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Abstract In this paper, we present a three-layer dis-
tributed control structure with certain centralization
mechanism to generate the optimal trajectories of mul-
tiple unmanned aerial vehicles (UAVs) for searching
target in complex environment, based on the method
of Gaussian mixture model (GMM) and receding hori-
zon control (RHC). The goal of cooperative search-
ing problem is to obtain the maximum probability of
finding the target during given flight time under vari-
ous constraints, e.g., obstacle/collision avoidance and
simultaneous arrival at the given destination. Hence it
is taken as a complicated discrete optimization prob-
lem in this paper. First, GMM is utilized to approx-
imate the prior known target probability distribution
map, and the searching region is hence decomposed
where several subregions representing a cluster of tar-
get probability can be extracted. Second, these subre-
gions are prioritized hierarchically by evaluating their
Gaussian components obtained from GMM, and then
allocated to UAVs aiming to maximize the predicted
mission payoff. Third, each UAV visits its allocated
subregions sequentially, and the corresponding trajec-
tory is obtained by RHC-based concurrent method.
Finally, the proposedmethod is demonstrated and com-
paredwith othermethods in the simulated scenario. The
simulation results show its high efficiency to solve the
cooperative searching problem.
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1 Introduction

Unmanned aerial vehicles (UAVs) have been widely
used in civilian or military fields in recent years, which
include but are not limited to target tracking, reconnais-
sance, surveillance, remote sensing, and battle dam-
age assessment. Compared to single UAV, multiple
UAVs will perform these missions more efficiently and
robustly. There have been lots of work on developing
the coherent and efficient coordination of multi-UAVs
in many cooperative control problems [1–7], e.g., for-
mation flight, cooperative surveillance, obstacle avoid-
ance, target tracking, communicationmaintenance, tar-
get detection and localization, and many others.

This papermainly focuses on the cooperative search-
ing problem in complex environment, based on the
prior region information of target probability, sensor
detection difficulty, and geographic environment. The
framework of this problem can be divided into two
parts: environmentmodeling and decision-making pro-
cess. The goal is to obtain the effective and collision-
free coverage routes, by which the UAV group can be
instructed to search the target of interest and then gather
the maximum payoff (i.e., cumulated probability) or
decrease the uncertainty as much as possible during
the given searching time.
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Searching theory is first presented and developed
in the single-UAV search-and-rescue operations [8,9].
The region is usually discretized into grids with asso-
ciated target probability, and then the optimal trajec-
tory is generated based on the probability distributions
from Bayesian filter updates. Many mathematical and
heuristic approaches havebeenproposed to instruct sin-
gle UAV to search the stationary or moving target in
the region, which include but are not limited to greedy
methods (one-step or N-step look-ahead method) [10],
probabilistic methods [11], and so on. In Ref. [12], a
hierarchical robot-independent system is designed to
compute the complete coverage trajectory with min-
imum repetition through the known obstacle environ-
ment. Thewhole region is decomposed into several free
regions, and the optimal routes through these connected
regions are then computed, and the complete coverage
path is finally obtained accounting for the range of the
deployed sensor. Lin et al. [13] present the hierarchical
heuristic search method for UAV coverage path plan-
ning. By prioritizing the region with probability distri-
bution based on Gaussian mixture model (GMM), this
methodoutperformsother traditional heuristicmethods
with respect to searching efficiency.

As mentioned above, the searching problem by sin-
gle UAV has been well resolved. However, the coop-
erative search in complex environment is a much more
complicated problem. The cooperation mechanism,
e.g., mission allocation, collision avoidance, simulta-
neous arrival at given end point, and communication
maintenance must be taken into account [14]. Unlike
the traditional path planning for obstacle avoidance
[29]which is the variant of traveling salesman problem,
however, the cooperative searching problem is much
more difficult with the challenges of partial detection
and repeated visits. In order to gather more informa-
tion, UAVs should take all uncertain areas as possi-
ble waypoints. In recent years, a great deal of progress
about cooperative target searching has been made by
researchers.

Zamboni search is presented to produce the parallel
trajectories, ensuring that UAVs visit all the points at
least once [15,16]. It is one kind of exhaustive coverage
method, so is the Random Search. This kind of method
may be the best strategy when the target probability
is uniformly distributed or completely unknown, but
it will be obviously inefficient when there exists prior
information about target or the searching time is lim-
ited. To our knowledge, search graph-based method is

one kind of mainly utilized algorithm for cooperative
searching. In Ref. [17], on the basis of the dynamically
updated graph, a receding horizon optimization-based
cooperative search algorithm is presented to discover
the target with probability one in finite time, which
jointly optimizes the routes and sensor orientations at
the same time. Millet et al. [18] present a decentral-
ized cooperative search method including a two-step
updating procedure for the probability maps. Based
on the Bayesian rule, each UAV updates its individ-
ual probability map of coverage area after one obser-
vation, and then transmits the probability map to its
neighbors for map fusion. In Ref. [19], multi-UAVs
searching target in large scale environment is solved
by explicit decentralized gradient-based negotiation,
which has the computational advantage and robust-
ness compared to conventional mathematical methods.
Ref. [20] utilizes theDistributedModel PredictiveCon-
trol (DMPC) to solve the cooperative search problem
in the target area, which is thoroughly visited by a
team of vehicles while avoiding collision and effort
duplication. Other methods include but are not limited
to Local Hill-Climbing method (i.e., one-step greedy
method) [21], intelligent methods [22], mixed-integer
linear programming (MILP) [23], and so on. However,
these methods may have the local optimum problem,
meaning that UAVs may move in the subregion with
local maximum target probability for too long time
before they break away. Hence the efficiency will be
low especially in the large searching space with com-
plex probability distribution. Unlike the above meth-
ods, one efficient searching way is first to partition the
space into several subregions bymethods [5,15,24,26],
e.g., polygonal decomposition, Voronoi graph decom-
position, fuzzy c-mean clustering. The number of sub-
regions is usually equal to that of UAVs. Then the coop-
erative search problem is translated to a simple single-
UAV search problem, where each UAV only needs to
plan its respective coverage trajectory in its allocated
subregion, and the collision between UAVs can natu-
rally be avoided. But the allocation principle is rough or
unreasonable sometimes, and the local optimum prob-
lem may still exist in the subregion.

In this paper, we focus on solving the cooperative
searching problem in complex environment. By comb-
ing GMM and RHC, a hybrid method with three-layer
structure is presented here. First, as GMM is an effi-
cient method of data clustering, it is utilized here to
portion the region into several subregions on the basis

123



Gaussian mixture model and receding horizon control 905

of probability distribution map. Then, subregions are
prioritized and then allocated to UAVs based on the
predicted payoff. For each UAV, there will be one or
several subregions to be visited. Third, the searching
path of each UAV is planned by the RHC-based con-
current method. The individual path segment in each
allocated subregion is calculated by RHC concurrently,
and the best path segment is chosen aiming to obtain
the maximum payoff of one visit. UAV trajectory can
finally be obtained by combing these segments, and the
local optimum problem is well resolved.

The remaining paper is organized as follows. Sec-
tion 2 models the cooperative search problem, includ-
ing the modeling of environment and various con-
straints. Section 3 describes the three-layer structure of
GMM–RHC method in detail. The simulation results
can be seen in Sect. 4. Section 5 draws the conclusion.

2 Cooperative search problem formulation

2.1 Environment modeling

In this paper, we suppose that Nu homogeneous UAVs
perform the searching mission over a rectangular area
S at a constant height H , and the searching region is
uniformly divided into M = Lx × Ly grids. The target
speed is assumed to be much smaller than that of UAV.
For each grid m(m = 1, 2, . . . , M), there is an associ-
ated value p(m) ∈ [0, 1],which denotes the probability
of the target existing in this grid. The values of p(m)

for all the grids construct the probability distribution
map, and we define:

M∑

m=1

p(m) = 1 (1)

Each UAV i(i = 1, 2, . . . , Nu) is equipped with
a gimbaled camera, the line of sight (LOS) of which
will always aim straight down even when UAV per-
forms yaw or roll maneuvers. We assume that UAV is
always over the center of one grid and the field of view
(FOV) of camera covers at least this grid exactly at
each time step t (t = 1, 2, . . . , T ). Besides, the cam-
era footprint is regarded as a glimpse, meaning that the
corresponding grid will be only detected once at one
time step. It should be noticed that, considering the
limitation of sensor reliability and the task difficulty of

complex areas (e.g., vegetation, buildings), the detec-
tion may not occur sometimes even when the camera
covers the grid occupied by the target. Hence g(m) is
presented here to denote the detection probability when
the sensor covers the grid m.

Suppose that the FOV range is exactly covering one
grid. Before the modeling of g(m), we first model the
complex areas of searching space. In this paper, the
searching behavior is performed in urban environment,
including tall buildings (the height satisfies h ≥ H)

and low buildings (h < H). Cylinder and cuboid are
the main types of buildings, and grid m will be consid-
ered to be occupied by the building if the grid center
is inside of this building. The grids occupied by tall
buildings construct the restricted region or no-fly zone
XR which UAVs must avoid, and the corresponding
detection probability is assumed to be 0 for simplicity.
The grids occupied by low buildings construct the area
XD with zero detection probability, but UAVs can fly
safely over this area. Based on the above assumptions,
we model g(m) as follows:

g(m) =
{
0 m ∈ XR or m ∈ XD

gs otherwise
(2)

where gs ∈ (0, 1] is the reliability coefficient of sensor
in free environment, and it mathematically quantifies
the belief of sensor glimpse reducing the grid uncer-
tainty.

Equation 2 is suitable for the FOV range covering
exactly one grid. FOV range sometimes covers more
than one grid, as shown in Fig. 1a. Rs is FOV radius,
and θ is FOV angle, and H is flight height. In this case,
the LOS occlusion, caused by city buildings, should be
considered. For simplicity, if the straight line between
UAV and grid center intersects the building, we think
that the occlusion occurs and the detection probabil-
ity by UAV is 0. However, this judgment method is
very time-consuming as UAV positions are varying, so
we model the visibility region here. We define XH

m as
the visibility region of grid m at height H , which is
shown as the gray area in Fig. 1b and is obtained by the
Sweep Algorithm [5]. Only when UAV is in the visi-
bility region, i.e., xi ∈ XH

m , can the grid be detected.
Hence g(m) is defined as follows:

g(m) =
{
0 m ∈ XR or m ∈ XD or xi /∈ XH

m
gs otherwise

(3)
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Fig. 1 Illustration of sensor
FOV and visibility region. a
Sensor FOV. b Visibility
region
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Let dti (m) ∈ {0, 1} be the flag describing whether
UAV i scans over the grid m at time index t , and
lti (m) = ∑t

j=1 d
j
i (m) is the total number of looks that

UAV i has already searched over grid m by time t , and
Lt (m) = ∑Nu

i=1 l
t
i (m) is the total number of looks over

grid m by all the UAVs. We assume that each UAV
detects the grids independently with probability g(m),
and the observations of eachUAVare also independent.
Therefore, based on the detection history, the probabil-
ity of detecting the target over gridm by time t is given
as follows:

Gt (m) = 1 − (1 − g(m))L
t (m) (4)

If UAV i takes one more look on the grid m, the
estimated increment of probability Gt (m) will be:

�Gt (m) = (1 − g(m))L
t (m) g(m) (5)

It is apparent from Eq. (5) that the first look of a
grid will result in the maximum increase in certainty
about this grid, which changes from 0 to g(m). This
update rule can easily express the nature of diminish-
ing returns by each camera look. By combing the tar-
get existence probability p(m), we can obtain the real
detection reward over grid m by time t :

Pt (m) = p(m)Gt (m) (6)

If UAV i takes one more look on the grid m, the
estimated increment of detection reward will be:

�Pt (m)= (1 − g(m))L
t (m) g(m)p(m) (7)

The total detection reward or the cumulated detec-
tion probability by time t is computed by:

Pt
M =

M∑

m=1

Pt (m) (8)

Define φ = {φ1, . . . , φNu } as the planned trajecto-
ries of Nu UAVs with time T , and � represents all
the possible cases of φ. For any alternative trajectories
φ ∈ �, according to the statistics of the number of looks
over each grid, we can obtain its total detection reward
PT
M (φ) from Eq. (8). There is an optimal solution φ∗

from set �, which satisfies PT
M (φ∗) ≥ PT

M (φ),∀φ ∈
�. Therefore, our goal is to find the optimal routes
φ∗ that obtain the maximum detection payoff, and this
cooperative target searching process can be regarded
as a discrete optimization problem.

If the time T approaches to infinity, the number
of looks over each grid will be large enough, and
hence PT

M (φ) will approach 1 eventually. In engineer-
ing application, however, the value of T is finite, so
PT
M (φ) < 1 holds. For fair comparison, the detection

efficiency is presented here to measure the path quality
of different solutions:

re f f = PT
M (φ)

PT
M (φ∗)

(9)

where re f f ≤ 1 holds. However, as the optimal route
φ∗ is unknown actually, the ideal trajectories φideal =
{φideal1, . . . , φidealNu } are constructed here to replace
φ∗. The following is the process of generating φideal

[13]: First, for each UAV i , we take its initial point as
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the first waypoint (t = 1) of its path φideali ; second,
at next time step (t = t + 1), each UAV successively
transfers to the selected grid, by onemore look ofwhich
UAV can collect the largest increment of probability
according to Eq. (7), and the total number of looks
over the selected grid updates accordingly; then, the
above procedures continue until t > T holds, and we
can obtain the ideal path of each UAV. The detection
efficiency is hence rewritten as:

re f f = PT
M (φ)

PT
M (φideal)

(10)

In addition, during the process of generating φideal,
the selected grid should be outside of the no-fly zone
to achieve the obstacle avoidance; to avoid collision
between UAVs, the grid must not be occupied by two
or more UAVs at the same time. However, it should be
noticed thatmost of thewaypoints are still non-adjacent
or high-steering-angle grids, meaning that UAV will
jump from one grid to another ideally ignoring UAV
dynamic constraints.

2.2 Simplified UAV model

Asmentioned above, UAVs fly at a constant altitude, so
UAV position can be simplified as the projection onto
the searching ground S. Besides, each agent is assumed
to be always over the center of one grid at each time
step. Hence the position of agent i at time t can be
denoted as

[
xti , y

t
i

] ∈ {1, . . . , Lx }×
{
1, . . . , Ly

}
. Each

UAV will move from its current grid to the neighbor-
ing grids at each time step subjecting to the dynamic
constraints. In this paper, the physical curvature radius
constraint is mainly considered for simplification: We
define ϕt

i ∈ {0◦, 45◦, . . . , 270◦, 315◦} as the heading
angle of agent i at time t , and UAVwill have three pos-
sible orientations, i.e., ϕt+1

i ∈ {
ϕt
i − 45, ϕt

i , ϕ
t
i + 45

}

at the next time step t + 1, and the heading rate
is denoted as ωt

i ∈ {−45◦, 0◦, 45◦}. To ensure that
the agent is always located at the grid center at each
time step, the agent velocity vti with the orientation
ϕt+1
i ∈ {45◦, 135◦, 225◦, 315◦} should be

√
2 times

as that of other cases. We take zti = [
xti , y

t
i , ϕ

t
i

]T as
the state of agent i at time t , and uti = ωt

i the con-
trol input. The corresponding continuous forms of state
and control input are zi = [xi , yi , ϕi ]T and ui = ωi ,
respectively. The continuous form of UAV kinematics
żi = f (zi , ui ) can hence be simplified as:

⎧
⎨

⎩

ẋi = vi cosϕi
ẏi = vi sin ϕi
ϕ̇i = ωi

(11)

The discrete form of Eq. (11) is:

zt+1
i = zti + f (zti , u

t
i ,�t) (12)

where

f (zti , u
t
i ,�t) =

⎡

⎢⎣

vti cos(ϕ
t
i + ωt

i�t)�t

vti sin(ϕ
t
i + ωt

i�t)�t

ωt
i�t

⎤

⎥⎦ (13)

where �t is the sampling time interval (�t = 1s in
this paper). By this formulation, the grids UAV search
in sequence can constitute the waypoints of path, and
all the consecutive waypoints are then connected to
construct the planned path.

2.3 Constraint conditions

We assume that the connectivity or communication
between any two UAVs will always be maintained in
this paper. This is to say, eachUAVwill perfectly obtain
the states of all the UAVs and store their history of
detection as well. Besides, the constraint of collision
avoidance is supposed to be satisfied if any two UAVs
(∀i, j ∈ {1, . . . , Nu} and i 	= j) do not occupy the
same grid at the same time:
[
xti , y

t
i

] 	=
[
xtj , y

t
j

]
(14)

In complex environment, there are various obstacles
whichUAVsmust avoid during the process of searching
target. In the urban environment studied in this paper,
UAV should be always outside of the restricted region:
[
xti , y

t
i

]
/∈ XR (15)

In addition to UAV motion constraints described in
Sect. 2.2, there are also some initial constraints, termi-
nal constraints, and time constraints forUAVregroupor
assemble. In this paper, each UAV is forced to reach its

corresponding pre-specified destination
[
x f
i , y f

i

]
from

the initial point
[
x0i , y

0
i

]
respectively. What’s more, all

the UAVs should arrive at the destinations simultane-
ously at the specific time T . Hence these constraints of
each UAV i(i = 1, 2, . . . , Nu) can be modeled as:
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[
x1i , y

1
i

]
=

[
x0i , y

0
i

]
(16)

[
xTi , yTi

]
=

[
x f
i , y f

i

]
(17)

3 Cooperative search strategy based on
GMM–RHC

3.1 Multi-UAV search framework using GMM–RHC

As we know, one traditional effective way of multi-
UAV cooperative searching is to partition the search-
ing space into several subregions, the number of which
is equal to that of UAVs. Then the cooperative search
problem is translated to a simple single-UAV search
problem, where each UAV only needs to compute its
respective trajectory in its allocated subregion, and the
collision between UAVs can hence be avoided natu-
rally. However, the allocation principle is rough and
unreasonable sometimes. Consequently, if there are
several peaks of probability in its subregion, UAVmay
get stuck in the area with local maximum probability
for too long before itmoves to another probability peak.

In this paper, a three-layer architecture usingGMM–
RHC is presented to solve the cooperative searching
problem, as shown in Fig. 2. First, GMM is utilized
to approximate the probability distribution map, i.e.,
p(m), and the searching region S is decomposed and
hence several subregions can be extracted, each of

Detection 
information

Guidance 
command

Region decomposition 
by GMM

Subregion prioritization 
and allocation

Searching behavior 
decision by 

concurrent RHC

model 

Instructions

Communication network

Instructions

Detection 
information

Guidance 
command

model

Instructions

UAV
uN1UAV

Searching behavior 
decision by 

concurrent RHC

Centralized 
Command  

Distributed 
collaboration

Fig. 2 Three-layer structure of cooperative search by GMM–
RHC

which represents a cluster of probability p(m). It is
important to note that the number of subregions may
be larger than that of UAVs. Second, these subregions
are prioritized hierarchically by evaluating their Gaus-
sian models obtained from GMM, and then allocated
to UAVs aiming to maximize mission effectiveness.
Third, eachUAVvisits its allocated subregions sequen-
tially and plans route by concurrent RHCmethod based
on the history of detection information. In essence,
this three-layer architecture can be regarded as a dis-
tributed control structure with certain centralization
mechanism,which simultaneously combines the global
optimization performance of centralized method and
the robustness of decentralized method.

In the proposed method, each subregion by GMM
will only correspond to one probability peak, and all
the subregions are prioritized and allocated to UAVs
hierarchically, so each UAVwill prefer to visit the high
probability areas at early stage. The concurrent RHC
method ensures UAVs obtain the maximum payoff at
each time step as well. Hence the local optimum prob-
lem is well resolved, and the efficiency of target search-
ing will be greatly enhanced.

3.2 Searching region decomposition by GMM

The probability distribution map of target, in most
cases, is not completely irregular or unknown. It can be
generated by Bayesian model considering the target’s
last known position, and there will be several high-
quality clusters in this region. However, the distribution
map of sensor detection probability in complex envi-
ronment (especially the urban environment with scat-
tered buildings studied in this paper) is usually irreg-
ular. Hence GMM is only utilized to approximate the
probability distribution map of target.

By quantifying the populationwith several Gaussian
probability density functions, GMM is a hierarchical
model for finding the clusters within the population
[27], which is often used for image processing. In this
paper, GMM is utilized to approximate the probability
distribution map of target.

First, we assume that there are D data points
(D ≥ M) to form the population. These data points
are confirmed as follows. The number of data points
located at the grid center [xm, ym] ∈ {1, . . . , Lx } ×{
1, . . . , Ly

}
m(m = 1, 2, . . . , M) is proportional to

its target probability p(m):
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Dm = p(m)D (18)

The equation
∑M

m=1 Dm = D holds based on Eq.
(1), and the set of data points correspond to the proba-
bility distribution map of target.

Second, we assume that there are at most K Gaus-
sian components Gk(x)(k = 1, . . . , K ) with the coef-
ficient αk in themixturemodel. The probability density
function of each Gaussian model Gk(x) is:

Gk(x) = 1√
(2π)2 |Ck |

exp

(
−1

2
(x − µk)

TC−1
k (x − µk)

)

(19)

wherex=[x, y]T is the two-dimensional position in this
paper representing the grid center, Ck is the covariance
matrix and µk is the mean vector. With the property of∑K

k=1 αk = 1, the mixture model can be written as:

p(x) =
K∑

k=1

αkGk(x) (20)

Therefore, we should estimate the parameters of
each component, i.e., αk , Ck and µk . The widely used
EM (Expectation Maximization) method is utilized
here. The process of EM is as follows:

1) Initialization. Based on the judgment of intra-
cluster distance, k-means method is first used to
obtain the clusters with high similarity. The pro-
portion of each cluster is taken as αk , and the mean
of each cluster is regarded as µk , and Ck can then
be computed.

2) Expectation. For each data point (d = 1, . . . , D)

with position xd , we compute the posteriori prob-
ability of αk (k = 1, . . . , K ), which is denoted as
βdk :

βdk = αkGk(xd)∑K
i=1 αi Gi (xd)

(21)

3) Maximization. The parameters αk , µk and Ck are
updated as follows:

αk =
∑D

d=1 βdk

D
(22)

µk =
∑D

d=1 βdkxd∑D
d=1 βdk

(23)

Ck =
∑D

d=1 βdk(xd − µk)(xd − µk)
T

∑D
d=1 βdk

(24)

4) Convergence. Repeat Step 2 and 3 until the con-
dition

∣∣p(x) − p′(x)
∣∣ < ε holds, where p(x) and

p′(x) are the values calculated by Eq. (20) using
the estimated mixture model at the current and last
iteration, respectively. Besides it should be noticed
that, if the coefficient of any component is small
enough (αk < 0.01 in this paper) at the current
iteration, this component is eliminated.

The subregions can be extracted from the searching
area based on the parameters of Gaussian components.
For eachGaussian component, there is a corresponding
area where the sum of probability under the standard
Gaussian function within three standard deviations is
99.7%. The weigh of this subregion is αk . This sub-
region is actually an ellipse area with the center µk ,
and the two axial lengths are 3σxk and 3σyk , respec-
tively, in the translated coordinate system, where the
two eigenvectors of Ck are taken as coordinate axes.
σxk and σyk are the square roots of the eigenvalues of
Ck corresponding to the aforementioned eigenvectors.
In a scenario, the target probability distribution map
and its mixture result by GMM with K = 8 are shown
in Fig. 3. As we see, GMM can well approximate the
real probability distribution map.

3.3 Subregion prioritization and allocation

We first discuss the case of single-UAV searching prob-
lem. The subregions {S1, . . . , SK } by GMM should
first be prioritized, and then UAV visits these subre-
gions in accordance with the sequence. In this way,
UAV can collect more detection payoff. In this paper,
three factors including subregion reward, subregion
area, and region-transferring distance constitute the pri-
ority indexes of subregion.

As discussed in Sect. 3.2, the sum of probability
under a standard Gaussian function in each subregion
is 99.7%. Based on the coefficient of each Gaussian
component in the mixture model, we can obtain the
subregion reward:

Rk = 0.997αk (25)

Each subregion is actually an elliptical area with
axial lengths 3σxk and 3σyk . From Eq. (6), it is obvious
that not only the target probability but also the detection
probability g(m)will influence the searching behavior.
From Eq. (2), in the urban environment g(m) will be 0
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Fig. 3 Approximation of
probability distribution map
by GMM. a Probability
distribution. b Gaussian
mixture result
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if UAV is in the region XR or XD . Hence these areas
should be subtracted as follows when we compute the
subregion area:

Ak = π · 3σxk · 3σyk − Area(SXR∪XD |SXR∪XD ⊂ Sk)

(26)

where Area(SXR∪XD |SXR∪XD ⊂ Sk) means the area of
XR and XD involved in the subregion Sk . In this paper,
Ak actually means the time spent for coverage flight in
the subregion.

The region-transferring distance means the dis-
tance from one subregion to another, and the distance
between the transferred subregion and destination is
also includedwhen endpoint exists.At thefirst iteration
of region classification (c = 1), region-transferring dis-
tance is defined as:

Lk =
{∥∥x0 − µk

∥∥ + ∥∥x f − µk

∥∥ With end point∥∥x0 − µk

∥∥ otherwise

(27)

where x0 is the start point and x f is the end point. At
other iterations (c ≥ 2), region-transferring distance is
defined as:

Lk =
{∥∥µIc−1

− µk

∥∥ + ∥∥x f − µk

∥∥ With end point∥∥µIc−1
− µk

∥∥ otherwise

(28)

where µIc−1
is the selected subregion center with high-

est priority from the remaining subregions at c − 1
iteration. Lk means the time spent for the transition
between subregions.

The priority index of subregion Sk can then be con-
firmed as:

EPk = Rk

Ak + Lk
(29)

The larger EPk is, the higher the priority order of
subregion is. At cth iteration, by sorting the priority
indexes of the remaining subregions, we can obtain the
one with the maximum value and take it as the c-level
subregion. Then it is removed from the remaining sub-
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region set for the next iteration (c = c + 1), and the
above steps repeat until all the subregions are priori-
tized. This is to say, the process will have K iterations
before stop.

For single-UAV searching problem, the prioritized
areas will be visited by UAV orderly. However, for
multi-UAV searching problem, the subgerions should
first be allocated toUAVs under the optimal index. Sup-
pose that there are Ki selected subregions for eachUAV
i(i = 1, 2, . . . , Nu)from the whole set {S1, . . . , SK },
and

∑Nu
i=1 Ki = K hence holds.Wefirst prioritize these

subregions for UAV i by Eqs. (25)–(29), and the results
are denoted as {S̄1, . . . , S̄Ki }. Then we compute the
evaluation index of subregions {S̄1, . . . , S̄Ki }:

EAi =
Ki∑

j=1

(
A j + L j

)

R j
(30)

where A j , R j , and L j are the three factors computed by
Eqs. (25)–(28). But it is noted that the distance between
region centroid and end point will not be taken into
account when calculating L j until the last subregion
( j = Ki ).

Then the total index of task allocation is defined as:

EA = λ1

Nu∑

i=1

EAi + λ2 ·
Nu∑

i, j=1
i 	= j

∣∣EAi − EA j
∣∣ (31)

where the first part reflects the total cost of UAVs, and
the second part is used to balance the efficiency of UAV
group, and λ1 and λ2 are the weighting coefficients.
UAV group will perform the searching mission more
efficiently with a smaller EA, so the optimal allocation
strategy is determined as:

S∗
allocation = argmin(EA) (32)

Based on Eq. (32), the auction algorithm [28] is used
here to compute the optimal task allocation scheme.

3.4 Searching behavior decision by RHC-based
concurrent strategy

3.4.1 RHC-based concurrent strategy

After prioritizing subregions and assigning them to
UAVs, each UAV should orderly visit its allocated sub-
regions with centroids {S̄1, . . . , S̄Ki }. Take UAV i as an

example, the RHC-based concurrent strategy is utilized
here to optimize the searching behavior.

First, UAV path segments are initialized, including
the shortest pathφ0 from the start point to thefirst subre-
gion centroid with the flight time t0, the initial coverage
path of each subregion φ j = {S̄ j } ( j = 1, . . . Ki ) with
the time t j = 1, the shortest paths between adjacent
subregions φ j→ j+1( j < Ki ) with flight time t j→ j+1,
and the shortest path φ f from the last subregion to the
end point with needed time t f .

Second, if the sum of all the above time is less than
T , a newwaypoint should then be added to the selected
path segment as follows. For the local path segments
φ j of all the subregions, their next-step behaviors can
be planned by RHC method concurrently. But we only
choose the subregion j∗ with the maximum predicted
payoff, and take its planned result as the newly added
waypoint of local path φ j∗ , and the time updates by
t j∗ = t j∗ + 1. Then, the shortest region-transferring-
pathφ j∗→ j∗+1 from thiswaypoint to the next subregion
center (if j∗ < Ki ), or the shortest path segment φ f

between this waypoint and end point (if j∗ = Ki ), is
re-planned. The corresponding time, t j∗→ j∗+1 or t f ,
updates as well. The above procedures will continue
until the total time is equal to T .

Third, we obtain the optimal UAV path by combing
path segments sequentially {φ0, φ1, φ1→2, φ2,

. . . , φ(Ki−1)→Ki , φKi , φ f }, and the decision-making
process ends.

By the above concurrentRHCstrategy, the searching
behavior with the maximum payoff in subregions will
be added into path at each time. This strategy ensures
that time constraint, initial constraint, and terminal con-
straint are easily be satisfied. In this paper, with high
calculation efficiency, our previously proposed inter-
fered fluid dynamic system (IFDS) method will be uti-
lized here to plan the shortest region-transferring-paths,
where no-fly zones or obstacles can easily be avoided
[29]. When calculating the coverage paths in the sub-
region by RHC, safety cost will be introduced into
the evaluation index, which can be seen in Sect. 3.4.2.
Hence this method can meet the constraint of obstacle
avoidance. Besides, UAVs will rarely collide with each
other, as they search the target in different subregions.
Hence the constraint of collision avoidance is satisfied
as well.

The pseudocode of RHC-based concurrent strategy
can be seen in the Table 1. The illustration of RHC-
based concurrent strategy is shown in Fig. 4, where the
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Table 1 Pseudocode of RHC-based concurrent strategy

Path of UAVi (start point 0x , end point fx , total time T , terrain information, array-list of centroids 1{ ,..., }
iK

S S )

1. Plan the shortest path from start point to the first subregion centroid i.e. Path 0
0 1=IFDS( , )Sφ x with time 0t

2. Initialize the coverage path of each subgerion ={ }j jSφ with time =1jt , =1,... ij K

3. Plan the shortest path between adjacent subregions +1 1=IFDS( , )j j j jS Sφ → + with time 1j jt → + , =1,..., 1ij K −

4. Plan the shortest path from the last subregion centroid to end point i.e. Path =IFDS( , )
i

f
f KSφ x with time ft

5. While (
1

10
1 1

i iK K

f j j j
j j

t t t t T
−

→ +
= =

+ + + <∑ ∑ )

6. For each subregion =1,... ij K
7. The predicted next point =RHC( )j jφ′x
8. End For
9. Choose the subregion = arg max( ( ))t

jj P∗ ′Δ x

10. Update the coverage path * * *={ , }
j j j

φ φ ′x with time * *= +1
j j
t t , and the detection information 

11. If ij K∗ <
12. Path * *+1 1

=IFDS( , )
j j j j

Sφ ∗ ∗→ +
′x with updated time 

+1j j
t ∗ ∗→

13. Else
14. Path *=IFDS( , )f

f j
φ ′x x with updated time ft

15. End If
16. End While
17. Obtain path ( )0 1 1 2 2 1{ , , , , , , , }

ii i K fK Kφ φ φ φ φ φ φ→ − →

Fig. 4 Illustration of the
concurrent RHC method
with 3 subregions (Ki = 3).
a Initialization of coverage
path. b Coverage path with
more flight time

Start Point

End PointSubregion 1

Subregion 2

Subregion 3

0φ

1φ

3φ

1 2φ →

2φ

fφ

2 3φ →

Obst-
acle

Start Point

End PointSubregion 1

Subregion 2

Subregion 3

0φ

1φ

3φ

1 2φ →

2φ

fφ

2 3φ →

Obst-
acle

(a) (b)

planned path will cover more areas since the flight time
increases.

3.4.2 RHC method

The standard RHC method [30,31] is utilized here to
plan the coverage path of each subregion. The state of
UAV i at time t is zti = [

xti , y
t
i , ϕ

t
i

]T, and the con-
trol input is uti = ωt

i , as defined in Sect. 2.2. The
future control sequence with time length N is defined
as ut :t+N−1

i = [uti , . . . , ut+N−1
i ], and the future states

zt :t+N−1
i = [zti , . . . , zt+N-1i ] can be predicted based on
UAVmodel from Eqs. (12–13). The objective function
can be denoted as J

(
zti ,u

t :t+N−1
)
:

J
(
zti ,u

t :t+N−1
)

=
{∑N−1

j=0 �Pt+ j (xt+ j
i ) if xt+ j

i /∈ XR

−∞ otherwise
(33)

where xt+ j
i = Hzt+ j

i is UAV position at time t + j ,

and H is the matrix H = [1 0 0; 0 1 0]. �Pt+ j (xt+ j
i )
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Fig. 5 Planning results by GMM–RHC. a Probability distribution of Scenario I. b GMM result. c Detection difficulty. d Collected
probability on first visit. e Paths in 3D space. f Paths in 2D space. g Detection payoff versus time

is the detection payoff of one more look over grid, as
defined in Eq. (7). The penalty index is introduced here
to avoid no-fly zones.

Then we can obtain the optimal control sequence
ut

∗:(t+N−1)∗
i by maximizing the objective function:

ut
∗:(t+N−1)∗
i = arg maxJ

(
zti ,u

t :t+N−1
)

(34)

Only the first term, i.e., ut
∗
i , is utilized here to obtain

the predicted next-step point, and other terms are aban-
doned.

3.5 Limitations and discussions

In the problem of multi-UAVs searching target, we
assume that the target probability distribution and the

topographic information are already known and sta-
tionary. However, the real case is dynamic or unknown
sometimes, so some preliminary improvements are
introduced into the GMM–RHC method.

We suppose that it will take some time for UAVs to
fly to the target region after obtaining the a priori infor-
mation of target probability distribution. The potential
motion region of target can then be expressed as a sec-
tor area, the size and shape of which are defined by
the changing range of velocity and heading angle. If
the target motions of different directions are indepen-
dent and the acceleration during time period remains
constant, we can predict the initial target probability
distribution map on the basis of Gauss distribution
model.

Considering the case that the target moves with the
average speed (much smaller than UAV speed) during
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Fig. 6 Searching paths of UAVs with different gs . a gs = 0.5.
b gs = 0.2

the whole searching process, we introduce the dilata-
tion parameter λx (λx > 1) and λy

(
λy > 1

)
to expand

the size of extracted subregion. Hence the subregion
will become an ellipse area with two axial lengths
3λxσxk and 3λyσyk .

Sometimes the topographic information (i.e., the
buildings or threats distribution in the urban environ-
ment) is unknown or dynamic. In this case, the first and
second procedures of GMM–RHC (i.e., the approxi-
mation and decomposition of searching region) will
remain unchanged, but only the third procedure (i.e.,
the path planning of single UAV) is adjusted, to sim-
plify the algorithm. Once UAVs detect the new topo-
graphic information at time t , each UAV should plan its

rest searching path again by utilizing the RHC-based
concurrent strategy (where the duration time becomes
T − t , and UAV current position is taken as the initial
point). Besides, the dynamic IFDS method [32] is used
to plan the shortest path between adjacent subregions.

4 Numerical simulations

In this paper, constrained by the hardware technology
and the low security of UAVs in real urban environ-
ment, the cooperative searching problem by GMM–
RHC is verified by simulations. To test the performance
of our proposed target search method, several simu-
lation experiments are done in MATLAB R2011a on
a PC with Intel Core i5 CPU processor and 2.5GHz
frequency. Each experiment will be run 20 times inde-
pendently, and the statistical results including detection
efficiency and running time are mainly utilized here for
analysis. The urban area with the size 2500m×2500m
is taken as the search region, which is discretized uni-
formly into 50×50grids or cells. The target probability
distribution map is randomly generated by the sum of
10 exponential functions. Unless otherwise specified,
the values of other needed parameters are defined as
follows: the total time T = 500 s, the number of UAVs
Nu = 3, UAV flight altitude H = 100m, the detec-
tion probability of sensor gs = 0.95, the FOV radius
Rs = 50m, the maximum number of Gaussian com-
ponents K = 8, the number of training data points
D = 10,000, the length of time horizon N = 4, and
the weighs λ1 = 0.7 and λ2 = 0.3.

4.1 Target searching by GMM–RHC

Three UAVs with start points (200, 200)m, (800,
100)m, (2000, 500)mwill search the target in Scenario
I. And the end points are separately (1000, 2200)m,
(1200, 2300)m, (1700, 2200)m. The probability dis-
tribution map is shown in Fig. 5a, and its GMM result
with 7 approximated subregions is shown in Fig. 5b.
Some high-rise buildings (dark green color) or low
buildings (yellow color) distribute randomly in Sce-
nario I, as shown in Fig. 5e. Hence we can compute
the detection probability g(m), and the detection diffi-
culty, i.e., 1−g(m), is displayed in Fig. 5c. By combing
the target probability distribution map and the detec-
tion difficulty map, we can obtain the detection payoff,
i.e., collected probability on the first visit of each grid,

123



Gaussian mixture model and receding horizon control 915

500 1000 1500 2000 2500

500

1000

1500

2000

2500

x(m)

y(
m

)

0

1

2

3

4

5

6

7

8

9

500 1000 1500 2000 2500

500

1000

1500

2000

2500

x(m)

y(
m

)

0

1

2

3

4

5

6

7

8

9

500 1000 1500 2000 2500

500

1000

1500

2000

2500

x(m)

y(
m

)

0

2

4

6

8

10

(a)

(b)

(c)

Fig. 7 Total number of looks over grid with different gs . a gs =
0.95. b gs = 0.5. c gs = 0.2

as shown in Fig. 5d. By the proposed allocation strat-
egy, the sorted subregions {7,4,6} will be allocated to
UAV1, and only subregion {1} is allocated to UAV2,
and sorted subregions {2,3,5} are allocated to UAV3.
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Fig. 8 Detection payoff versus time with different gs
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Fig. 9 Detection payoff versus time with different Rs

The searching paths of three UAVs are shown in Fig.
5e, f. As we can see, the paths will cover the regions
with high value of target probability, and all the high-
rise buildings can be avoided. Besides, the areas with
higher probability will be detected earlier. Figure 5g
illustrates the cumulated detection probability of each
UAVand the total payoff ofUAVgroup over time, com-
puted by Eq. (8).With the real payoff PT

M (φ) = 0.6093
and the ideal payoff PT

M (φideal) = 0.7364, we infer
that the efficiency is 82.74%. In addition, through cal-
culation, the ranges of distances between any UAVs
are [493, 2760]m, [550,2371]m, [100,2187]m, respec-
tively, meaning that UAVs will never collide with each
other.

4.2 Comparison between different parameters

In Scenario I, we set other values of sensor detection
probability (gs = 0.5, 0.2) for comparison. The paths
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Fig. 10 Planning results with different methods. a Probability distribution of Scenario II. b Searching paths by RHC (T = 500 s).
c Searching paths by Voronoi-RHC (T = 500 s). d Searching paths by GMM–RHC (T = 500 s)

can be seen in Fig. 6, and the number of looks over grid
can be seen in Fig. 7. As we can see, if the sensor detec-
tion probability or reliability increases, the paths will
be distributed with a larger coverage of the region, and
there will be less number of repeated looks over grid.
Besides, with a higher gs , the searching performance
will be better, as shown in Fig. 8.

In the above simulation, each UAV sensor covers
one grid exactly with the detection range Rs = 50m.
For comparison, we set different sensor ranges here
(Rs = 100, 150, 200m) in Scenario I and the curves of

detection payoff can be seen in Fig. 9. The larger the
sensor range is, the more payoff UAVs obtain.

4.3 Comparison between different methods

To further testify the performances of proposedGMM–
RHC method, other five methods including Random
Search, Zamboni Search, Hill Climbing, RHC, and
Voronoi-RHC are also utilized here for comparison.
As the paths by standard Zamboni Search cannot avoid
obstacles, IFDS method is introduced here to modify
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the Zamboni paths. The Voronoi-RHC method is per-
formed as follows: The region is first portioned into Nu

subregions by Voronoi graph, and RHC is then utilized
for single-UAV path planning. As these five methods
cannot handle the terminal constraints, end point of
UAV is not required here. Suppose that threeUAVswith
start points (100, 100)m, (300, 100)m, (500, 100)m
will search the Scenario II with the duration time
T = 500 s, and the target probability distribution map
is as shown in Fig. 10a. As we can see, there is a high-
value subregion in the lower right corner, but it is very
far away from other subregions.

For the limitation of paper length, only the trajec-
tories of UAVs by RHC, Voronoi-RHC and GMM–

RHC are illustrated in Fig. 10b–d, respectively. With-
out region prioritization and allocation, the searching
paths byRHCwill get stuck in other subregions but can-
not cover the lower right one. By GMM–RHCmethod,
each UAV will perform the searching tasks explicitly
in their own allocated subregions, so the local opti-
mum problem can well be solved. As we can see, UAV
routes will cover all the subregions, and especially the
lower right subregion with high value is searched by
UAV3. Although the paths by Voronoi-RHC can cover
all the subregions as well, UAV cannot be immediately
directed to the centroid of subregion with peak proba-
bility, and it will waste some time at the early stage of
searching.

The comparison between these algorithms with
respect of the detection payoff is shown in Fig. 11. The
thick black line is the payoff of the ideal paths φideal,
representing the theoretical upper limit. The payoff
curve byGMM–RHCmethod is the nearest to that ideal
curve, so it performs best with the highest detection
payoff.Voronoi-RHC is the second-bestmethod,which
is superior to the RHC and Hill-Climbing method. The
Random Search and the Zamboni Search method gain
the least probability here.

Table 2 shows the performance of the six methods
with different duration time (T = 100, 300, 500,700s).
For different duration time, the priority of these algo-
rithms with respect to efficiency is almost the same as
the conclusion from Fig. 11. The exception is that the
Zamboni Search will have higher efficiency (86.72%)
than Hill Climbing (67.72%) or RHC (83.01%) when
T = 700 s. The advantage of GMM–RHC is especially

Table 2 Performance of
different methods

The bold values denote the
best value of performance
among methods

Performance Method T = 100 s T = 300 s T = 500 s T = 700 s

Efficiency (%) Random Search 17.73 29.12 41.06 56.07

Zamboni search 18.68 31.02 51.31 86.72

Hill climbing 37.79 49.66 57.22 67.72

RHC 45.37 57.47 60.96 83.01

Voronoi-RHC 47.90 78.73 86.81 89.38

GMM–RHC 68.46 85.54 88.80 94.37

Running time(s) Random Search 0.01 0.01 0.02 0.03

Zamboni search 0.01 0.01 0.02 0.03

Hill climbing 0.14 0.36 0.59 0.84

RHC 1.35 3.36 6.67 7.89

Voronoi-RHC 2.97 4.71 7.88 8.70

GMM–RHC 5.37 7.41 8.85 10.93

123



918 P. Yao et al.

2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Experiment Number

E
ffi

ci
en

cy
(%

)

Random Search

Zamboni Search
Hill Climbing

RHC
Voronoi-RHC

GMM-RHC

Fig. 12 Efficiency of different methods in 20 tests (T = 300 s)

highlighted when the duration time T is small, mean-
ing thatGMM–RHCwill guideUAVs to visit the subre-
gionswith high probability primarily. The performance
of running time will be opposite to that of efficiency:
Random Search, Zamboni Search, or Hill Climbing
spends very little time; the time byRHC,Voronoi-RHC
or GMM–RHC will be much longer, and GMM–RHC
needs themost running time.However, the running time
of GMM–RHC is still acceptable considering the total
flight time.

4.4 Statistical results of different methods in 20 tests

By utilizing the abovementioned six methods, 20
MonteCarlo experimentswith duration time T = 300 s
are executed, where the target probability distribution
map and the topographic information are both gener-
ated randomly in each test. The comparison of search-
ing efficiency is as shown in Fig. 12. The description of
statistical results is the same as that of Sect. 4.3, and the
proposed GMM–RHC method has the largest search-
ing efficiency in most cases. Hence the GMM–RHC
method has strong robustness in various scenarios.

5 Conclusion

The cooperative searching problem by multi-UAVs in
complex environment is studied in this paper. Based on
the prior information of the target probability distribu-
tion map, the searching subregions can be extracted,

prioritized and then allocated to UAVs based on GMM
method. The RHC-based concurrent method is then
presented to obtain the coverage route of single UAV.
Overall, with the three-layer structure of GMM–RHC
method, the cooperative problem can be simplified
as a single-UAV planning problem. Besides, the var-
ious constraints including obstacle avoidance, col-
lision avoidance, and simultaneous arrival at given
destination can easily be satisfied. More importantly,
with this hybrid method UAVs will prefer to visit the
areas with higher value of target probability. Hence it
enables maximizing the searching payoff during the
limited flight duration time and avoids the local opti-
mumproblem effectively. Experiment results show that
although the running time by GMM–RHC is longer
than other methods, the searching efficiency will be
greatly enhanced. The future work will focus on per-
forming the algorithm in the real UAV platform.
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