . , i, as:

Υi, j =

⎧⎪⎨
⎪⎩
0, if (i − j) is odd,

(−1)
i− j
2

(
i+ j
2

i− j
2

)
2 j−i
i+ j
2

, if (i − j) is even.

And based on the definition B0(t) and B1(t), this for-
mula is valid for i = 1,, and for i = 0, we have

Υ0,0 = 1 Υ0, j = 0, j = 1, . . . ,m.

By using Eqs. (5) and (6), we set

DαΨ (t) = ΛDαTm(t).

Giving consideration to the following property of the
Caputo fractional derivative,

Dα
t t

j =
{
0, j = 0, 1, . . . , �α� − 1,

Γ ( j+1)
Γ ( j+1−α)

t j−α, j = �α�, . . . ,m,

define:

DαTm(t) = Σ̃ T̃ , (7)

where Σ̃ = (Σ̃i+1, j+1) is a diagonal (m+1)×(m+1)
matrix with entries
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Σ̃i+1, j+1 =
{

Γ ( j+1)
Γ ( j+1−α)

, i = j = �α�, . . . ,m,

0, otherwise,

and T̃ = (T̃i+1)(m+1)×1, with

T̃i+1 =
{
0, i = 0, 1, . . . , �α� − 1,
t i−α, i = �α�, . . . ,m.

Now, T̃ is expanded in terms of Boubaker polynomials
as

T̃ � PTΨ (t), (8)

where

P = [P0, P1, . . . , Pm], Pi = D−1 P̂i ,

P̂i = [P̂i,0, P̂i,1, . . . , P̂i,m]T.

The entries of the vector P̂i can be calculated as

P̂i, j =
∫ 1

0
t i−αBj (t)dt,

then we have

Dα
t Ψ (t) � DαΨ (t), Dα = ΛΣ̃PT. (9)

In Eq. (9), Dα is the operational matrix of Caputo
derivative.

4 Boubaker operational matrix of the
Riemann–Liouville fractional integration

In this section, we derive the (m + 1) × (m + 1)
Riemann–Liouville fractional operational matrix of
integration F (α) expressed by:

I αΨ (t) = F (α)Ψ (t). (10)

By using Eq. (1) and linearity of Riemann–Liouville
fractional integral, for i ≥ 2, we have

I αBi (t) =
�i/2�∑
r=0

(−1)r
(
i − r
r

)
i − 4r

i − r
I αt i−2r

=
�i/2�∑
r=0

bi,r t
i−2r+α, (11)

where

bi,r = (−1)r
(i − r − 1)!(i − 4r)

r !Γ (i − 2r + α + 1)
.

Nowwecan expand t i−2r+α in terms ofBoubaker poly-
nomials as

t i−2r+α =
m∑
j=0

cr, j B j (t),

with

cr, j = 〈t i−2r+α, Bj (t)〉
〈Bj (t), Bj (t)〉 ,

and substitution in Eq. (11) we get

I αBi (t) �
�i/2�∑
r=0

bi,r

m∑
j=0

cr, j B j (t)

=
m∑
j=0

⎛
⎝

�i/2�∑
r=0

bi,r cr, j

⎞
⎠ Bj (t). (12)

Now let

θi, j,r = bi,r cr, j ,

and rewrite Eq. (12) for i = 2, . . . ,m, as

I αBi (t)�
⎡
⎣

�i/2�∑
r=0

θi,0,r ,

�i/2�∑
r=0

θi,1,r , . . . ,

�i/2�∑
r=0

θi,m,r

⎤
⎦

Ψ (t).

For i = 0, 1, we have

I αB0(t) = 1

Γ (α + 1)
tα,

I αB1(t) = 1

Γ (α + 2)
tα+1,

so like the previous process tα and tα+1 are expanded
with respect to Boubaker polynomials as

tα �
m∑
j=0

ϑ0, j B j (t),

tα+1 �
m∑
j=0

ϑ1, j B j (t).

Hence, we have

F (α) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Γ (α+1)ϑ0,0

1
Γ (α+1)ϑ0,1 . . . 1

Γ (α+1)ϑ0,m
1

Γ (α+2)ϑ1,0
1

Γ (α+2)ϑ1,1 . . . 1
Γ (α+2)ϑ1,m

1∑
r=0

θ2,0,r
1∑

r=0
θ2,1,r . . .

1∑
r=0

θ2,m,r

...
...

. . .
...

�m/2�∑
r=0

θm,0,r

�m/2�∑
r=0

θm,1,r . . .
�m/2�∑
r=0

θm,m,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

5 The operational matrix of multiplication

The product of two Boubaker function vectors satisfies
in the following equation

ATΨ (t)Ψ (t)T � Ψ (t)T ÃT,
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where A is the any arbitrary vector and Ã is a (m+1)×
(m + 1) matrix. To calculate the entries of this matrix,
we notice that ATΨ (t)Ψ (t)T can be approximated by
Ψ (t) as following

ATΨ (t)Ψ (t)T = [a0(t), . . . , am(t)],
ai (t) �

m∑
j=0

˜ai, j B j (t) = ÃT
i Ψ (t), (13)

where

Ãi = [ ˜ai,0, ˜ai,1, . . . , ˜ai,m]T.

Using Eq. (13), we obtain

aki =
〈 m∑
j=0

˜ai, j B j , Bk

〉
=

m∑
j=0

˜ai, j d j,k , j, k = 0, 1, . . . ,m.

where aki = 〈ai , Bk〉, d j,k = 〈Bj , Bk〉. So by consid-
ering Ai = [a0i , a1i , . . . , ami ]T, we have

AT
i = Ãi

T
D,

or

Ãi
T = AT

i D
−1,

therefore the operational matrix of multiplication is
obtained.

6 Problem statement

In this section, we consider the following FOCPs,

min J (x, u) =
∫ 1

0
(uT(t)A(t)u(t) + xT(t)B(t)x(t)

+xT(t)C(t)u(t))dt

where

x(t) = [x1(t), x2(t), . . . , xl(t)]T,

u(t) = [u1(t), u2(t), . . . , uq(t)]T,

are state and control vectors and also A(t), B(t) and
C(t) are matrices of appropriate dimensions with B(t)
a symmetric positive-semi definite matrix and A(t) a
symmetric positive-definite matrix. Subject to dynam-
ical system
n∑

i=1

Mi x
(i)(t) +

m∑
j=1

N j D
α j
t x(t)

= P(t)x(t) + Q(t)u(t) + F(t),

n − 1 < αm ≤ n,

0 ≤ α1 ≤ α2 ≤ · · · ≤ αm,

and conditions

x(0) = x0, x ′(0) = x1, . . . , x
(n−1)(0) = xn−1,

where Mi , i = 1, . . . , n, and N j , j = 1, . . . ,m,

are real numbers and at least one of them should be
nonzero. P(t), Q(t), F(t) are continuous matrix func-
tions of time as follows

P(t) =

⎡
⎢⎢⎢⎣

p11(t) p12(t) . . . p1l(t)
p21(t) p22(t) . . . p2l(t)

...
...

. . .
...

pl1(t) pl2(t) . . . pll(t)

⎤
⎥⎥⎥⎦ ,

Q(t) =

⎡
⎢⎢⎢⎣

q11(t) q12(t) . . . q1q(t)
q21(t) q22(t) . . . q2q(t)

...
...

. . .
...

ql1(t) ql2(t) . . . qlq(t)

⎤
⎥⎥⎥⎦ .

and

F(t) = [ f1(t), f2(t), . . . , fl(t)]T,

and xk, k = 0, . . . , n − 1, are specified constant vec-
tors. The resolution process by using the operational
matrices is discussed in the following subsections.

6.1 Application of operational matrix of derivative

We expand the state and control variables with respect
to the Boubaker polynomials as:

xi (t) � XT
i Ψ (t), u j (t) � UT

j Ψ (t),

i = 1, . . . , l, j = 1, . . . , q, (14)

where Xi and Uj are the following unknown coeffi-
cients vectors

Xi = [xi0, xi1, . . . , xim]T, Uj = [u j0, u j1, . . . , u jm]T,

so we derive

Dα
t xi (t) � DαX

T
i Ψ (t). (15)

Suppose that Ψ̂ (t) and Ψ̂ ∗(t) are the following l(m +
1) × l and q(m + 1) × q matrices, respectively

Ψ̂ (t) = Il ⊗ Ψ (t), Ψ̂ ∗(t) = Iq ⊗ Ψ (t), (16)

where Il and Iq are l × l and q × q identity matri-
ces, respectively, and⊗ denotes the Kronecker product
[25]. So we can write

u(t) � UTΨ̂ ∗(t), x(t) � XTΨ̂ (t),

Dα
t x(t) � D̂αX

TΨ̂ (t).
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where X,U are vectors of order l(m + 1) × 1 and
q(m + 1) × 1, respectively, given by

X = [X1, X2, . . . , Xl ]T, U = [U1,U2, . . . ,Ul ]T,

(17)

and

D̂α = Il ⊗ Dα.

Also, we expand other functions of t in the problem
with respect to Boubaker polynomials as

fi (t) � FT
i Ψ (t), pi j (t) � PT

i jΨ (t),

qi j (t) � QT
i jΨ (t),

where the vectors

Fi = [ fi0, fi1, . . . , fim]T,

Pi j = [pi j0 , pi j1 , . . . , pi jm ]T,

Qi j = [qi j0 , qi j1 , . . . , qi jm ]T,

can be achieved using Eq. (4).
Then, one can expands x (k)

i (t) as

x (k)
i (t) � XT

i Ψ (k)(t) � XT
i D

kΨ (t),

i = 1, . . . , l, k = 1, . . . , n,

where D1 is the (m + 1) × (m + 1) operational matrix
of derivative of order 1 and can be obtained easily by
choosing α = 1, in Dα .
Now, if these approximations are applied in the prob-
lem, we have:

J �
∫ 1

0
[(UTΨ̂ ∗(t))TA(t)UTΨ̂ ∗(t)

+ (XTΨ̂ (t))TB(t)XTΨ̂ (t)

+ (XTΨ̂ (t))TC(t)UTΨ̂ ∗(t)]dt,
that can be solved numerically by Gauss–Legendre
integration method.
Subject to the system
n∑

i=1

Mi x
(i)
k (t) +

m∑
j=1

N j D
α j
t xk(t) =

l∑
r=1

pkr (t)xr (t)

+
q∑

h=1

qkh(t)uh(t) + fk(t), k = 1, . . . , l.

Or
n∑

i=1

Mi X
T
k D

iΨ (t) +
m∑
j=1

N j X
T
k Dα j Ψ (t)

−
l∑

r=1

PT
kr (t)Ψ (t)Ψ (t)TXr −

q∑
h=1

QT
khΨ (t)Ψ (t)TUh

−FT
k Ψ (t) = 0.

Now using

PT
krΨ (t)Ψ (t)T � Ψ (t)P̃T

kr ,

QT
khΨ (t)Ψ (t)T � Ψ (t)Q̃T

kh,

we obtain the following system of algebraic equations

Gk =
n∑

i=1

Mi X
T
k D

i +
m∑
j=1

N j X
T
k Dα j −

l∑
r=1

XT
r P̃kr

−
q∑

h=1

UT
h Q̃kh − FT

k = 0, k = 1, . . . , l.

Also, we need to write the initial conditions

x (i)(0) = xi , i = 0, . . . , n − 1,

in terms of the Boubaker basis as

x (i)(0) = XT D̂i Ψ̂ (0).

To solve mentioned optimization problem, let

J � = J +
l∑

k=1

λk(Gk) +
n−1∑
i=0

μi (xi − XT D̂i Ψ̂ (0)),

(18)

whereμi , and λk = [λk0, λk1, . . . , λkm]T are unknown
Lagrange multipliers solved by Newton’s iterative
method. The necessary conditions for (X,U, λk, μi )

to be the extreme of J � are
∂ J �

∂Xi
= 0, i = 1, . . . , l,

∂ J �

∂Uj
= 0, j = 1, . . . , q,

∂ J �

∂λk
= 0, k = 1, . . . , l,

∂ J �

∂μi
= 0, i = 0, . . . , n − 1.

As a result, by replacing the values obtained from (18)
in Eq. (14), u(t) and x(t) can be calculated.

6.2 Application of operational matrix of integration

In this section, the operational matrix of integration is
applied to solve the mentioned FOCP. For this purpose,
we approximate

x (n)
k (t) = Dnxk(t) � XT

k Ψ (t), k = 1, . . . , l,

therefore we have

xk(t) = I nt D
n
t xk(t) +

n−1∑
i=0

x (i)
k (0)

t i

i ! .

Now we write
n−1∑
i=0

x (i)
k (0)

t i

i ! � dTk Ψ (t),
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The Boubaker polynomials and their application to solve fractional optimal control problems 1019

and we have

xk(t) = (XT
k F

(n) + dTk )Ψ (t), k = 1, . . . , l,

uk(t) � UT
k Ψ (t), k = 1, . . . , q, (19)

also for j = 1, . . . , n − 1, and k = 1, . . . , l, we have

x ( j)
k (t) = XT

k F
(n− j)Ψ (t) +

n−1∑
i= j+1

x (i)
k (0)

t i− j

(i − j)!
� (XT

k F
(n− j) + dTk, j )Ψ (t),

and for j = 1, . . . ,m, and k = 1, . . . , l, we have

D
α j
t xk(t) = XT

k F
(n−α j )Ψ (t)

+
n−1∑
i=� j�

x (i)
k (0)

t i−α j

Γ (i + 1 − α j )

� (XT
k F

(n−α j ) + d̃Tk, j )Ψ (t),

by replacing the approximation of x(t) and u(t) in the
performance index J, this functional can be calculated
numerically like previous subsection, and also by using
the mentioned approximations in this subsection, the
system

n∑
i=1

Mi x
(i)
k (t) +

m∑
j=1

N j D
α j
t xk(t) =

l∑
r=1

pkr (t)xr (t)

+
q∑

h=1

qkh(t)uh(t) + fk(t), k = 1, . . . , l,

can be writen as

MnX
T
k Ψ (t) +

n−1∑
i=1

Mi (X
T
k F

(n−i) + dTk,i )Ψ (t)

+
m∑
j=1

N j (X
T
k F

(n−α j ) + d̃Tk, j )Ψ (t)

−
l∑

r=1

PT
kr (t)Ψ (t)Ψ (t)TXr

−
q∑

h=1

QT
khΨ (t)Ψ (t)TUh − FT

k Ψ (t) = 0.

Now using

PT
krΨ (t)Ψ (t)T � Ψ (t)P̃T

kr , QT
khΨ (t)Ψ (t)T � Ψ (t)Q̃T

kh,

we obtain the following linear system of algebraic
equations

Hk = MnX
T
k +

n−1∑
i=1

Mi (X
T
k F

(n−i) + dTk,i )

+
m∑
j=1

N j (X
T
k F

(n−α j ) + d̃Tk, j ) −
l∑

r=1

XT
r P̃kr

−
q∑

h=1

UT
h Q̃kh − FT

k = 0, k = 1, . . . , l.

To solve mentioned optimization problem, let

J � = J +
l∑

k=1

λk(Hk). (20)

whereλk = [λk0, λk1, . . . , λkm]T are unknownLagrange
multipliers solved by iterative method. The necessary
conditions for (X,U, λk) to be the extreme of J � are

∂ J �

∂Xi
= 0, i = 1, . . . , l,

∂ J �

∂Uj
= 0, j = 1, . . . , q,

∂ J �

∂λk
= 0, k = 1, . . . , l.

As a result, by replacing the values obtained from
(20) using Newton’s iterative method in Eq. (19), u(t)
and x(t) can be calculated.

7 Convergence analysis

In this section, we focus on the convergence of the
method, first we consider the operational matrix of
derivative and show that XT

k DαΨ (t) tends to Dα
t xk(t)

as m tends to infinity in Eq. (15) for k = 1, . . . , l. For
this purpose, we notice that we have,

lim
j→∞

m∑
j=0

xk j B j (t) = xk(t),

lim
j→∞

m∑
j=0

xk j B
(n)
j (t) = x (n)

k (t). (21)

Since B(n)
j (t) is a continuous function, we have:

lim
m→∞

∫ t

0

∑m
j=0 xk j B

(n)
j (t)

(t − τ)n−α−1 dτ

= lim
m→∞

m∑
j=0

xk j

∫ t

0

B(n)
j (t)

(t − τ)n−α−1 dτ.
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We can write the above equation as
∫ t

0

limm→∞
∑m

j=0 xk j B
(n)
j (t)

(t − τ)n−α−1 dτ

= lim
m→∞

m∑
j=0

xk j

∫ t

0

B(n)
j (t)

(t − τ)n−α−1 dτ, (22)

by Eqs. (2), (21) and (22), for n−1 < α ≤ n, we obtain
∫ t

0

x (n)
k (t)

(t − τ)n−α−1 dτ = Γ (n − α) lim
m→∞

m∑
j=0

xk j D
α
t B j (t),

or

Dα
t xk(t) = lim

m→∞

m∑
j=0

xk j D
α
t B j (t). (23)

Now we recall Eq. (9) that Dα = ΛΣ̃PT, where i th
column of PT is the coefficients vector of Boubaker
approximation of t i−α for i = 1, . . . ,m.

By the Weierstrass approximation theorem, we know
thatBoubaker approximation of every continuous func-
tion converges uniformly to that function, so consider-
ing Eq. (8) we have

lim
n→∞

n∑
j=0

Pj,i B j (t) = t i−α, i = 1, . . . ,m.

or

lim
n→∞ PTΨn(t) = lim

n→∞

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=0

Pj,0Bj (t)

n∑
j=0

Pj,1Bj (t)

...
n∑
j=0

Pj,mBj (t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= T̃ ,

where Ψn(t) = [B0(t), B1(t), . . . , Bn(t)]T, so we can
write,

lim
n→∞ ΛΣ̃PTΨn(t) = ΛΣ̃ lim

n→∞ PTΨn(t) = ΛΣ̃ T̃ .

Now we use Eqs. (6) and (7) and insert the following
term in the above equation,

Σ̃ T̃ = Dα
t Tm = Dα

t Λ−1Ψ (t),

and obtain

lim
n→∞ DαΨn(t) = Dα

t Ψ (t). (24)

Then, the following result can be achieved from
Eqs. (23) and (24)

Dα
t xk(t) = lim

m→∞ XT
k lim
n→∞ DαΨn(t).

Finally, this proof is complete by n ≥ m. It should be
noticed that this result is valid for any arbitrary α j and
can be expanded for general form of dynamical system
presented in this article.
Now the operational matrix of integration is consid-
ered to find an upper bound for the error of operational
matrix of the fractional integration F (α) and to show
that by increasing the number of Boubaker polynomi-
als F (α)Ψ (t) tends to I α

t Ψ (t). To obtain this result, we
recall the following lemma and theorems.

Lemma 1 Suppose f ∈ Cm+1[0, 1] and
Y = span{B0(t), B1(t), . . . , Bm(t)}.
Let y0 be the best approximation for f out of Y then

‖ f − y0‖L2[0,1] ≤ K

(m + 1)!√2m + 3
,

where K = Maxt∈[0,1]| f (m+1)(t)|.
Proof The set {1, t, . . . , tm}, is a basis for polynomials
space of degree m. We define

y1(t) = f (0) + t f ′(0) + t2

2! f
(2)(0) + · · · + tm

m! f
(m)(0)

From Taylor expansion, we have

| f (t) − y1(t)| = f (m+1)(τ )tm+1

(m + 1)! ,

where τ ∈ (0, 1). Since y0 is the best approximation
f (t) out of Sm, y1(t) ∈ Sm, and from above equation,
we have

‖ f − y0‖2L2[0,1] ≤ ‖ f − y1‖2L2[0,1]

=
∫ 1

0
| f − y1|2dt = K 2

(m + 1)!2(2m + 3)

Then by taking square roots, the proof is complete. ��
Theorem 1 Suppose that H is a Hilbert space, Y is
a finite dimensional and closed subspace of H and
{y1, y2, . . . , yn}, is a basis for Y . Let x be an arbitrary
element in H and y0 be the unique best approximation
to x out of Y . Then [24]

‖x − y0‖22 = G(x, y1, y2, . . . , yn)

G(y1, y2, . . . , yn)
,

where G is Gramian matrix.

Theorem 2 Suppose that f ∈ L2[0, 1] and f (t) is
approximated by

∑m
i=0 ci Bi (t), then we have [24]

lim
m→∞ ‖ f (t) −

m∑
i=0

ci Bi (t)‖L2[0,1] = 0.
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Nowbyusing these theorems,we show that (F (α)Bi (t)−
I α
t Bi (t)) tends to zero for i = 0, 1, . . . ,m, as follow:
for i = 0,

‖I α
t B0(t) −

m∑
j=0

ϑ0, j

Γ (α + 1)
Bj (t)‖

≤ 1

Γ (α + 1)
‖tα −

m∑
j=0

ϑ0, j B j (t)‖

≤ 1

Γ (α + 1)

(
G(tα, B0, B1, . . . , Bm)

G(B0, B1, . . . , Bm)

)1/2

. (25)

For i = 1

‖I α
t B1(t) −

m∑
j=0

ϑ1, j

Γ (α + 2)
Bj (t)‖

≤ 1

Γ (α + 2)
‖tα+1 −

m∑
j=0

ϑ1, j B j (t)‖

≤ 1

Γ (α + 2)
(
G(tα+1, B0, B1, . . . , Bm)

G(B0, B1, . . . , Bm)
)1/2, (26)

and for i ≥ 2

‖I α
t Bi (t) −

m∑
j=0

⎛
⎝

�i/2�∑
r=0

bi,r cr, j

⎞
⎠ Bj (t)‖

≤ ‖
�i/2�∑
r=0

(−1)r
(i − r − 1)!(i − 4r)

r !Γ (i − 2r + α)
t i−2r+α −

m∑
j=0

⎛
⎝

�i/2�∑
r=0

bi,r cr, j

⎞
⎠ Bj (t)‖

≤
�i/2�∑
r=0

bi,r‖t i−2r+α −
m∑
j=0

Bj (t)‖

≤
�i/2�∑
r=0

bi,r

(
G(t i−2r+α, B0, B1, . . . , Bm)

G(B0, B1, . . . , Bm)

)1/2

.(27)

Now we can conclude by Theorem 2 and Eqs. (25),
(26) and (27) that the difference of F (α)Ψ (t) and
I α
t Ψ (t) tends to zero when the number of Boubaker
basis functions tends to infinity so this approximation
could be used for each elements of state vector.

8 Numerical examples

Now we present some examples of optimal control
problems and use the mentioned algorithms for solving
them.

Example 1 Assume that wewish tominimize the func-
tional

J (x, u) =
∫ 1

0
(0.625x2(t) + 0.5x(t)u(t)

+ 0.5u2(t))dt,

subject to dynamical system

Dα
t x(t) = 0.5x(t) + u(t), t ∈ [0, 1], 0 < α ≤ 1,

and the condition

x(0) = 1,

that its exact optimal cost forα = 1, is J = 0.3807971,
and the exact value of control variable is [26]

u(t) = −(tanh(1 − t) + 0.5) cosh(1 − t)

cosh(1)
.

Herewe solve this problem by using the Boubaker inte-
gration operational matrix for m = 5, as follows:

Dα
t x(t) = XTΨ (t), u(t) = UTΨ (t).

where

X = [x0, x1 . . . , x5]T, U = [u0, u1 . . . , u5]T.

So we have

x(t) = XTF (α)ψ(t) + 1 = (XTF (α) + dT),

with d = [1, 0, 0, 0, 0, 0]T. Substituting these into
problem, we get

J = 0.625(XTF (α) + dT)D(XTF (α) + dT)T

+ 0.5(XTF (α) + dT)DU + 0.5UTDU,

D is introduced in Eq. (4).

J � = J + (XT − 0.5(XTF (α) + dT) −UT)λ1,

where λ1 is

λ1 = [λ10, λ11, . . . , λ15].
Now we solve the following system using Newton’s
iterative method

∂ J �

∂xi
= 0, i = 0, 1, . . . , 5,

∂ J �

∂u j
= 0, j = 0, 1, . . . , 5,

∂ J �

∂λ1k
= 0, k = 0, . . . , 5,
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Table 1 Values of J for different values of α, for Example 1

α 0.4 0.5 0.8 0.9 0.99 1

J 0.302747 0.312246 0.352311 0.366705 0.379407 0.380797

and for example for α = 1, we obtain

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0767781
−0.642253
0.499522

−0.127832
0.0379117

−0.00284627

⎤
⎥⎥⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0981257
1.16778

−0.630319
0.23572

−0.0485852
0.00758233

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and

x(t) = 0.999999 − 0.761547t + 0.499522t2 − 0.124986t3

+ 0.0379117t4 − 0.00284627t5,

u(t) = −1.26159 + 1.38075t − 0.630319t2 + 0.228138t3

− 0.0485852t4 + 0.00758233t5.

We present the results for different values of α in
Table 1 and see that as α approaches to 1, the numerical
values of J converge to the objective value of α = 1.

Also, Fig. 1 shows the curves for exact values of
control variable and numerical values of u(t) and x(t)
for α = 0.5, 0.8, 0.9, 1.

This problem is solved in [26] for α = 1, with
Chebyshev finite difference method and the result for
m = 7, is as accurate as our values for m = 5.

Example 2 We consider the FOCPs:

J (x, u) = 1

2

∫ 1

0
(x1(t)

2 + x2(t)
2 + u2(t))dt,

subject to

Dα
t x1(t) = −x1(t) + x2(t) + u(t),

Dα
t x2(t) = −2x2(t),

x1(0) = 1, x2(0) = 1,

with the following exact solution in the case of α = 1,

x1(t) = −3

2
e−2t + 2.48164e−√

2t + 0.018352e
√
2t ,

x2(t) = e−2t ,

u(t) = 1

2
e−2t − 1.02793e−√

2t + 0.0443056e
√
2t ,

J = 0.43198.

0.0 0.2 0.4 0.6 0.8 1.0
t

0.6

0.7

0.8

0.9

1.0

x

α = 0.5

α = 0.8

α = 0.9

α = 1

0.2 0.4 0.6 0.8 1.0
t

− 1.2

− 1.0

− 0.8

− 0.6

− 0.4

u

= 0.5

= 0.8

α

α

α

= 0.9

α = 1

Exact

(a)

(b)

Fig. 1 Curves for α = 0.5, 0.8, 0.9, 1, Example 1. a Numerical
and exact values of x(t). b Numerical and exact values of u(t)

The absolute errors of x1(t), x2(t) and u(t) for dif-
ferent values of m and α = 1 are given in [12] by
the use of Legendre multiwavelet collocation method.
We also give these results using operational matrix
of integration in Tables 2, 3 and 4 to show that our
results for x2(t) are better, for x1(t) are as accurate as
the results obtained by Legendre multiwavelet and for
u(t) are more accurate almost everywhere. It should be
noted that the numbers of basis polynomials are equal
to m + 1, in our method while it is obtained as multi-
plication of m + 1 in the numbers of subintervals via
multiwavelet.

Considering Tables 2, 3 and 4, it is shown that if the
number of Boubaker basis functions is increased the
absolute errors are decreased, and therefore, the numer-
ical values of parameters converge to exact solution. In
Fig. 2, we show the curves of unknown functions of this
example for different values of α to show convergence
of fractional order to integer one.
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Table 2 Absolute errors of
x1(t) for α = 1, Example 2

t Boubaker polynomials Legendre multiwavelet

m = 4 m = 6 m = 4 m = 6

0.1 0.00015214 6.20195 × 10−6 0.0000628 6.94706 × 10−6

0.2 0.00002991 7.11946 × 10−6 0.0003861 5.66267 × 10−6

0.3 0.00012214 5.02408 × 10−6 0.0004751 1.42083 × 10−6

0.4 0.00010726 3.5207 × 10−6 0.0002562 5.48337 × 10−7

0.5 0.00002267 4.03413 × 10−6 0.0001135 3.53749 × 10−6

0.6 0.00012330 4.3655 × 10−6 0.0004026 5.8476 × 10−6

0.7 0.00008194 2.81131 × 10−6 0.0004290 3.90867 × 10−6

0.8 0.00008381 1.40232 × 10−6 0.0001591 1.1543 × 10−7

0.9 0.00014779 3.04821 × 10−6 0.0002141 1.84314 × 10−6

Table 3 Absolute errors of
x2(t) for α = 1, Example 2

t Boubaker polynomials Legendre multiwavelet

m = 4 m = 6 m = 4 m = 6

0.1 0.00016805 6.05344 × 10−7 0.0000596 1.80223 × 10−6

0.2 0.00004112 9.09665 × 10−7 0.0004057 1.28185 × 10−6

0.3 0.00012261 1.43054 × 10−7 0.0005105 1.754 × 10−6

0.4 0.00011135 8.08491 × 10−7 0.0002878 2.10988 × 10−6

0.5 0.00002471 1.08343 × 10−7 0.0001039 6.63399 × 10−7

0.6 0.00013363 8.23235 × 10−7 0.0004207 2.86712 × 10−6

0.7 0.00009287 6.46676 × 10−8 0.0004649 1.5552 × 10−6

0.8 0.00008327 8.93674 × 10−7 0.0001924 1.5283 × 10−6

0.9 0.00015573 7.45498 × 10−7 0.0001995 1.28547 × 10−6

Table 4 Absolute errors of
u(t) for α = 1, Example 2

t Boubaker polynomials Legendre multiwavelet

m = 4 m = 6 m = 4 m = 6

0.1 0.00003568 1.76151 × 10−6 0.0000104 2.59777 × 10−6

0.2 4.31 × 10−6 2.03567 × 10−6 0.0000805 2.12128 × 10−6

0.3 0.00003022 1.41917 × 10−6 0.0000893 8.64065 × 10−7

0.4 0.00002387 9.8668 × 10−7 0.0000258 5.08921 × 10−7

0.5 7.70 × 10−6 1.14531 × 10−6 0.0000673 1.34629 × 10−6

0.6 0.00002948 1.23887 × 10−6 0.0000134 1.96033 × 10−6

0.7 0.00001704 7.76577 × 10−7 0.0001350 1.31925 × 10−6

0.8 0.00002207 3.68056 × 10−7 0.0000687 9.16113 × 10−6

0.9 0.00003393 8.5632 × 10−7 0.0000137 1.00325 × 10−7
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Fig. 2 Curves for α = 0.5, 0.8, 0.9, 1, Example 2. a Numerical
and exact values of x1(t). bNumerical and exact values of x2(t).
c Numerical and exact values of u(t)

Also, Table 5 shows the convergence between the
values of J for different α as α approaches to 1.

Example 3 The next example under consideration is as
follows [27]:

J (x, u) = 1

2

∫ 1

0
(3x(t)2 + u(t)2)dt,

subject to dynamical system

Dα
t x(t) = −x(t) + u(t), t ∈ [0, 1], 0 < α ≤ 1,

Table 5 Values of J for different values of α, for Example 2

α 0.5 0.8 0.9 0.99 1

J 0.32909 0.37627 0.40308 0.42900 0.43198

and the conditions

x(0) = 0, x(1) = 2,

with the exact solution

x(t) = 2

sinh(2)
sinh(2t),

u(t) = 2

sinh(2)
(sinh(2t) + 2 cosh(2t)),

for α = 1, and in this case J = 6.149258.

We have used the operational matrix of fractional
derivative and achieved J = 6.149258977, form = 5,
as follows, however, the best result obtained in [27] is
J = 6.149061, with 32 nodes.

x(t) = XTΨ (t), u(t) = UTΨ (t),

where

X = [x0, x1 . . . , x5]T, U = [u0, u1 . . . , u5]T.

So we have

Dα
t x(t) = XTDαψ(t),

substituting these into problem we get

J = 3

2
XTDX + 1

2
UTDU.

D is introduced in Eq. (4).

J � = J + (XTDα + XT −UT)λ1 + (XTψ(0) − 0)λ2

+(XTψ(1) − 2)λ3,

where λ2, λ3 are real numbers and λ1 is

λ1 = [λ10, λ11, . . . , λ15].
Now we solve the following system

∂ J �

∂xi
= 0, i = 0, 1, . . . , 5,

∂ J �

∂u j
= 0, j = 0, 1, . . . , 5,

∂ J �

∂λ1k
= 0, k = 0, . . . , 5,

∂ J �

∂λ2
= 0,

∂ J �

∂λ3
= 0,

and for α = 1, we obtain

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.237723
0.765405

−0.018142
1.05099

−0.137003
0.23741

⎤
⎥⎥⎥⎥⎥⎥⎦

, U =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1.64091
1.27713
2.42258
0.502972
1.05005
0.23741

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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Fig. 3 Curves for α = 0.5, 0.8, 0.9, 1, Example 3. a Numerical
and exact values of x(t). b Numerical and exact values of u(t)

and

x(t) = −3.48776 × 10−10 + 1.10416t − 0.018142t2

+0.813575t3 − 0.137003t4 + 0.23741t5,

u(t) = 1.10416 + 1.06788t + 2.42258t2 + 0.265561t3

+1.05005t4 + 0.23741t5.

In Fig. 3, the exact and numerical values of state and
control functions are shown.

Example 4 Now consider the following time varying
problem [18]

min J (x, u) = 1

2

∫ 1

0
(x(t)2 + u(t)2)dt,

subject to

Dα
t x(t) = t x(t) + u(t), x(0) = 1.

Table 6 compares the values of J, obtained viaBoubaker
operational matrix of fractional derivative and the
results reported in [18]. The number of our basis and

Table 6 Values of J for different values of α, for Example 4

α Our method m = 4 Method in [18] m = 5

1 0.484268 0.484268

0.99 0.483463 0.483463

0.9 0.476024 0.475883

0.8 0.467669 0.466978

0.5 0.447038

0.4 0.442910

0.0 0.2 0.4 0.6 0.8 1.0
t

0.6

0.7

0.8

0.9

1.0

x

=0.5

= 0.8

  = 0.9

α

α

α

αα

= 1

0.2 0.4 0.6 0.8 1.0
t

− 1.0

− 0.8

− 0.6

− 0.4

− 0.2

u

=0.5

= 0.8

  = 0.9

= 1

(a)

(b)

α

α

α

α

Fig. 4 Curves for α = 0.5, 0.8, 0.9, 1, Example 4. a Numerical
and exact values of x(t). b Numerical and exact values of u(t)

calculation is less than [18]. In addition, the more val-
ues of J for different α in our method show the better
convergence.

Figure 4 demonstrates the values of state and control
functions for different values of α.

9 Conclusion

In this paper, we have presented the Boubaker oper-
ational matrices of Caputo fractional derivative and
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Riemann–Liouville fractional integration for the first
time. Then, a general formulation for operational
matrix of multiplication is achieved, and thesematrices
have been used to approximate numerical solution of
fractional optimal control problems. In fact, the prob-
lem is solved by the direct use of the functional without
solving fractional Hamiltonian equations, and by using
thesematrices thementioned fractional optimal control
problem is reduced to systems of algebraic equations.
Some numerical examples, solved by WolframMathe-
matica 10, show the validity of the method. Also, it is
shown that if the number of Boubaker basis functions
is increased this method is convergent.
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