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Abstract This paper presents an extended car-follow-
ing model, which can be used to describe the dynamic
characteristics of mixed traffic with pedestrians walk-
ing on adjacent lane. The proposed model is based on
the optimal velocity function by taking into account
two additional stimuli generated by adjacent pedestri-
ans, i.e., the lateral and longitudinal headways between
the observed car and the preceding pedestrian. By using
the linear stability theory, this paper first derives the
stability condition and plots the neutral stability curves
with the model-related parameters. Then through the
reductive perturbation method, we obtain the soliton
solution of the modified Korteweg–de Vries equation
near the critical point and depict the coexisting curve
which divides the traffic flow state into three types
(i.e., stable, metastable and unstable state) along with
the corresponding neutral stability curve. Numerical
results demonstrate that the proposed model can effec-
tively characterize traffic following behaviors under the
mixed-pedestrian–vehicle situation.
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1 Introduction

Traffic flow has been widely studied over the decades
[1–8].Manymodels, such asfluid [9–12], car-following
[13–20] and cellular automation (CA) [21–24], have
been developed.Among them, car-followinghas attrac-
tedmuch attention due to its intuitive physical meaning
[25–27].Whilemost of the existing car-followingmod-
els assume a simplified environment in which vehicles
are only impacted by surrounding vehicles, the true
traffic in urban cities indeed is more complex and a
mixed one of not only vehicles, but pedestrians and
bicycles. Clearly, research onmixed traffic, particularly
the car-following behaviors with pedestrians on adja-
cent lane, is needed but very limited, and this research
aims to address this challenge.

During the past decades, various car-followingmod-
els have been developed since Reuschel [28] and Pipes
[29] first proposed the follow-the-leader model in sin-
gle lane. But most of them only consider the impact
from surrounding vehicles. For example, Chandler et
al. [30] proposed the California model which consid-
ers the delay time of vehicles in following behavior;
Newell et al. [31] modeled car-following behavior as
a general mathematical equation which involves the
velocity–headway relations; Bando et al. [32] later
developed the optimal velocity (OV) model which
has been widely adopted due to its simplicity, intu-
itiveness and innovativeness [33–38], and Jiang et al.
[39] developed a full velocity difference (FVD) model
by taking the positive velocity difference factor into
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account. Jiang’s FVD model is generally considered
superior to OV and generalized force (GF) models [40]
for characterizing real car-following behaviors [41–
43]. Therefore, many researchers improved the FVD
model to better describe real traffic phenomena. For
instance, Zhou [44] expanded FVD model by intro-
ducing drivers’ visual angle. The new model is more
realistic by effectively explaining some complex traffic
phenomena. Furthermore, Peng et al. [45] presented a
car-following model by considering anticipation effect
which could avoid the negative velocity and headway
and remove collision through numerical simulation,
andYu et al. [46] incorporated the relative velocity fluc-
tuation into an improved FVD model to better design
an advanced adaptive cruise control strategy.

Since the late decade, some researchers begin to
study the interactions between vehicles and pedestri-
ans [47,48], but most of them were focusing on uncon-
trolled intersections and crosswalks. For example, Hel-
bing et al. [49] investigated the oscillations and delays
of pedestrian and vehicle flows from a macro-dynamic
viewpoint during pedestrians crossing the road; Chen
et al. [50] developed a modified bidirectional pedes-
trian model to describe the interactions between vehi-
cles and pedestrians at uncontrolled midblock cross-
walks; Zhang et al. [51] designed a cooperative plan-
ning model incorporating pedestrians and vehicles in
an evacuation network; Ito and Nishinari [52] used CA
model to describe the interactions between vehicles and
pedestrians in congested intersections; Xin et al. [53]
employed the CA model to describe the evolution pro-
cess of mixed-pedestrian–vehicle flow in un-signalized
crosswalks; and Jin et al. [54] applied the OV model
to propose a visual angle model by taking the effect of
the pedestrians crossing behaviors into account.

Although pedestrians crossing the road certainly
have impacts on vehicles’ behaviors, pedestrians walk-
ing on the adjacent lane could also create some sig-
nificant impacts on driving behaviors, particularly car-
following. Drivers have to pay attention to both sur-
rounding vehicles and the pedestrians or bicycles on
adjacent lanes to avoid any potential conflicts. In such
a complicated environment full of both motorized and
non-motorized vehicles, drivers could behave signif-
icantly differently. Particularly, drivers might choose
different followinggaps and reduce driving speed, lead-
ing to different car-following behaviors, which cannot
be modeled by traditional car-following models. How-
ever, very littlework has been done in this subject. Jiang

et al. [55,56] modeled similar phenomenon during cars
emerging into a narrow channel using the lattice gas
model, but they did not capture the dynamic charac-
teristics of the vehicle flow because their attention was
paid on pedestrians behaviors during evacuation.

Considering pedestrians or bicycles walking on
adjacent lanes is common in many urban cities, model-
ing such interactions has become desired. This research
aims to fill in this gap by proposing an improved
car-following model which specifically considers the
impact of pedestrians and bicycles walking on adjacent
lanes. The proposedmodel is derived from the stimulus
equation proposed by Chowdhury et al. [57] by adding
the influential factors generated from pedestrians and
bicycles on adjacent lanes for both lateral and longi-
tudinal directions. The linear and nonlinear analysis
shows that the newmodel can successfully describe the
car-following behaviors under the circumstance of sur-
rounding pedestrians and bicycles and archives better
stability. Furthermore, our testing results also show that
the extended car-following model can better character-
ize the traffic behavior involving lateral pedestrians.

The improved model is expected to greatly con-
tribute to the improvement of the safety and control
of the complicated mixed-vehicle–pedestrian traffic in
urban cities. For example, the proposed model can
be used to determine the new and more appropriate
speed limit for urban streets with vehicles surrounding
by pedestrians and bicycles, due to abnormal driving
behaviors in such complicated circumstance. Further-
more, the new model can be used to improve the travel
time estimation for arterials with pedestrians and bicy-
cles on the adjacent lanes. This is much needed for
urban traffic control.

The remainder of this paper is organized as fol-
lows. Section2 presents the mathematical equation of
the proposed model, followed by the linear and non-
linear stability analysis in Sect. 3 and Sect. 4, respec-
tively. The analysis also obtains the stability condition
and soliton solution of themodifiedKorteweg–deVries
(mKdV) equation. Section5 carries out several simula-
tion experiments to verify the analytic results. Finally,
Sect. 6 concludes this research.

2 Mathematical model

The proposed model considers the impact of the pedes-
trians or bicycles walking on adjacent lane. Note we
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Fig. 1 Sketchmapof themixed-pedestrian–vehicle flow. xn, xPm
are the positions of car n and pedestrian m, respectively; �xn =
xn+1−xn indicates the headway between car n (i.e., the following
car) and car n + 1 (i.e., the preceding car); �xWn,m represents the
lateral headway (i.e., distance) between vehicle n and pedestrian
m; �xLn,m = xPm − xn represents the longitudinal headway (i.e.,
distance) between the vehicle n and pedestrian m

assume there is nophysical barrier betweenvehicle lane
and pedestrian lane except lane markings, and vehicles
and pedestrians could share a widened same lane with
pedestrians walking on one side, as shown in Fig. 1.

The proposedmodel is based on a common dynamic
equation proposed by Chowdhury et al. [57]:

ẍ = fsti (vn,�xn,�vn) , (1)

where ẍ is the acceleration and fsti is the stimulus func-
tion for the nth car. Equation (1) indicates that the nth
vehicle’s action, i.e., acceleration, is stimulated by the
velocity of the nth car (vn), velocity difference (�vn =
vn+1 − vn), and the headway (�xn = xn+1 − xn)
between the (n + 1)th (i.e., preceding) and nth car
(i.e., following) cars. Here xn is the position of the nth
car. Note, assuming different stimuli, such as acceler-
ation, deceleration and lateral distance, Eq. (1) could
convert to different versions of car-following models
[14,42,58].

Following the Chowdhury’s format, the influence of
adjacent pedestrians can be formulated by adding two
pedestrian-related stimuli to Eq. (1): one is the lateral
headway (i.e., distance) between vehicle and pedestrian
(�xWn,m), and the other is the longitudinal headway (i.e.,
distance) between vehicle and pedestrian (�xLn,m), as
described in Eq. (2):

ẍ = fsti
(
vn,�xn,�vn,�xLn,m,�xWn,m

)
. (2)

Note, thismodel assumes no crossing for pedestrians
unless there are crosswalks. Thus, we do not concern
the crossing behavior of pedestrians.

Equation (2) can be elaborated using the explicit
stimulus functionproposedbyNewell [31] andWhitham
[59]:

dxn(t + τ)

dt
= V (�xn(t)) , (3)

where xn(t) is the position of car n at time t ,V (�xn(t))
is anoptimal velocity function considering theheadway
of the successive cars and τ is delay time. Essentially,
this model explains that a driver adjusts the current
speed to an optimal one based on the headway with a
delay time of τ .

For ourmodel, the optimal velocity is determined by
not only the headway between following and leading
vehicles, but also the velocity difference between suc-
cessive cars and both lateral and longitudinal headways
between vehicles and adjacent pedestrians, i.e.,

dxn(t + τ)

dt
= V

(
�xn,�vn,�xLn,m,�xWn,m

)
. (4)

To simplify Eq. (4) and for better stability analysis,
we adopt the following optimal velocity function V
suggested by [26,60]:

V (�xn) = vmax

2
[tanh (�xn − hc) + tanh (hc)] , (5)

where hc is a safety distance and vmax is a maximum
velocity. V (�xn) is a monotonically increasing func-
tion since V ′ (�xn) = vmax/2 [1 − tanh2(�xn −
hc)], the first-order derivative of V (�xn), is non-
negative regardless of the value of �xn . In addition,
Eq. (5) has an upper bound, i.e., lim

�xn→∞ V (�xn) =
vmax/2 (1 + tanh (hc)). A turning point can be further
determined atV ′′ (hc) = [

d2V (�xn) /d(�xn)2
]
�xn=hc= 0. As we will show later, the turning point is cru-

cial for analyzing the nonlinear steady of the proposed
model.

As pointing out by Sawada (see Eq. (2) in [61]), Li et
al. (see Eq. (4) in [62]), Peng et al. (see Eq. (6) in [15])
and Jin et al. (see Eq. (2) in [63]), the optimal veloc-
ity function with multi-parameters can be linearized
by adding adjustable weights to each optimal veloc-
ity function with single parameter. Note, the optimal
velocity in their papers is only a function of distance,
but not including velocity. Therefore, a linearized form
of Eq. (4) can be formulated as follows according to
[58,64,65]:
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V
(
�xn,�vn,�xLn,m,�xWn,m

)
= pV (�xn)

+qV
(
�xLn,m

)
+ rV

(
�xWn,m

)
+ λ�vn,

(6)

where p, q, r are the weights of three optimal func-
tions of headway between successive vehicles, lateral
headway between vehicle and pedestrian, and longitu-
dinal headway between vehicle and pedestrian, respec-
tively, and λ is the response coefficient of the relative
velocity between successive vehicles. Note, λ is a con-
stant independent of time, velocity and position.

Applying Taylor expansion with first- and second-
order to Eq. (4), and combining Eq. (6), we can obtain
the following differential equation:

d2xn(t)

dt2
= α

[
pV (�xn) + qV

(
�xLn,m

)
+ rV

(
�xWn,m

)
− dxn(t)

dt

]

+ k�vn, (7)

where α is a sensitivity of a driver and α = 1/τ , and
k = λ/τ .

Note p + q + r = 1. Also, we assume:

q = 0, if �xLn,m > lc;
r = 0, if �xWn,m > dc,

where lc, dc are the preset critical longitudinal and lat-
eral headways between the observed vehicle and the
preceding pedestrian. These assumptions simply indi-
cate that if the lateral distancebetween the following car
and the preceding pedestrian is too large (i.e., greater
than the critical distance dc), the pedestrian has no
impact on the car when the car overtakes the pedes-
trian. Similarly, if the longitudinal distance between
the observed car and preceding pedestrian is larger than
the critical distance lc, the adjacent pedestrian has no
impact on the driver. Note Eq. (7) is a degenerated form
of Eq. (3) in [64], which has been widely cited by other
car-following research. Furthermore, the assumption
p + q + r = 1 indicates that the driver pays no extra
attention to other influence other than these three head-
ways [15].

For computational convenience, Eq. (7) needs to be
discretized and rewritten as the following difference
equation using the asymmetric forward difference [33,
66]:

xn (t + 2τ) − xn(t + τ)

= τ
(
pV (�xn(t)) + qV

(
�xLn,m(t)

)
+ rV

(
�xWn,m(t)

))

+ λ (�xn (t + τ) − �xn(t)) . (8)

For better linear and nonlinear stability analysis,
Eq. (8) can be rewritten as:

�xn (t + 2τ) − �xn(t + τ)

= τ
{
p

[
V (�xn+1(t)) − V (�xn(t))

]

+ q
[
V

(
�xLn+1,m+1(t)

)
− V

(
�xLn,m(t)

)]

+ r
[
V

(
�xWn+1,m+1(t)

)
− V

(
�xWn,m(t)

)] }

+ λ
(
�xn+1 (t + τ) − �xn+1(t)

− �xn (t + τ) + �xn(t)
)
. (9)

3 Linear stability analysis

In this section, the stability of the proposed model
is investigated by applying a linear stability analysis
method [26,67]. Herein, we assume no lane changing
and no overtaking. For the stability analysis, we first
assume that both vehicle and pedestrian flow are uni-
form. Then following [40], in an ideal homogeneous
state each pedestrian and vehicle will keep a certain
space to the preceding and following pedestrians. Thus,
the solution of the uniform steady state of Eq. (8) is pre-
sented as follows:

x (0)
n = hn + V (h)t, with h = L/N1; (10)

xP(0)
m = h pm + Vp(h p)t, with h p = L/N2,

(11)

where h, h p are constant headways of successive vehi-
cles and successive pedestrians, respectively; N1, N2

represent the number of cars and pedestrians in mixed
flow, respectively; V, Vp denote the optimal velocities
of the vehicles and pedestrians, respectively; and L is
the road length.

By adding small deviations yn(t), yPm(t) to the uni-
form solutions Eqs. (10) and (11), the updated solutions
of the positions of vehicles and pedestrians are given
by:

xn(t) = x (0)
n (t) + yn(t), (12)

xPm(t) = xP(0)
m (t) + yPm(t), (13)

where |yn(t)|, |yPm(t)| � 1 [32].
Based on the above equations (10)–(13), Eq. (9) can

be rewritten as:

�yn (t + 2τ) − �yn(t + τ)
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= τ
{
pV ′ [�yn+1(t) − �yn(t)

]

+ qβV ′ [�yn+1(t) − �yn(t)
]

+ rηV ′ [�yn+1(t) − �yn(t)
] }

+ λ
(
�yn+1 (t + τ) − �yn+1(t)

− �yn (t + τ) + �yn(t)
)
, (14)

where V ′ denotes the derivative of V (�xn) at �xn =
h, �yn(t) = yn+1(t) − yn(t), β represents the average
strength coefficient which describes the disturbance
relationship between the headway of successive cars
and the longitudinal headway of the observed car and
the preceding pedestrian, and η indicates the average
strength coefficient which describes the disturbance
relationship between the headway of successive cars
and the lateral headway of the observed car and the pre-
ceding pedestrian. Note, we can also apply the mean-
field theory, which replaces all interactions by any one
of the factors with an average or effective interaction,
to combine two types of particles (i.e., pedestrians and
vehicles) as one from the macroscopic view, as sug-
gested by Tang et al. [35].

By assuming an explicit function for �yn(t) =
A · exp{ikn + zt}, Eq. (14) can be rewritten as:

e2zt − ezt = τ
[
pV ′ (eik − 1

)
+ qV ′β

(
eik − 1

)

+ rV ′η
(
eik − 1

) ]

+ λ
(
eik+zτ − eik − ezτ + 1

)
. (15)

Then by expanding zwith z = z1(ik)+z2(ik)2+· · ·
[65], Eq. (15) can be transformed into:

z1 = (p + qβ + rη) V ′,

z2 = −3τ

2
z21 + z1

2
+ λz1. (16)

For long-wavelength modes, if z2 is negative, the
uniform steady flow becomes unstable; if z2 is positive,
the uniform flow keeps stable state. Setting the neutral
stability condition at z2 = 0, we have:

τ = 2λ + 1

3 [(p + qβ + rη) V ′]
. (17)

In Eq. (17), the delay time τ is called the critical
value and is usually written as τc, which will be used
for nonlinear stability analysis in Sect. 4. Its inverse is
called the critical sensitivity (αc = 1/τc). For small

disturbances with long wavelengths, both unstable and
stable conditions can be derived as follows:

τ >
2λ + 1

3 [(p + qβ + rη) V ′]
, (18)

τ <
2λ + 1

3 [(p + qβ + rη) V ′]
. (19)

From Eq. (5), the derivative V ′ of the optimal veloc-
ity V has a maximum value, i.e., vmax/2 . Submitting
the maximum velocity into Eq. (19), we can find that
the uniform flow is always stable for any car density if
τ <

2(2λ+1)
3[(p+qβ+rη)vmax]

. Note, the stability condition for
Eq. (17) in this paper is similar to the neutral stability
conditions of the OV model proposed by Bando (see
Eq. (12) in [32]) and the relative velocity (RV) model
proposed by Xue (see Eq. (11a) in [64]).

It is worth mentioning that both differential equa-
tion (7) and difference equations (8) and (9) can be
used to analyze the linear stability condition. Due to
different structures and physical meaning of differen-
tial and difference equations, they could generate dif-
ferent stability conditions as stated by Nagatani [4]
and Ge [68]. Taking OV model [32] as an example,
its stability condition derived from differential equa-
tion is τ < 1/2V ′(h) , while the stability condition
derived from difference equation is τ < 1/3V ′(h) .
However, which stability condition is optimal is still
an open question. As suggested by [67,69], we adopt
the difference equation model in this paper. One of rea-
sons is that, we believe, using difference equation can
more conveniently conduct computer simulation and
nonlinear stability analysis in next section.

Moreover, we would like to point out that here we
apply the long-wavelength stability analysis, instead of
the short-wavelength stability analysis as suggested by
many other researchers [30,70]. It has been argued that
applying different wavelength stability analyses could
generate different stable conditions [71]. Indeed, it is
true that the “stable” traffic under the long-wavelength
stability condition may still unstable under the short-
wavelength stability condition. For instance, Berg et
al. [72] claimed that the macroscopic hydrodynamic
model has an instability, which is resulted from short-
wavelength fluctuations, but such instability is not pre-
senting in the classical car-following model. However,
if the short-wavelength fluctuations are properly reg-
ularized as suggested by [73], such instability could
disappear. We only apply the long-wavelength stabil-
ity analysis to study the linear stability of the proposed
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Fig. 2 Neutral stability curves with different sets of (λ, p, q, r).
The solid line corresponds to (0, 1, 0, 0), the dash line to
(0.2, 1, 0, 0) and the circle line to (0.2, 0.8, 0.1, 0.1), where
vmax = 3 m/s, hc = 4 m, β = 0.5, η = 0.1

model because this method has been widely used in
many publications for both macroscopic and micro-
scopic models [74–76].

Figure2 shows the neutral stability curves with dif-
ferent sets of (λ, p, q, r). The solid line corresponds
to (0, 1, 0, 0), which is in line with the OV model, the
dash line to (0.2, 1, 0, 0), which agrees with the RV
model, and the circle line to (0.2, 0.8, 0.1, 0.1), which
takes into account the interactions of adjacent pedes-
trians. Among the three lines, a characteristic curve
(i.e., the line with circle marks) of our model has the
largest stable region (i.e., the smallest unstable region).
The finding means that by incorporating the adjacent
pedestrian interaction into the original car-following
model, the traffic flow becomes more stable than that
without considering lateral pedestrians.

In Fig. 3, the solid curves represent the neutral sta-
bility lines in headway-sensitivity pattern and the apex
of each curve denotes the critical point. The increase
in stability region is presented in the figure with the
increase in q as well as the decrease in r when p is a
preset value. The space beyond each curve indicates the
stable region, where the traffic flow is free; the opposite
area indicates unstable region, where the traffic flow is
congested. Figure3 represents that if drivers pay more
attention on the longitudinal distance than lateral dis-
tance between the car and the preceding pedestrian, i.e.,
with the increase in weight q of longitudinal distance,
the traffic flow will become more unstable.

Fig. 3 Neutral stability lines in space of (�xn, α)when p = 0.6.
The solid curves represent the neutral stability lineswith different
values of q and r at p = 0.6

4 Nonlinear stability analysis

In this section, by using the reductive perturbation met-
hod [68,77], a nonlinear stability analysis of the pro-
posed model is conducted. The soliton of the mKdV
equation that describes the kink density wave can be
obtained via the nonlinear stability analysis. Applying
the coarse-grained scales for long-wavelength modes,
we investigate the slowly varying behavior at long-
wavelength near the critical point (hc, αc) and intro-
duce slow scales for space variable n and time variable
t [78]. The corresponding slow variables X and T are
defined as follows:

X = ε(n + bt) and T = ε3t, 0 < ε � 1, (20)

where b is a to-be-determined constant. Adding a small
fluctuation εR(X, T ) as a function of space X and time
T , the headway can be given by [79]:

�xn (t) = hc + εR (X, T ) . (21)

Employing Eqs. (20) and (21), we expand Eq. (9)
to the fifth order of ε and then obtain the following
nonlinear partial differential equation:

ε2
[
b − V ′ (p + qβ + rη)

]
∂X R

+ ε3

[
3b2τ

2
− (p + qβ + rη)V ′

2
− λb

]
∂2X R

+ ε4
[
∂T R +

(
7b3τ2

6
− (p + qβ + rη)V ′

6
− λ(b2τ + b)

2

)
∂3X R

− V ′′′
6

∂X R3
]

+ ε5
[
(3bτ − λ)∂X ∂T R
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+
(
5b4τ3

8
− (p + qβ + rη)V ′

24
− λ(2b3τ2 + 3b2τ + 2b)

12

)
∂4X R

− V ′′′
12

∂2X R3
]

= 0 , (22)

where V ′′′ is the third derivative of optimal velocity
V (�xn) at �xn = hc.

Near the critical point (hc, αc), by taking τ =
(1 + ε2)τc and b = V ′(p + qβ + rη), Eq. (22) can
be simplified as:

ε4
[
∂T R − g1∂

3
X R + g2∂X R

3
]

+ ε5
[
g3∂

2
X R + g4∂

2
X R

3 + g5∂
4
X R

]
= 0, (23)

where g1 = (p+qβ+rη)V ′
6 + λ(b2τc+b)

2 − 7b3τ 2c
6 , g2 =

− V ′′′
6 , g3 = 3b2τc

2 , g4 = 6bτc−2λ1−1
12 V ′′′, g5 =

12bτc−4λ−1
24 V ′ − 23b4τ 3c

8 + λ
(
5b2τc
4 + 5b3τ 2c

2 − b
6

)
−

λ2b(1+bτc)
2 .

Ifwemake the following transformation forEq. (23):

T ′ = g1T, R =
√
g1
g2

R′, (24)

then we obtain the regularized equation as below:

∂T ′ R′ − ∂3X R
′ + ∂X R′3

+ ε
(
g3
g1

∂2X R
′ + g4

g2
∂2X R

′3 + g5
g1

∂4X R
′
)

= 0.
(25)

Omitting theO(ε) term inEq. (25),we get themKdV
equation with a kink solution as the desired solution:

R′
0
(
X, T ′) = √

c tanh

√
c

2

(
X − cT ′) , (26)

where c is a propagation velocity of the kink–antikink
soliton solution and is determined by the O(ε) term.

In order to obtain the value of c, it is necessary to
consider the solvability condition [33,80]:
(
R′

0, M[R′
0]

)

=
∫ ∞

−∞
dXR′

0
(
X, T ′) M [

R′
0
(
X, T ′)] = 0, (27)

where M[R′
0] = g3

g1
∂2X R

′ + g4
g2

∂2X R
′3 + g5

g1
∂4X R

′.
By integrating Eq. (27), the velocity c is obtained:

c = 5g2g3
2g2g5 − 3g1g4

. (28)

Fig. 4 Phase diagram of the space of (�xn, α). The dash lines
indicate the coexisting curves, and the solid lines represent the
neutral stability curves. The solid and dash lines with a same
color share an identical peak (also called a critical point). This
pair of lines divides the whole region into three parts: stable,
unstable and metastable regions

Hence, the solution of Eq. (23) is derived as follows:

R (X, T ) =
√
g1c

g2
· tanh

√
c

2
(X − cg1T ) . (29)

BasedonEq. (5),weknow thatV ′ = vmax/2, V ′′′ =
−vmax. Thus, the amplitude A of the kink soliton is fol-
lowed by:

A =
[
g1c

g2

(αc

α
− 1

)]1/2
with αc = 3 (p + qβ + rη) vmax

2(2λ + 1)
.

(30)

Therefore, the kink–antikink density wave soliton
solution of the headway is given by:

�xn(t) = hc +
√
g1c

g2

(αc

α
− 1

)
tanh

{√
c

2

(αc

2
− 1

)

×
[
n +

(
1 − cg1

(αc

α
− 1

))
t
] }

. (31)

Applying the linear steady condition and soliton
solution of the headway, Fig. 4 presents a phase dia-
gram of (�xn, α) with three state regions. For the
convenience of analysis, by taking q = 0.1, the fig-
ure shows the variation tendencywith different p and r .
The dash lines (also called coexisting lines) are derived
from the solution of the mKdV equation, and solid
lines (also called neutral steady lines) are resulted from
the linear steady condition. Combining the dash and
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solid lines with the same color, the two lines with the
same peak (i.e., critical point) divide the whole region
into three parts: the region above the dash line is sta-
ble, the region under the solid line is unstable, and the
region between the dash and solid lines is metastable.
The metastable state is a coexisting phase including
the freely moving phase with low traffic density and
the congested phase with high traffic density. Theoret-
ically, the headways in free and congested phases are
denoted by �xn(t) = hc + A and �xn(t) = hc − A,
respectively.

5 Simulation

In this section, numerical simulations are employed to
verify the result of the stability analysis. In order to
use real traffic data, we apply another optimal veloc-
ity function proposed by Kontishi et al. [81], which is
derived from Eq. (5) [32,82] as follows:

V op (�xn(t)) = vmax

2

[
1 + H

(
2 · �xn(t) − η

ξ

)]
,

(32)

where the saturation function H(x) is described as

H(x) =
⎧
⎨
⎩
1, x > 1;
x, −1 ≤ x ≤ 1;
−1, x < −1.

(33)

In fact, Eq. (32) is deduced from V (�x) =
16.8[tanh 0.086(�x − 25) + 0.913], which is used in
the car-following experiment and determined by the
observed data on Japanese motorways in [25,82,83].
These values are compatiblewith the simulationparam-
eters of vehicles in this paper and are presented in
Table1. Besides, T is sampling time (also known as
an interval time) and used to select data at a regular
interval. Table2 shows the simulation parameters of
pedestrians. These values were suggested by related
studies in the field of social behavior [84,85] to meet
the practical experience.

As suggested by Kontishi et al. [81] and Ge [86],
a motorcade consisted of 11 cars is assumed travel-
ing on a mixed-pedestrian–vehicle lane to investigate
the traffic pattern changes influenced by the adjacent
pedestrians. In order to examine the proposed model
better, two simulation scenarios are provided:

Table 1 Simulation parameters of vehicles

Parameter Value Unit Physical meaning

η 25.0 m Safety distance

ξ 23.3 m Distance parameter

vmax 33.6 m/s Maximum velocity

v 20 m/s Initial velocity

α 2.0 s−1 Sensitive coefficient

ymin 7.02 m Minimum headway

T 0.1 s Sampling time

Table 2 Simulation parameters of pedestrians

Parameter Value Unit Physical meaning

vp 1.5 m/s Initial speed

v
p
max 3 m/s Maximum speed

ϕ 7.6 m Safety distance

(1) Scenario of only a few pedestrians on the street,
and the motorcade passes adjacent pedestrians one
by one. In this situation,we investigate the changes
of vehicle feature influenced by a few adjacent
pedestrians. This scenario is similar to some real
situations such as a few pedestrians walking at
night, or in rainy days, etc. on roadside.

(2) Scenario of a large crowd of people walking along
the roadside. In this situation, we study vehicle
behaviors influenced by adjacent pedestrians flow
during the following three time intervals: cars
begin to enter, cars drive through, and cars drive
away. This scenario is similar to some real situa-
tions such as the crowd leaving from a stadium,
theater, or other gathering place.

For both scenarios, the initial conditions are set as
followed by the values suggested in [81]: vn(0) =
20 m/s, x11(0) = 0 (i.e., the last car of the motor-
cade is located at origin and at initial time), �xn(0) =
vξ/vmax − ξ/2 + η for n �= 1, �x1(t) = vξ/vmax −
ξ/2 + η for any t (i.e., during the simulation time,
the headway between the leading and successive cars
is a constant which is determined by relative parame-
ters). We assume that all vehicles have the same initial
velocity and headway before incorporating the adjacent
preceding pedestrians. That is to say, all vehicles run
uniformly without extra disturbance at the early stage.
When they begin to pass over adjacent pedestrians in
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(a)

(b)

Fig. 5 Velocity–time plots for various parameters: a p =
0.6, q = 0.3, r = 0.1 and b p = 0.6, q = 0.2, r = 0.2.
The blue solid line represents velocity change of the 2nd car, the
green dash line indicates velocity change of the 5th car, the pink
dot-and-dash line denotes the velocity change of the 8th car, and
the dotted line shows the velocity change of the 11th car (i.e., the
last car of the motorcade)

mixed-pedestrian–vehicle lane, the characteristics of
traffic flow will be drastically changed.

5.1 Scenario 1

In the first step, we carry out the simulation for scenario
1 and investigate the evolution characteristics of traffic
flow.

Figures5a, b shows the velocity–time patterns for
the 2nd, 5th, 8th and 11th (i.e., the last car) cars
by assuming p = 0.6, q = 0.3, r = 0.1 and

(a)

(b)

Fig. 6 Headway–time evolution for various parameters when
p = 0.6: a q = 0.3, r = 0.1 and b q = 0.2, r = 0.2

p = 0.6, q = 0.2, r = 0.2, respectively. Fig-
ure5 shows that when themotorcade overtakes an adja-
cent pedestrian, the traffic shock wave of uniformly
traveling vehicles generates fluctuation, and the veloc-
ity change of the selected cars are different. This fig-
ure essentially demonstrates the evolution of oscilla-
tion behavior and traffic jam. Note, under condition of
p = 0.6, q = 0.2, r = 0.2 (Fig. 5b), the amplitude of
velocity fluctuation is relative smaller. This indicates
that the cars run more smoothly and recover stable sta-
tus earlier compared to the situation in Fig. 5a.

Figure6 shows three-dimensional space–time evo-
lutions of the headway for various values of q, r ,
including (a) q = 0.3, r = 0.1 and (b) q = 0.2, r =
0.2 with p = 0.6. From both figures, we can observe
the change of the space–time evolutions and find that
the disturbances propagate backward when the motor-
cade passes the adjacent pedestrian. The amplitude of

123



786 P. Wang et al.

Fig. 7 Temporal velocity pattern of four cars. The blue solid
line represents velocity change of the 2nd car, the green dash
line indicates velocity change of the 5th car, the pink dot-and-
dash line denotes the velocity change of the 8th car, and the
dotted line shows the velocity change of the 11th car

the headway fluctuation in Fig. 6a is larger than that in
Fig. 6b. From Figs. 5 and 6, we can find that when q =
0.2, r = 0.2, the cars run more smoothly with smaller
fluctuation than that in case with q = 0.3, r = 0.1.
This finding is consisted with the results during linear
stability analysis (see Fig. 3).

5.2 Scenario 2

In the second step, we carry out the simulation for
scenario 2 and investigate the dynamic behavior of a
motorcade which consists of 11 cars. As is mentioned
above, pedestrians are assumed walking uniformly and
steadily along the roadside. The oscillation behavior of
cars occurs when the leading car encounters the tail of
the queued pedestrians.

Figure7 shows the velocity–time plots for the 2nd,
5th, 8th, 11th cars. For better observation and analysis,
we only choose the four cars instead of all vehicles.
As shown in the figure, during 100–400s, the vehicles
encounter the pedestrians, and then, the cars speeds
slow down. During 400–700s, all vehicles are running
through the crowd and their speeds remain a relatively
low values. In this stage, the headway between succes-
sive pedestrians is much smaller than car headway, and
the car speed is faster than any pedestrian. From the
macroscopic perspective, the pedestrians flow seems
like a long barrier. In fact, in this period, the vehicles

Fig. 8 Space–time plots for a motorcade passing by the pedes-
trian crowd. The horizontal axis indicates the distances between
the leading and each following cars. The longitudinal axis
denotes simulation time including encountering, driving through
and leaving the crowd. Each curve represents the fluctuation of
the distance between the first and each following car

flow is influenced by each pedestrian with extremely
short interval (due to short pedestrian headway) so
the velocity fluctuation curve of each car looks like a
straight line. During 700–1000s, cars pass by the crowd
in succession, and their speeds recover to the initial
velocity via a series of complicated velocity fluctua-
tions.

To further analyze traffic flow behavior, Fig. 8
presents the change of distances between the leading
car and each following car with the change of time. As
shown in the figure, each curve has two bumps due to
the distance fluctuation. The first bump occurs when
the leading/first car encounters pedestrians and has to
decline the speed, leading that the distances between
the leading and each following cars become smaller.
The second bump occurs when the leading car leaves
the crowd and recovers to its initial speed, leading that
the distances between the leading and each following
cars become larger.

Figure9 presents headway–time curves of each car
in three-dimensional space. Compared with Fig. 8, we
focus on observing the headway evolution between the
successive cars with time increasing. The graph is com-
posed of convex and concave surfaces which are con-
sistent with each cars headway change profile. Through
this figure, we can see the headway change patterns of
all cars intuitionally.

According to these simulation experiments, we find
that inmixed lane of pedestrians andvehicles, the traffic
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Fig. 9 Headway–time patterns for each following car in three-
dimensional space

flow is influenced by the adjacent pedestrian(s). Veloc-
ities and headways evolve with the time. The results
show that with pedestrians walking on adjacent lanes,
the drivers usually slow down to ensure the safety of
pedestrians and themselves. This finding indicates that
taking into account the lateral and longitudinal influ-
ences from adjacent pedestrians could improve traffic
safety and help resolve traffic congestion.

6 Conclusions

Pedestrians or bicycles walking on adjacent lanes is
common in urban cities; therefore, modeling the inter-
actions between vehicles and adjacent pedestrians has
become important. This research proposes an improved
car-following model which specifically considers the
impact of pedestrians and bicycles walking on adja-
cent lanes based on the OV model. In particular, we
introduce two additional stimuli generated by adja-
cent pedestrians, i.e., lateral and longitudinal distances
between the car and preceding pedestrian, to the OV
model. With the proposed new model, we further con-
duct the linear and nonlinear stability analyses to obtain
a serial of neutral steady curves and coexisting curves.
Lastly,we evaluate the proposedmodel through simula-
tion for two typical and practical scenarios. This results
show that the proposedmodel can successfully describe
mixed traffic flowbehaviors and improves traffic steady
to avoid traffic accidents and jams.

The extendedmodel is expected to greatly contribute
to the improvement of the safety and control of the

complicated mixed-vehicle–pedestrian traffic in urban
cities. There could be many potential applications of
the proposed model. For example, the new model can
be used to determine a more appropriate speed limit for
urban streets with vehicles surrounding by pedestrians
and bicycles, due to abnormal driving behaviors in such
complicated circumstance. In addition, the new model
can be used to improve the travel time estimation for
arterials with pedestrians and bicycles on the adjacent
lanes. This is important for urban traffic performance
measure and control.

However, this paper is mainly focusing on theoret-
ical development. So only simulation studies are pre-
sented to evaluate the proposedmodel. Although in our
simulation, real trafficdatawereused,weclearly under-
stand that using field data and conducting field experi-
ments could better validate the proposedmodel. There-
fore, an important part of our future research work will
be focusing on applying field data to calibrate and ver-
ify the proposed models in order to better characterize
the car-following behavior for mixed traffic.
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