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Abstract A modular multi-spherical soft robot, whi-
ch consists of five deformable spherical cells, two
friction feet, the electromagnetic valves and the con-
trol systems, is constructed. According to the deflating
action and the inflating action of the spherical cells,
the size and the shape of each spherical cell can be
changed.With two friction feet stickingwith the ground
in turn, the soft robot can move forwards, make a turn-
ing motion and avoid the obstacle. This paper creates a
nonlinear relation between the pressure P and the infla-
tion radius (r) at different original radii (r0) and obtains
the inflation or deflation velocity vr . Six inflating and
deflating steps to finish the turning motion are pre-
sented. Based on the geometric relationship between
the inflation radius (r) and the original radius (r0) of
each cell, the nonlinear turning process is described
to control the center positions (x , y, z) of the spherical
cell. Last, a simulation and an experiment of five spher-
ical cells are shown to emulate the turning process.
Experiment results show that the robot has a maximum
turning capability of 20◦ in one period.
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1 Introduction

Soft robots are a type of new robots, and research on
them is only at the initial stage. The main characteris-
tic of soft robots is their low resistance to stress forces.
Like some animals, they can morph among different
shapes tomove forwards. Soft robots havemany advan-
tages and priorities to traditional rigid robots. They
can change their sizes and shapes in large range and
have wide potential applications in detection, explo-
ration, succor and medicine. They can safely interact
with humans and natural environments [1]. They can
go through an obstacle, which can allow low height
only. The soft robot can better mimic the moving mode
of natural living creatures which can adapt to environ-
ments [2,3].

Soft robots use changes in pressure of liquid or air
to move in a unique way. Onal presented an approach
to create a bio-inspired soft robotic snake that could
undulate in a similar way to its biological counter-
part using pressure for actuation power, without human
intervention [4]. Cecilia [5] invented octopus-inspired
soft arms, which could bend like real arms of people.
Manti developed a soft robotic gripper with three fin-
gers. It could achieve passive adaption to target vary-
ing in shape, size and material during grasping, which
simplified the controlling system [6]. Fei analyzed the
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nonlinear dynamic moving process with the deflating
and inflating modes [3,7]. Additionally, some different
moving modes such as a caterpillar-inspired moving
mode [8–11] and a deformational jumping and crawl-
ing moving mode were presented. The crawling soft
robot was pushed by walking with four legs, which
was reflection of four-foot animals [12]. Teruyoshi
built up a model of a crawling soft robot by refer-
ring to the crawling mode of a snail. The snail robot
borrowed the forces created by the difference of the
pressure in the body and outside [13]. They are all
analogies of the nature. In all cases, the mechani-
cal motion is driven by external stimuli. Koh [14]
employed smart structures and actuators and proposed
adeformablewheeled robot that could change the shape
of the wheel depending on the obstacles. The robot
imitated the locomotion mechanism of the Amoeba,
actuated by the IPMC (ionic polymer–metal compos-
ites) actuators. The IPMC actuators pasted on the skin
of the robot and stimulated by regular control signals
could make the robot move forwards, backwards, enter
the narrow holes [15]. Shepherd used the explosive
combustion of hydrocarbons triggered by an electri-
cal spark to cause a soft robot to jump over obsta-
cles. The use of explosions for actuation was compat-
ible with soft machines. Explosive power allowed a
soft robot to jump 30 times its height with an initial
speed of 3.6m/s [16]. Huang [17] designed and fab-
ricated a microsoft swimming robot with both power-
ing and controlling functions provided by remote light,
which did not carry any electronic devices and bat-
teries. However, the research on the nonlinear turn-
ing motion and obstacle avoidance of the soft robot
is less.

In this paper, we present one kind of deformable
spherical modular soft robot. This kind of soft robot
can make a turning motion to avoid the obstacle and go
through the hole narrower than its body size. The non-
linear relation between the pressure P and the inflation
radius (r) at different original radii (r0), and the infla-
tion and deflation velocity vr are obtained. According
to the deflating and inflating actions of the spherical
cells, the size and the shape of each spherical cell can be
changed.With the friction feet stickingwith the ground
in turn, the motion can be finished. With six kinds of
different steps and constraint conditions, the soft robot
can make a turning motion. A simulation and an exper-
iment of five spherical cells are shown to emulate the
turning process in a period.

Fig. 1 Structure of the modular soft robot

2 Modular soft robot design

2.1 System structure

Modular soft robot, which consists of four spherical
cells and two friction feet, can move forwards accord-
ing to the deflating action and the inflating action of
each spherical cell. However, the soft robot only with
four spherical cells cannot provide the deflection angle;
thus, it cannot turn even if it encounters obstacles.
According to analyses and experiments, five spherical
cells are the basic turning motion unit of modular soft
robots (Fig. 1). In the paper, a five-spherical-cell soft
robot system is discussed. The approach proposed can
be extended to a robot made of more than 5 cells. Since
the spherical cells can deflate and inflate, this kind of
soft robot has the advantage of changing its size, which
is not all the soft robots can do. When this robot meets
a narrow hole, it can reduce the maximum inflation
radius r to go through the hole, which is narrower or
smaller than the maximum size of the soft robot.

The five-spherical-cell soft robot consists of a head
cell (Cell 1), a tail cell (Cell 5), two neck cells (Cell 2
and Cell 3), a body cell (Cell 4), a former friction foot
k1 and a latter friction foot k2 (Fig. 1). The former fric-
tion foot sticks with the bottom of Cell 1, and the latter
friction foot stickswith the bottomofCell 5. Eachmod-
ular cell is a rubber-like spherical thin shell. According
to the appropriate deflating or inflating action of each
spherical cell and two friction feet sticking with the
ground in turn, the robot can make a turning motion.
In order to provide a deflection angle of Cell 1, Cell 2
and Cell 3 are pasted between Cell 1 and Cell 4. When
Cell 2 and Cell 3 inflate synchronously, Cell 1 is put
up. Then, let Cell 2 and Cell 3 be with different radii,
so Cell 1 get the deflection angle.

Figure 2 shows the experiment system, consisting of
five spherical cells, the gas circuit system, microcon-
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Fig. 2 A soft robot system consisting of five spherical cells

troller (AT89S52, ATMEL), the air pump (30L/min),
the solenoid valve (QVT307), the emulsion pipelines
and power source (DC24V).

2.2 Inflation radius r

The five spherical cells are made of latex. In order
to find the pressure property, we use Mooney–Rivlin
model [18] to create the relation between the pressure
P and the inflation radius r at different original radii
r0. The original thick of the spherical cell is h0, which
is much less than r0. According to the Mooney–Rivlin
model and the finite elasticity theory, we can obtain

⎧
⎨

⎩

I1 = λ21 + λ22 + λ23
I2 = λ−2

1 + λ−2
2 + λ−2

3
I3 = λ1λ2λ3 = 1

(1)

where the stretches at three different directions areλ1 =
h
h0

, λ2 = λ3 = r
r0

, λ1 = 1
λ22
. Ii represents the principal

invariant (i = 1, 2, 3). h represents the thick of each
cell during the inflating and deflating process.

We can get the strain–energy density equation W .

W = W (λ1, λ2, λ3) = W (I1, I2, I3)

= W (I1, I2) − P (λ1λ2λ3 − 1) (2)

We assume that all the cells remain spherical dur-
ing the inflating and deflating process. We can obtain
the relation between the inflation pressure P and the
stretch λ = λ2 = λ3 due to the isotropic incompress-
ible elastic property of latex cells [7].

P = 4h0
r0

(
λ−1−λ−7

) (
∂W

∂ I1
+ λ2

∂W

∂ I2

)

= h0
r0λ2

∂W

∂λ

(3)

Fig. 3 Relation between pressure P and radius r

For Mooney–Rivlin material [18],

W = C1 (I1 − 3) + C2 (I2 − 3) (4)

where C1 and C2 represent material constant. C1 =
1272 kPa, C2 = 30kPa.

According to (2), (3), (4), we can obtain

P = 4h0[(r6 − r60 )(C1r
−7 − C2r

−2
0 r−5)] (5)

With (5), we can get Fig. 3 which shows the rela-
tion between pressure P and radius r . Three curves
represent three different original radii r0. In the paper,
we choose the section of the curve where the pres-
sure is increasing with radius, and also, we need to
make sure the robot is small but with enough expan-
sion rate. Thus, we design each cell with the original
radius r0 = 4.0 cm. In that case, the inflating radius of
each spherical cell is from r0 = 4.0 cm to r = 6.5 cm.

2.3 The velocity of inflation and deflation

At the inflating process, we use a constant-flow air
pump to inflate the cell, and the rate of the flow is
30L/min.

At the deflating process, we can obtain the velocity
of deflation according to the Bernoulli’s principle.

P0 + 1

2
ρv2 = P (6)

where P0 is the atmospheric pressure, ρ is the air den-
sity, v is the velocity of exiting gas.

During the inflating or deflating process, each of the
spherical cells is an independent compressed gas space.
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We can use the ideal gas law of each cell.

PV = nRT (7)

where V = 4
3πr

3, V is the volume of the individ-
ual spherical cell. R is the ideal gas constant which
is 8.314 J/(k × mol) and T is Kelvin thermodynamic
temperature, which is 273.15K at zero temperature. n
represents the number of moles.

At the inflating process n = n0+ qt
Vm

, n0 is the num-
ber of moles at the original radius r0, t is the inflation
time, Vm represents the molar volume of gas, which is
about 24L/mole at 20 ◦C, q is the rate of the flowwhich
is 30L/min.

At the deflating process n = n1 − Svt
Vm

, n1 is the
number of moles at the radius r . S is the cross section
of gas exit pipe.

According to (5) and (7), we can get the equation
between the inflation radius rI and the inflation time t ,
rI = r(t).

16

3
πh0

[
C1

(
rI

2−r60rI
−4

)
+C2

(
r−2
0 rI

4 − r40rI
−2

)]

= qt RT

Vm
+ n0RT (8)

And according to (5), (6) and (7), we can obtain
the equation between the deflation radius rD and the
deflation time t , rD = r(t).

16

3
πh0

[
C1

(
rD

2 − r60 rD
−4) + C2

(
r−2
0 rD

4 − r40 rD
−2

)]

= n1RT

− St RT

Vm

√
√
√
√
2
4h0

[
C1

(
rD2−r60 rD

−4
) + C2

(
r−2
0 rD4−r40 rD

−2
)]

−P0

ρ

(9)

We can obtain the velocity of inflation and deflation.

vr = dr (t)

dt
(10)

With (8) and (9), we can get the relation between
the radius r and the inflation or deflation time t (the
original radius r0 = 4.0 cm), in Fig. 4a. And with (10),
we can obtain the velocity of inflation and deflation in
Fig. 4b.

3 Nonlinear turning motion analysis

3.1 Turning motion steps

Themoving process of themulti-sphericalmodular soft
robot depends on the deflating and inflating actions of

Fig. 4 a Relation between radius r and inflation or deflation
time t . b Relation between velocity of inflation or deflation vr
and time t

each spherical cell. The whole deflating and inflating
process is also largely related to the maximum radius
and the minimum radius of each cell. The maximum
radius of each spherical cell is Ri = r = 6.5 cm, and
the minimum radius is r0 = 4 cm. After the inflating
and deflating process and two friction feet stickingwith
the ground in turn, the whole soft robot could turn and
move forwards.

Five spherical cells are bonded as awhole soft robot.
The center of Cell i is Oi (i = 1, 2, 3, 4, 5). The fixed
coordinates system OXYZ is set up. At the original
state, O5 is on the origin point O of the coordinates
system OXYZ (Fig. 5). α represents the angle between
the center line O2O4 (AB) and the center line O3O4,
β represents the angle between the center line O1O2

and the center line O1O3, α = β = 90◦. The radii of
the cells are the same, and the centers O1(E), O4(B),
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Fig. 5 Original state of the modular soft robot

O5(O) are on the X-axis. Cell 3 is bonded with Cell 1
and Cell 4 at point C and point D.

We analyze the nonlinear turningmotion of themod-
ular soft robot. The turning process is divided into six
steps in a period.

STEP A—The friction feet stick with the ground.
Cell 2 and Cell 3 inflate (their radii change from
4 to 6.5cm), and then, Cell 3 deflates (its radius
changes from 6.5 to 4cm). Thus, the friction foot
k1 is raised and Cell 1 gets a deflection angle.
STEP B—Cell 1 inflates (radius changes from 4
to 6.5cm). Let the friction foot k1 stick with the
ground.
STEP C—Cell 4 inflates and its radius changes
from 4 to 6.5cm. Then, Cell 5 and the friction foot
k2 are raised.
STEP D—Cell 2 deflates and its radius changes
from 6.5 to 4cm. Because the friction foot k1 sticks
with the ground. Cell 5 and Cell 4 have a deflection.
Thus, the whole robot has a deflection.
STEP E—Cell 1 deflates and its radius changes
from 6.5 to 4cm.
STEP F—Cell 4 deflates and its radius changes
from 6.5 to 4cm. The friction foot k2 sticks with
the ground. The five cells are back to the original
state.

A period of the turning process is finished.

3.2 Nonlinear turning motion process

In Fig. 5, 1, 2, 3, 4, 5 stand for Cell 1, Cell 2, Cell 3,
Cell 4, Cell 5, respectively, from the right to the left in
the forward direction. Because the soft robot can finish
the turning motion, the obstacles are placed in front of
the robots and on the left of the robot on a flat surface.
In a period, the turning motion process mainly consists
of the following six steps.

Fig. 6 Cell 2 inflating process

STEP A—Cell 2 and Cell 3 inflate and then Cell 3
deflates.

In Fig. 6, in order to raise Cell 1 and the friction foot
k1, Cell 2 and Cell 3 inflate and then Cell 3 deflates.
Thus, Cell 1 gets a deflection angle. At this step, Cell 2
and Cell 5 contact the ground. The centers of five cells
are at the same plane Γ . The angle between Γ and the
XOY plane is θ . At STEP A, because of the friction
foot k2 , only Cell 5 does not change its position. The
centers of Cell 1, Cell 2, Cell 3 and Cell 4 are E1, A1,
F1 and B1. The coordinates of each cell’s center are as
follows.

θ1 (t) = asin

(
r2 (t) − r05

r05 + r04 +
√
2
2 r04 +

√
2
2 r2 (t)

)

(11)

tan � A1B1E1 = cot � B1A1F1 = r04 + r2 (t)

r04 + r03
(12)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x11 (t) = [
r05 + r04 + 2(r04 + r2(t))cos � A1B1E1

cos
( � A1B1E1 − π

4

)]
cosθ1(t)

y11 (t) = 2(r04 + r2(t)) sin � A1B1E1

z11(t) = [
r05 + r04 + 2(r04 + r2(t)) cos � A1B1E1

cos
( � A1B1E1 − π

4

)]
sin θ1(t)

(13)

⎧
⎪⎪⎨

⎪⎪⎩

x12 (t) =
[
r05 + r04 +

√
2
2 (r04 + r2 (t))

]
cos θ1 (t)

y12 (t) =
√
2
2 (r04 + r2 (t))

z12 (t) =
[
r05 + r04 +

√
2
2 (r04 + r2 (t))

]
sin θ1 (t)

(14)

⎧
⎪⎪⎨

⎪⎪⎩

x13 =
[
r05 + r04 +

√
2
2 (r04 + r03)

]
cos θ1 (t)

y13 =
√
2
2 (r04 + r03)

z13 =
[
r05 + r04 +

√
2
2 (r04 + r03)

]
sin θ1 (t)

(15)

⎧
⎪⎨

⎪⎩

x14 = (r05 + r04) cos θ1 (t)

y14 = 0

z14 = (r05 + r04) sin θ1 (t)

(16)

⎧
⎪⎨

⎪⎩

x15 = 0

y15 = 0

z15 = 0

(17)
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x j
i represents the x coordinates of Cell i at the j-th

step. y j
i represents the y coordinates of Cell i at the

j-th step. z ji represents the z coordinates of Cell i at
the j-th step. ri (t) represents Cell i’s radius (ri = r =
6.5 cm), r0i represents Cell i’s original radius (r0i =
r0 = 4.0 cm).

STEP B—Cell 1 inflates (Fig. 7). Because of the
friction foot k2, the positions of the centers of Cell
2, Cell 3, Cell 4 and Cell 5 do not change. The
center of Cell 1 is E2. The coordinate of Cell 1’s
center is as follows.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x21 (t) − xD)
2 + (y21 (t) − yD)

2 + (z21(t) − zD)
2 = r21 (t)

(x21 (t) − x22 )
2 + (y21 (t) − y22 )

2 + (z21(t) − z22)
2

= (r1(t) + r2)2

z21(t) = r1(t) − r0

(18)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x21 (t) = P(t)−2y21 (t)
(
y22−yD

)

2
(
x22−xD

)

y21 (t) = −η(t)−
√

η(t)2−4λω

2λ

z21 (t) = r1 (t) − r0

(19)

Here
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(t) = r1(t)2 − (z21 − zD)
2 − (r1(t) + r2)2

+(y22
2 + x22

2
) − (x2D + y2D)

λ = 1 +
(

y22−yD
x22−xD

)2

η(t) = −
(

2y12 − 2(y22−yD)

x22−xD

(

x12 − P(t)
2(x22−xD)

))

ω(t) =
(

x12 − P(t)
2(x22−xD)

)2

+ y22
2 − (r1(t) + r2)2

(20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� B1A1F1 = arc tan r04+r03
r04+r2

� B1A1D1 = 2 � B1A1F1 − arc tan r04
r04+r2

A1D1 = A1C1 =
√

(r2 + r04)2 + r204

B1D1 =√

(r2 + r04)2 + A1D2
1 − 2A1D1(r2 + r04) cos � B1A1D1

� A1B1D1 = arc sin
(

A1D1
B1D1

sin � B1A1D1

)

(21)

⎧
⎨

⎩

xD = [
r05 + r04 + B1D1 cos

(� A1B1D1 − π
4

)]
cos θ

yD = B1D1 sin
( � A1B1D1 − π

4

)

zD = [
r05 + r04 + B1D1 cos

(� A1B1D1 − π
4

)]
sin θ

(22)

⎧
⎪⎪⎨

⎪⎪⎩

x22 = x12

y22 = y12

z22 = z12

(23)

After Cell 1 finishes inflating, its friction foot k1
sticks with the ground. At the next steps of the turning
motion process, the coordinate of Cell 1’s center will
not change. The deflections of the robot head are as
follows.

Fig. 7 Cell 1 inflating process

Fig. 8 Cell 4 inflating process

⎧
⎪⎨

⎪⎩

�x = x21 −
(
2 + 2

√
2
)
r0

�y = y21
�z = z21 = r1 − r0

(24)

STEP C—Cell 4 inflates. During the inflating pro-
cess of Cell 4, in order to simplify the model, the
tiny deflection of Cell 4 in the Y-axis direction is
ignored. Because of the friction foot k1, the coor-
dinates of Cell 1’s center and Cell 2’s center do not
change. ζ represents the angle between the center
line O5B2 and the XOY plane, in Fig. 8. The coor-
dinates of Cell 4’s center and Cell 5’s center are as
follows.

� A1B2X = arcsin
y32

r4 (t) + r2
(25)

⎧
⎨

⎩

x32 = x12
y32 = y12
z32 = z12

(26)
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Fig. 9 Cell 2 deflating process

⎧
⎨

⎩

x34 (t) = x32 − (r4 (t) + r2) cos � A1B2X
y34 = 0
z34 (t) = r4 (t) − r05

(27)

⎧
⎨

⎩

x35 (t) = x34 (t) − (r4 (t) + r05) cos ζ

y35 = 0
z35 (t) = r4 (t) − r05 − (r4 (t) + r05) sin ζ

(28)

STEP D– Cell 2 deflates.

In Fig. 9, the friction foot k1 sticks with the ground,
so the positions of Cell 1 and Cell 3 do not change. The
centers of the five cells are at the same plane. After
Cell 2 finishes deflating, the distance between Cell 2’s
center and Cell 3’s center is back to the original state,
as A2F2 = 2

√
2r0. τ represents the deflection angle

of the soft robot, which is the angle between the cen-
ter line O5O1 and the X-axis in XOY plane. And the
coordinates of each cell are as follows.
⎧
⎪⎪⎨

⎪⎪⎩

α4 (t) = β4 (t) = 2arc sin
(√

2r2(t)
r+r2(t)

)

� F2E2N = arctan
y43−y41
x41−x43

τ (t) = � F2E2N + 1
2β4 (t)

(29)

⎧
⎪⎨

⎪⎩

x41 = x21
y41 = y21
z41 = r − r0

(30)

⎧
⎪⎨

⎪⎩

x42 (t) = x41 − (r1 + r03) cos
(
τ (t) + 1

2β4 (t)
)

y42 (t) = y41+(r1+r03) sin
(
τ (t)+ 1

2β4 (t)
)

z42 = r − r0

(31)

⎧
⎪⎨

⎪⎩

x43 = x13
y43 = y13
z43 = r − r0

(32)

Fig. 10 Cell 1 deflating process

⎧
⎪⎪⎨

⎪⎪⎩

x44 = x41 − (r4 + r03) cos
α4(t)
2 cos τ (t)

y44 = y41 + (r4 + r03) cos
α4(t)
2 sin τ (t)

z44 = r − r0

(33)

⎧
⎪⎨

⎪⎩

x45 = x44 − (r4 + r05) cos τ (t)

y45 = y44 + (r4 + r05) sin τ (t)

z45 = r − r0

(34)

STEP E– Cell 1 deflates.

In Fig. 10, after Cell 1 finishes deflating, Cell 1 and
its friction foot k1 stick with the ground, the centers of
the five cells are at the same plane Γ ’, and the intersec-
tion angle between the plane Γ ’ and the XOY plane
is θ5. β5 is back to the original state, β5 = 90◦. The
coordinates of Cell 4’s center and Cell 5’s center are as
follows.

θ5 (t) = arcsin
r4 − r1 (t)

(r4 + r03) cos
α5
2 + (r03 + r1 (t)) cos β5(t)

2

(35)

⎧
⎪⎨

⎪⎩

β5 (t) = 2arc sin

(√
2r1(t)

r+r1(t)

)

α5 = 2arcsin
√
2r03

(r4+r03)

(36)

⎧
⎨

⎩

x51 = x21
y51 = y21
z51 (t) = r1 (t) − r0

(37)

⎧
⎪⎪⎨

⎪⎪⎩

x54 (t) = x51 − √
2r03

(
cot α5

2 + cot β5(t)
2

)
cosθ5 (t) cosτ

y54 (t) = y51+√
2r03

(
cot α5

2 +cot β5(t)
2

)
cosθ5 (t ) sin τ

z54 = r − r0

(38)

⎧
⎪⎨

⎪⎩

x55 (t) = x54 − (r4 + r05) cosθ5 (t) cosτ
y55 (t) = y54 + (r4 + r05) cosθ5 (t) sin τ

z55 (t) =
[
r4 + r05 + √

2r03
(
cot α5(t)

2 + cot β5(t)
2

)]
sinθ5 (t)

(39)
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Fig. 11 Cell 4 deflating process

STEP F—Cell 4 deflates.

In Fig. 11, after Cell 4 finishes deflating, a period of
the turning process is finished and five cells are back
to the original state. The coordinates are as follows.

θ6 (t) = arcsin
r4 (t) − r01

(r4 (t) + r03) cos
α6(t)
2 + (r03 + r01) cos

β6
2

(40)
⎧
⎪⎨

⎪⎩

α6 (t) = 2arc sin

(√
2r4(t)

r+r4(t)

)

β6 = 2arcsin
√
2r03

(r01+r03)

(41)

⎧
⎪⎪⎨

⎪⎪⎩

x61 = x21

y61 = y21

z61 = 0

(42)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x64 = x61 −
[√

2
2 (r01 + r02) + (r4 (t) + r02) cosα6 (t)

]
cos τ

y64 = y61 +
[√

2
2 (r01 + r02) + (r4 (t) + r02) cosα6 (t)

]
sin τ

z64 = r4 (t) − r0

(43)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x65 = x61 −
[√

2
2 (r01 + r02) + (r4(t) + r02)

cosα6(t) + r05 + r4(t)
]
cos τ

y65 = y61 +
[√

2
2 (r01 + r02) + (r4(t) + r02)

cosα6(t) + r05 + r4(t)
]
sin τ

z65 = r4(t) − r0

(44)

In one period, we obtain the deflection angle of the
soft robot τ ≈ 26◦. Iterating the above six steps, the
soft robot can finish the turning motion.

In Fig. 12, using Cell 1 as the research object, we
can obtain the coordinates (x1, y1, z1) and velocities of
Cell 1’s center. At each step, the inflating time is 5 s,
the deflating time is 6 s.

Fig. 12 a Coordinates of Cell 1 at one cycle (six steps). b The
velocity of Cell 1 at one cycle

The velocity (vr ) of Cell 1’s center at each step can
be described as

vr =
√

v2x + v2y + v2z (45)

4 Simulation and experiment

The soft robot consists of five deformable spherical
cells and two friction feet (Fig. 13). The different inflat-
ing and deflating sequences of five cells and two fric-
tion feet sticking with the ground make the soft robot
perform a turning motion and avoid obstacles.

We use PYTHON language to finish the simulation.
In the simulation and experiment, the soft body would
inflate and deflatewith the above six steps, and the turn-
ing direction is in clockwise direction. In Fig. 13a, the
soft robot moves according to STEPA. Cell 2 and Cell
3 inflate and then Cell 3 deflates. Thus, Cell 1 gets a
deflection angle. After that, Cell 1 inflates. The friction
foot k1 sticks with the ground. The soft robot works
according to STEP B (Fig. 13b). Then, Cell 4 inflates.
Because of the increase in Cell 4’ radius, Cell 5 and
the friction foot k2 are raised (Fig. 13 c). STEP C is
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finished. In Fig. 13d, the soft robot turns according to
STEPD. Cell 2 deflates. Cell 5 andCell 4 have a deflec-
tion. Thus, the whole robot has a deflection. After that,
in STEP E, Cell 1 deflates (Fig. 13e). In the last STEP
F, Cell 4 deflates (Fig. 13f). The five cells are back
to the original state. A period of the turning process
is finished. By these special processes, the soft robot
makes a turningmotion about 20◦. Then, the robot con-
tinues working according to STEP A. Table 1 shows
the deflection angle τ of the soft robot at each step in

Fig. 13 Simulation and experiment of making a turning motion
(a) The soft robot works according to STEP A. b The soft robot
works according to STEP B. c The soft robot works according
to STEP C. d The soft robot works according to STEP D. e The
soft robot works according to STEP E. f The soft robot works
according to STEP F

Fig. 13 continued

Table 1 Deflection angle τ of soft robot

Simulation (◦) Experiment (◦) Time (s)

STEP A 10 6 5

STEP B 16 13 10

STEP C 13 11 15

STEP D 26 18 21

STEP E 26 18 27

STEP F 26 20 33

the simulation and the experiment. The total time in
one period is 33 s. The efficiency of the soft robot turn-
ing motion is 76.9%. The error comes from the friction
of Cell 2, Cell 3 and Cell 4, which is ignored in the
theoretical model.
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5 Conclusions

The soft robot consists of several deformable spheri-
cal cells and friction feet. According to the deflating
action and the inflating action of the cells, and each
friction foot sticking with the ground, the soft robot
can change the size and the shape to move forwards,
make a turning motion and avoid obstacles. The non-
linear relation between the pressure P and the inflation
radius (r) at different original radii (r0) is analyzed,
and the inflation and deflation velocity vr is obtained.
In a period, six inflating and deflating steps to finish
the turning motion are presented. Based on the geo-
metric relationship between the inflation radius (r) and
the original diameters (r0) of each cell, the nonlinear
turning process is described to control the positions’
change of the spherical cells. Last, a simulation and an
experiment are shown to emulate the turning process
of the soft robot and perform the soft robot to turn and
avoid the obstacle. Experiment results show that the
robot has a maximum turning capability of 20 degrees
in one period with the efficiency of 76.9%. The error
comes from the friction of Cell 2, Cell 3 and Cell 4,
which is ignored in the theoretical model. In order to
reduce the frictional effect of Cell 2, Cell 3 and Cell 4
and increase the efficiency, the future work will focus
on the smoothness and lightness of the spherical cells’
material and the improvement of the friction force on
friction feet.
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