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Abstract The approximate partial Noether theorem
proposed earlier for the ordinary differential equa-
tions (ODEs) (Naeem and Mahomed in Nonlinear
Dyn 57(1–2):303–311, 2009) is generalized in phase
space for the perturbed Hamiltonian-type systems. The
notion of approximate partial Hamiltonian is devel-
oped. An approximate partial Hamiltonian gives rise to
an approximateHamiltonian-type perturbed dynamical
system of first-order ODEs. An approximate Legendre-
type transformation connects the approximate partial
Lagrangian and what we term as approximate par-
tial Hamiltonian. The formulas for approximate partial
Hamiltonian operators determining equations and first
integrals are provided explicitly.We have explained our
approach with the help of simple illustrative example.
Then, it is applied to establish the approximate first
integrals, reductions and exact solutions of two per-
turbed cubically coupled Duffing–Van der Pol oscilla-
tors. Both resonant and nonresonant cases are consid-
ered.
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1 Introduction

Many differential equations arising in mathematical
physics, fluidmechanics, economic growth theory, epi-
demics, physics, engineering and many other fields of
applied mathematics do not admit nontrivial exact Lie
symmetries. The Lie’s integration theorems (see, e.g.,
[1]) cannot be applied to establish the group-invariant
solutions. Noether’s theorem [2] is also not applica-
ble for these models as no nontrivial exact symmetries
exist. These types of differential equations can be ana-
lyzed by decomposing them into the unperturbed and
perturbed parts provided the former admits exact sym-
metries.

Baikov et al [3,4] developed perturbationmethods in
group analysis for differential equations which do not
admit nontrivial exact Lie symmetries. The approxi-
mate Lie’s theorems were proposed by Baikov et al
[3,4]. Baikov et al [5] investigated the approximate
symmetries of closed orbit problems. Govinder et al
[6] proposed the approximate version of Noether’s the-
orem to derive the first integrals of ODEs. Later on,
Feroze and Kara [7] provided group theoretic methods
for approximate invariants and Lagrangian of a spe-
cial class of second-order perturbed ODEs. The partial
Lagrangian approach [8] was developed to construct
first integrals for unperturbed ODEs which do not have
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standardLagrangian.NaeemandMahomed [9,10] pro-
vided notions of the approximate partial Lagrangians
and approximate Euler–Lagrange equations for per-
turbed ODEs. Naz [11] utilized the approximate par-
tial Lagrangian approach to study the approximate first
integrals for cubically coupled nonlinear Duffing oscil-
lators subject to a periodically driven force.

A separate strand of literature looked at the approx-
imate symmetries and conservation laws of perturbed
partial differential equations (PDEs) [12–15]. The vari-
ational formulation of approximate symmetries and
conservation laws was provided by Johnpillai and Kara
[13]. Johnpillai andKara [15] also extended the notions
of Noether-type symmetries and conservation laws via
partial Lagrangian developed for the PDEs [16] for
the perturbed case. All different approaches to con-
struct first integrals/conservation laws for the unper-
turbed differential equations are presented in [17,18].
Wang [19] studied the perturbation to symmetry and
adiabatic invariants of discrete nonholonomic noncon-
servative mechanical system.

A dynamic optimization problem involves the deter-
mination of the extremal of the functional involv-
ing time, dependent, independent variables and their
derivatives up to a finite order. The calculus of variation
provides a set of equations known as Euler–Lagrange
equations [20,21] for a standard Lagrangian. The opti-
mal control theory which is an extension of calculus
of variation utilizes Hamiltonian systems and is devel-
oped by Lev Semyonovich Pontryagin [22]. The Leg-
endre transformation [23,24] connects theHamiltonian
and Lagrangian. This connection betweenHamiltonian
and Lagrangian motivated Dorodnitsyn and Kozlov
[25] to reformulate the celebrated Noether’s theorem
in terms of Hamiltonian. Naz et al [26] provided a par-
tial Legendre transformation which connects the cur-
rent value Hamiltonian and discount-free Lagrangian
arising in economic growth theory. Naz et al [27,28]
developed current valueHamiltonian approach for eco-
nomic growth models, and this elegant approach pro-
vides a foundation of connection between Lie group
theory and economic growth theory. The approximate
version of Noether’s theorem was formulated in terms
of the approximate Hamiltonian function and approxi-
mate symmetry operators by Ünal [29]. It was success-
fully applied to construct the approximate first integrals
of weakly nonlinear, damped-driven oscillators [30]
and galaxymodel [31].Anatural question arises canwe
generalize the approximate partial Noether approach

[9] to the phase space in terms of an approximate
Hamiltonian which we call as an approximate par-
tial Hamiltonian. According to the best of our knowl-
edge the approximate first integrals of a mechanical or
dynamical approximate Hamiltonian-type systems via
approximate partialHamiltonian are not studied before.
We will analyze these in this paper.

The generalization of approximate partial Noether
theorem in phase space is presented here. The notion
of the approximate partial Hamiltonian is developed. A
relationwhich connects approximate partialLagrangian
to approximate partial Hamiltonian is proposed, and
it is termed as ’approximate Legendre-type transfor-
mation.’ The approximate partial Hamiltonian opera-
tors determining equation is deduced from the formulas
of approximate partial Lagrangian operator determin-
ing equation. Also formulas are provided to construct
approximate first integrals. We explain our approach
by simple illustrative example. The utility of method
is explained by applying it to establish the approxi-
mate first integrals, reductions and exact solutions of
two perturbed cubically coupled Duffing–Van der Pol
oscillators.

The layout of the paper is as follows. In Sect. 2, the
overview of approximate partial Lagrangian approach
is given. The generalization of approximate partial
Noether theorem in phase space is presented in Sect. 3.
An approximate Legendre-type transformation is intro-
duced which connects approximate partial Lagrangian
and approximate partial Hamiltonian. The formulas are
provided to find the approximate partial Hamiltonian
operators and approximate first integrals. In Sect. 4,
the approximate first integral of perturbed orbit equa-
tion is derived to explain how our approach works. In
Sect. 5, the approximate first integrals of two perturbed
cubically coupled Duffing–Van der Pol oscillators are
established to show effectiveness of approach proposed
here. The reductions and exact solutions for the model
understudy are provided in Sect. 6. Finally, conclusions
are presented in Sect. 7.

2 Approximate partial Lagrangian approach

An overview of the approximate partial Lagrangian
approach as proposed in [9] is provided here for the
second-order ODEs. Also we have provided formu-
las for the modified approximate partial Lagrangian
approach.

123



Generalization of approximate partial Noether approach in phase space 737

2.1 Overview of approximate partial Lagrangian
approach

Consider a second-order perturbed system of ODEs
involving a small parameter ε

Eα(t, q, q̇, q̈; ε) = O(ε2), α = 1, 2, . . . n (1)

where t is the independent variable and q = (q1, q2,
. . . , qn) is the vector of dependent variables. The total
derivative operator Dt with respect to t is defined by

Dt = ∂

∂t
+ q̇ i

∂

∂qi
+ q̈i

∂

∂q̇i
+ · · · . (2)

The following definitions are adopted from [9].

Definition 1 Thefirst-order approximateLie-Bäcklund
symmetry operator is given by

X = X0 + εX1 (3)

where

X0 = ξ0
∂

∂t
+ ηi0

∂

∂qi
+ [Dt (η

i
0) − q̇i Dt (ξ0)] ∂

∂ q̇i
, (4)

X1 = ξ1
∂

∂t
+ η1i

∂

∂qi
+ [Dt (η

i
1) − q̇i Dt (ξ1)] ∂

∂ q̇i
. (5)

Definition 2 A differential function I is an approxi-
mate first integral of system (1) if

Dt I = O(ε2), (6)

holds for every solution of system (1) where

I = I0 + ε I1. (7)

Suppose that Eq. (1) can be expressed as

Eα = E0
α + εE1

α, α = 1, 2 . . . n. (8)

Definition 3 Suppose that L = L(t, qi , q̇i ) is a differ-
ential function and there exists nonzero functions f β

α

such that (8) can be expressed as

δL/δqα = εk f β
1αE

k
β, α = β = 1, 2, (9)

or more generally δL/δqα = −Γ α . Then L is said
to be an approximate partial Lagrangian of system (8).
Equation (9) is termed as an approximate partial Euler–
Lagrange equation. In (9) δ/δqα is defined by

δ

δqα
= ∂

∂q
− Dt

∂

∂q̇
+ D2

t
∂

∂q̈
+ · · · (10)

and is known as the Euler–Lagrange operators.

Definition 4 The approximate Lie-Bäcklund operator
X defined in (3) is said to be an approximate partial
Noether operator corresponding to an approximate par-
tial Lagrangian L if it satisfies

X (L) + LDt (ξ) = (ηi − q̇iξ)
δL

δqi
+ Dt (B), (11)

with respect to a suitable function B. Notice that in (11)

B = B0 + εB1, ξ = ξ0 + εξ1, η1 = ηi0 + εηi1. (12)

Theorem 1 If X is an approximate partial Noether
operator associated with an approximate partial
Lagrangian L = L(t, q, q̇), then the formula for the
approximate first integrals is

I = B − ξL − (ηi − q̇iξ)
δL

δq̇i
+ O(ε2). (13)

2.2 Modified approximate partial Lagrangian
approach

One can modify the approximate partial Lagrangian as
L(t, qi , q̇i ; ε). We have provided the modified defini-
tions of approximate partial Lagrangian, approximate
partial Euler–Lagrange equations, approximate partial
Noether operators determining equations and approxi-
mate first integral.

Definition 5 Suppose that L(t, qi , q̇i ; ε) = L0(t, qi ,
q̇i ) + εL1(t, qi , q̇i ) is a differential function and there
exists nonzero functions Γ i such that (8) can be
expressed as

δL/δqα = −Γ i , (14)

where Γ i = Γ i
0 +εΓ i

1 . Then L is said to be an approx-
imate partial Lagrangian of system (8). Equation (14)
is termed as an approximate partial Euler–Lagrange
equation. The approximate Euler–Lagrange equation
(14) for ε0 and ε1, results in

δL0

δqi
= −Γ i

0 , (15)

δL1

δqi
= −Γ i

1 . (16)

Definition 6 The approximate Lie-Bäcklund operator
X defined in (3) is said to be an approximate par-
tial Noether operator corresponding to an approximate
partial Lagrangian L(t, qi , q̇i ; ε) = L0(t, qi , q̇i ) +
εL1(t, qi , q̇i ) if it satisfies

X (L) + LDt (ξ) = (ηi − q̇iξ)
δL

δqi
+ Dt (B), (17)
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with respect to a suitable function B. Then the formula
for the approximate first integrals is

I = B − ξL − (ηi − q̇iξ)
δL

δq̇i
+ O(ε2). (18)

The approximate partial Euler–Lagrange Eq. (17)
for ε0 and ε1, yields

X0(L0)+L0Dt (ξ0)=(ηi0−q̇iξ0)
δL0

δqi
+Dt (B0), (19)

X1(L0) + X0L1 + L0Dt (ξ1) + L1Dt (ξ0)

= (ηi0 − q̇iξ0)
δL1

δqi
+ (ηi1 − q̇iξ1)

δL0

δqi
+ Dt (B1).

(20)

The approximate first integrals formula (18) for ε0 and
ε1 results in the following form:

I0 = B0 − ξ0L0 − (ηi0 − q̇iξ0)
δL0

δq̇i
, (21)

I1 = B1 − ξ0L1 − ξ1L0 − (ηi0 − q̇iξ0)
δL1

δq̇i

−(ηi1 − q̇iξ1)
δL0

δq̇i
. (22)

Remark 1 It is worthy to mention here that by setting
L1 = 0, the approximate partial Noether operators
determining equations and approximate first integrals
formulas (19)–(22) reduce to the ones given by Naeem
and Mahomed [9].

3 Generalization of approximate partial Noether
theorem in phase space

In this section first, we present the notions of approxi-
mate partial Hamiltonian function, approximate
Legendre-type transformation and approximate
Hamiltonian-type system. Then, we generalize the
approximate partial Noether theorem proposed by
Naeem and Mahomed [9] and its modified form pre-
sented in previous section in phase space for an approx-
imate partial Hamiltonian.

3.1 Notion of an approximate partial Hamiltonian

Let t be the independent variable which is usually time
and (q, p) = (q1, . . . , qn, p1, . . . , pn) the phase space
coordinates. The Euler operator δ/δqi and the varia-
tional operator δ/δpi are defined as (see, e.g., [25,27])
δ

δqi
= ∂

∂qi
− D

∂

∂q̇i
, i = 1, 2, . . . , n, (23)

and

δ

δpi
= ∂

∂pi
− D

∂

∂ ṗi
, i = 1, 2, . . . , n, (24)

where

D = ∂

∂t
+ q̇ i

∂

∂qi
+ ṗi

∂

∂pi
+ · · · (25)

is the total derivative operator with respect to the time t .
The summation convention applies for repeated indices
here and in the sequel.

The variables qi , pi satisfy the differential relations

ṗi = D(pi ), q̇i = D(qi ), i = 1, 2, . . . , n. (26)

Definition 7 (ApproximateLegendre-type transforma-
tion) Consider a perturbed system of second-order
ODEs

q̈i = fi (t, q
i , q̇i ; ε). (27)

If L(t, qi , q̇i ; ε) = L0(t, qi , q̇i )+εL1(t, qi , q̇i ) be the
approximate partial Lagrangian for system (27) satis-
fying δL

δqi
= −Γ i , then there exists an approximate

partial Hamiltonian H(t, qi , pi ; ε) = H0(t, qi , pi ) +
εH1(t, qi , pi ) satisfying

H(t, qi , pi ; ε) = pi q̇i − L(t, qi , q̇i ; ε), (28)

where pi = ∂L
∂q̇i

and Γ i = Γ i
0 + εΓ i

1 . The relation
(28) is termed as an approximate Legendre-type trans-
formation.

Remark 2 It is important to mention here that the vari-
ables p and q are related as pi = ∂L

∂q̇i
. So perturbations

in p will arise as a consequence. Also in solution we
will in general have perturbation in p.

Proposition 1 Consider a perturbed systemof second-
order ODEs (27) and L(t, qi , q̇i ; ε) be the approxi-
mate partial Lagrangian satisfying δL

δqi
= −Γ i . If there

exists a function H(t, pi , qi ; ε) satisfying Legendre-
type transformation (28), then the second-order per-
turbed system (27) can be re-cast as a first-order per-
turbed dynamical system

q̇i = ∂H

∂pi
,

ṗi = −∂H

∂qi
+ Γ i , i = 1, . . . , n, (29)

whereΓ i = Γ i
0 +εΓ i

1 is a nonzero function of t, p
i , qi .

The function H is termed as an approximate par-
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Generalization of approximate partial Noether approach in phase space 739

tial Hamiltonian for the perturbed system of second-
order ODEs (27). The system (29) is the perturbed
Hamiltonian-type system.

Proof The action of variational operator δ/δpi on
approximate Legendre-type transformation (28) yields

δH

δpi
= q̇i − δL

δpi
, (30)

as δL
δpi

= 0, and this provides thefirst equationof system
(29). Applying the variational operator δ/δqi to (28)
results in
δH

δqi
= − ṗi − δL

δqi
, (31)

and this yields second equation of system (29) as δL
δqi

=
−Γ i . This completes proof. ��
Remark 3 It is important to mention here whether a
model has an approximate standard Hamiltonian for-
mulations. The approximate partial Hamiltonian too
exists that results in the approximatefirst integrals.Also
the partial Hamiltonian is not unique.

Now some examples are provided to explain how to
write an approximate partial Hamiltonian.

1. Consider following perturbed system of first-order
ODEs.

q̇1 = p1,

q̇2 = p2,

ṗ1 = −ω2
1q1 + ε

(
d1q̇1(1 − q21 ) − α1q

3
1 − δq1q

2
2

)
,

ṗ2 = −ω2
2q2 + ε

(
d2q̇2(1 − q22 ) − α2q

3
2 − δq21q2

)
.

(32)

An approximate partial Hamiltonian for system
(32) is

H = 1

2

(
p21 + p22 + ω2

1q
2
1 + ω2

2q
2
2

)

+1

4
ε(α1q

4
1 + α2q

4
2 ) + εδ

1

2
q21q

2
2 , (33)

and the functions Γ i are

Γ 1 = εd1 p1(1 − q21 ),

Γ 2 = εd2 p2(1 − q22 ). (34)

Another approximate partial Hamiltonian for sys-
tem (32) is

H = 1

2

(
p21 + p22 + ω2

1q
2
1 + ω2

2q
2
2

)
, (35)

and now the functions Γ i are

Γ 1 = ε

(
d1 p1(1 − q21 ) − α1q

3
1 − δq1q

2
2

)
,

Γ 2 = ε

(
d2 p2(1 − q22 ) − α2q

3
2 − δq21q2

)
. (36)

Note that the approximate partial Hamiltonian (33)
is of the form H = H0 +εH1, whereas the approx-
imate partial Hamiltonian (35) is of simple form
H = H0. Also, it is worthy to mention here that
function Γi are defined according to approximate
partial Hamiltonian.

2. The equations of motion in a mechanical system
are

q̇1 = p1,

q̇2 = p2,

ṗ1 = −p1 − εt,

ṗ2 = −εp1(2 − t). (37)

A partial Hamiltonian for system (37) is

H = 1

2
(p21 + p22), (38)

and the functions Γ1 = −p1−εt, Γ2 = −εp1(2−
t). Note that here Γ1, Γ2 are nonpotential gener-
alized forces or generalized constrained forces of
mechanical system.

3. The Hamiltonian dynamical system for the galaxy
model reads as (see e.g., [29])

q̇1 = p1,

q̇2 = p2,

ṗ1 = −ω2
1q1 + εq22 ,

ṗ2 = −ω2
2q2 + 2εq1q2. (39)

The approximate standard Hamiltonian for system
(39) is given by

H = 1

2
(p21 + p22 + ω2

1q
2
1 + ω2

2q
2
2 ) − εq1q

2
2 . (40)

A partial Hamiltonian for system (39) exists too
and is given by

H = 1

2
(p21 + p22 + ω2

1q
2
1 + ω2

2q
2
2 ), (41)

with Γ1 = εq22 and Γ2 = 2εq1q2.

Next, we deduce the approximate partial Hamilto-
nian operators determining equation from the for-
mulas of approximate partial Lagrangian operator
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determining equation. Also formulas are provided
to construct approximate first integrals upto o(ε).

3.2 Generalization of approximate Noether-like
theorem

The generators of point symmetries (see, e.g., [25,27,
28]) in the space (t, q, p) are operators of the form
X = X0 + εX1 where

X0 = ξ0(t, q, p)
∂

∂t
+ ηi0(t, q, p)

∂

∂qi

+ζ i0(t, q, p)
∂

∂pi
, (42)

X1 = ξ1(t, q, p)
∂

∂t
+ ηi1(t, q, p)

∂

∂qi

+ζ i1(t, q, p)
∂

∂pi
. (43)

Proposition 2 An operator X = X0 + εX1 is said
to be an approximate partial Hamiltonian operator
corresponding to an approximate partial Hamiltonian
H(t, qi , pi ; ε) = H0(t, qi , pi ) + εH1(t, qi , pi ) , if
there exists a function B(t, qi , pi ; ε) = B0(t, qi , pi )+
εB1(t, qi , pi ) such that

ζ i0
∂H0

∂pi
+ pi D(ηi0) − X0(H0) − H0D(ξ0)

= D(B0) +
(

ηi0 − ξ0
∂H0

∂pi

)
(−Γ i

0 ), (44)

ζ i0
∂H1

∂pi
+ ζ i1

∂H0

∂pi
+ pi D(ηi1) − X0(H1) − X1(H0)

−H0D(ξ1) − H1D(ξ0)

= D(B0) +
(

ηi0 − ξ0
∂H1

∂pi

)
(−Γ i

1 )

+
(

ηi1 − ξ1
∂H0

∂pi

)
(−Γ i

0 ), (45)

hold.

Proof Thepartial Lagrangianoperator determiningEq.
(17) with the aid of approximate Legendre-type trans-
formation (28) yields

X [pi q̇i − H(t, pi , qi )] + [pi q̇i
−H(t, pi , qi )]Dt (ξ)=Dt (B)+(ηi −ξ q̇i )(−Γi ).

(46)

On expanding Eq. (46) and utilizing the first equation
of system (29), we have

pi [Dt (η
i ) − q̇i Dt (ξ)] − ξ

∂H

∂t
− ηi

∂H

∂qi

+pi q̇i Dt (ξ) − HDt (ξ)

= Dt (B) + (ηi − ξ
∂H

∂pi
)(−Γi ), (47)

and this on separation with respect to ε yields Eqs. (44)
and (45). This completes the proof. ��

The following theorem is essential for the construc-
tion of approximate first integrals for system (29) and
is analogous to one presented in [25,27].

Proposition 3 The approximate first integral I =
I0 + ε I1 corresponding to system (29) associated with
an approximate partial Hamiltonian operator X =
X0 + εX1 of the approximate partial Hamiltonian
H(t, q, p; ε) is determined from

I0 = piηi0 − ξ0H0 − B0, (48)

I1 = piηi1 − ξ0H1 − ξ1H0 − B1, (49)

where B(t, qi , pi ; ε) = B0(t, qi , pi ) + εB1(t, qi , pi )
is a gauge-like function.

Proof The formula for first integral (18) with the aid
of approximate Legendre-type transformation (28) and
pi = ∂L

∂q̇i
yields

I =ξ [pi q̇i −H(t, pi , qi ; ε)]+(ηi −ξ q̇i )pi −B, (50)

and this after separation with respect to ε provides for-
mulas (48) and (49). This completes the proof. ��

4 Illustrative example: perturbed orbit equation

In this section, we explain our approach with the help
of a simple example of perturbed orbit equation. An
approximate standard Hamiltonian also exists for this
model. Consider the following perturbed orbit equation
[6]

q̈ + q = ε
A

q3
. (51)

In [6], the approximate Noether symmetries and
first integrals were established for Eq. (51). A stan-
dardHamiltonian also exists for this equation.Weapply
our newly developed approximate partial Hamiltonian
approach to derive approximate first integrals of Eq.
(51).
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Generalization of approximate partial Noether approach in phase space 741

An approximate partial Lagrangian for Eq. (51) is

L(t, q, q̇) = q̇2

2
. (52)

An approximate partial Hamiltonian with the aid of
an approximate Legendre-type transformation (28) is

H = p2

2
, (53)

where p = ∂L
∂q̇ . With the aid of approximate partial

Hamiltonian (53), the second-order ODE (51) can be
re-cast into following first-order system:

q̇ = p,

ṗ = ε
A

q3
− q, (54)

withΓ = ε A
q3

−q. Nowwe apply our newly developed
approximate partial Hamiltonian approach to construct
first integrals of system (54). The approximate par-
tial Hamiltonian operators determining Eqs. (44) and
(45) yield the following determining equations corre-
sponding to zeroth- and first-order approximations of
ε, respectively:

ε0 : p(η0t + pη0q) − p2

2
(ξ0t + pξ0q)

= B0t + pB0q + q(η0 − ξ0 p), (55)

ε : p(η1t + pη1q) − p2

2
(ξ1t + pξ1q)

= B1t+ pB1q+q(η1−ξ1 p)− A

q3
(η0−ξ0 p), (56)

in which ξ0(t, q), ξ1(t, q), η0(t, q), η1(t, q),

B0(t, q) and B1(t, q). Separating (55), (56), after
expansion, with respect to the different combinations
of derivatives of p, we obtain the following systems:

Zeroth-order approximation:

p3: ξ0q = 0,

p2: η0q − 1

2
ξ0t = 0,

p: B0q − η0t − ξ0q = 0,

p0: B0t + qη0 = 0. (57)

First-order approximation:

p3: ξ1q = 0,

p2: η1q − 1

2
ξ1t = 0,

p: B1q − η1t − ξ1q + A

q3
ξ0 = 0,

p0: B1t + qη1 − A

q3
η0 = 0. (58)

The solution of systems (57) and (58) yields following
approximate partial Hamiltonian operators and gauge
terms:

X1 = ∂

∂t
, B1 = q2

2
+ ε

A

2q2
,

X2 = sin(2t)
∂

∂t
+ q cos(2t)

∂

∂q
,

B2 = −q2

2
sin(2t) + ε

A

2q2
sin(2t),

X3 = cos(2t)
∂

∂t
− q sin(2t)

∂

∂q
,

B3 = −q2

2
cos(2t) + ε

A

2q2
cos(2t),

X4 = ε
∂

∂t
, B4 = ε

q2

2

X5 = ε

(
sin(2t)

∂

∂t
+ q cos(2t)

∂

∂q

)
,

B5 = −ε
q2

2
sin(2t),

X6 = ε

(
cos(2t)

∂

∂t
− q sin(2t)

∂

∂q

)
,

B6 = −ε
q2

2
cos(2t),

X7 = ε cos t
∂

∂q
, B7 = −εq sin(t),

X8 = ε sin t
∂

∂q
, B8 = εq cos t. (59)

In [6], the sameHamiltonian operatorswere derived for
the standardHamiltonian by the approximateNoether’s
theorem in phase space.

Next, we utilize formulas (48) and (49), to establish
the approximate first integrals I = I0 + ε I1 associ-
ated with the approximate partial Hamiltonian opera-
tors (59). The approximate first integrals are

I 1 = p2 + q2

2
+ ε

A

2q2
,

I 2 = pq cos(2t) − p2

2
sin(2t) + q2

2
sin(2t)

−ε
A

2q2
sin(2t),
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I 3 = pq sin(2t) + p2

2
cos(2t) − q2

2
cos(2t)

+ ε
A

2q2
cos(2t),

I 4 = 1

2
ε(p2 + q2),

I 5 = ε

(
pq cos(2t) − p2

2
sin(2t) + q2

2
sin(2t)

)
,

I 6 = ε

(
− pq sin(2t) − p2

2
cos(2t) + q2

2
cos(2t)

)
,

I 7 = ε

(
p cos t + q sin t

)
,

I 8 = ε

(
p sin t − q cos t

)
. (60)

The approximate partial Hamiltonian approach pro-
vided three stable and five unstable approximate first
integrals. It is important to mention here that the
approximate first integrals I 1, I 2 and I 3 are stable,
whereas I 4 · · · I 8 are unstable.

4.1 Exact solutions of perturbed orbit equation

Wecompute the exact solutions of perturbed orbit equa-
tion by utilizing the stable approximate first integrals
I1, I2 and I3 given in (60). Setting I1 = c1, we have

p2 + q2

2
+ ε

A

2q2
= c1, (61)

which results in

p = ±
√
2 c1q2 − q4 − ε A

q
. (62)

The substitution of (62) in Eq. (54) yields

± 1

2
arctan

(
q2 − c1√

2 c1q2 − q4 − ε A

)
= t + c2. (63)

Equations (62) and (63) form solution of system (54).
Next we utilize I1 and I2 to construct the exact solu-

tion. Setting I1 = c1, we arrive at (62). Setting I2 = c2
gives

pq cos(2t) − 1

2
p2 sin (2t) + 1

2
q2 sin (2 t)

−1

2

ε A sin (2 t)

q2
= c2. (64)

Equations (61) and (64) finally give rise to

Fig. 1 Graphical behavior of perturbed system (54) for ε =
1, A = 2, a = 1

p(t)2 = −c1 − 2c2 sin t cos t − (1−2 cos2 t)
√
c12−εA − c22+2c1

(65)

− εA

c1+2c2 sin t cos t+(1−2 cos2 t)
√
c12−εA−c22

,

(66)

q(t) =
√
c1+2c2 sin t cos t+(1−2 cos2 t)

√
c12−ε A−c22. (67)

Using the initial conditions q(0) = a and q̇(0) = 0
in system (54) provides p(0) = 0 and ṗ(0) = εA

a3
− a.

Solutions (66) and (67) with the help of initial condi-
tions result in c1 = 0 and c2 = ε A+a4

2a2
.

The solutions in (66) and (67) finally give rise to

p(t) = sin t cos t
(
εA − a4

)
a
√

ε A + a4 cos2 t − εA cos2 t
, (68)

and

q(t) =
√

ε A + a4 cos2 t − εA cos2 t

a
. (69)

The exact solutions (68) and (69) are graphically
represented in Fig. 1.

Remark 4 Note that the combination of I1 and I3 pro-
vides the same solutions as in Eqs. (68) and (69).

5 Approximate first integrals of two perturbed
cubically coupled Duffing–Van der Pol oscillators

In this section, approximate partial Hamiltonian
approach is utilized for the construction of approxi-
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mate first integrals of two perturbed cubically coupled
Duffing–Van der Pol oscillators given in (32). Both res-
onant andnonresonant caseswere investigated in detail.
We obtain stable and unstable approximate first inte-
grals for both resonant and nonresonant cases. System
(32) can be alternatively expressed as a system of two
second-order ODEs which represents two perturbed
cubically coupledDuffing–Van der Pol oscillators [32].
The parameter ωi denotes the natural frequency, di is
damping coefficient,αi > 0 is stiffness term, and δ > 0
represents the coupling strength between the oscilla-
tors. It is important to mention here that the damping
coefficients d1 ≥ 0 and d2 ≥ 0.

We consider the approximate partial Hamiltonian
given in (35), and functions Γi are given in (36). The
approximate partial Hamiltonian operators determin-
ing Eqs. (44) and (45) for the partial Hamiltonian (35)
yield the following determining equations correspond-
ing to zeroth-order and first-order approximations of
ε:

p1[η10t+η10q1 q̇1+η10q2 q̇2]+ p2[η20t+η20q1 q̇1+η20q2 q̇2],
−η10ω

2
1q1 − η20ω

2
2q2 − 1

2
[ξ0t + ξ0q1 q̇1

+ξ0q2 q̇2][p21 + p22 + ω2
1q

2
1 + ω2

2q
2
2 ]

= B0t + B0q1 q̇1 + B0q2 q̇2 (70)

and

p1[η11t+η11q1 q̇1+η11q2 q̇2]+ p2[η21t+η21q1 q̇1+η21q2 q̇2],
−η11ω

2
1q1 − η21ω

2
2q2 − 1

2
[ξ1t + ξ1q1 q̇1 + ξ1q2 q̇2]

×[p21 + p22 + ω2
1q

2
1 + ω2

2q
2
2 ]

= B1t + B1q1 q̇1 + B1q2 q̇2 + [η10 − ξ0 p1]
×[−d1 p1(1 − q21 ) + α1q

3
1 + δq1q

2
2 ]

+[η20 − ξ0 p2][−d2 p2(1 − q22 ) + α2q
3
2 + δq21q2]

(71)

in which ξ0(t, q1, q2), ξ1(t, q1, q2), η10(t, q1, q2,
η11(t, q1, q2), η20(t, q1, q2), η21(t, q1, q2), B0(t, q1,
q2) and B1(t, q1, q2). Separating Eqs. (70) and (71),
after expansion, with respect to the different combina-
tions of derivatives of p1 and p2, we obtain the follow-
ing systems:

Zeroth-order approximation:

p31: ξ0q1 = 0,

p32: ξ0q2 = 0,

p21 : η10q1 − 1

2
ξ0t = 0,

p22 : η20q2 − 1

2
ξ0t = 0,

p1 p2: η10q2 + η20q1 = 0,

p1: η10t = B0q1,

p2: η20t = B0q2 ,

rest : − η10ω
2
1q1 − η20ω

2
2q2

− 1

2
ξ0t (ω

2
1q

2
1 + ω2

2q
2
2 ) = B0t . (72)

First-order approximation:

p31: ξ1q1 = 0,

p32: ξ1q2 = 0,

p21 : η11q1 − 1

2
ξ1t = d1ξ0(1 − q21 ),

p22 : η21q2 − 1

2
ξ1t = d2ξ0(1 − q22 ),

p1 p2: η11q2 + η21q1 = 0,

p1: η11t = B1q1−ξ0(α1q
3
1+δq1q

2
2 )−d1(1−q21 )η

1
0,

p2: η21t = B1q2−ξ0(α2q
3
2+δq21q2)−d2(1−q22 )η

2
0,

rest : − η11ω
2
1q1 − η21ω

2
2q2 − 1

2
ξ1t (ω

2
1q

2
1 + ω2

2q
2
2 )

= B1t+η10(α1q
3
1+δq1q

2
2 )+η20(α2q

3
2+δq21q2).

(73)

The solution of systems (72) and (73) is established for
two cases (i)ω1 = ω2 and (ii)ω1 �= ω2. For the sake of
brevity the details of long calculation will not be repro-
duced here, and we will only give approximate partial
Hamiltonian operators, gauge terms and first integrals
for both cases.

5.1 Resonant case: ω1 = ω2

For the resonant caseω1 = ω2, following four subcases
arise.

Subcase 1: d1 �= 0, d2 �= 0.

Subcase 2: When d1 = 0, d2 = 0, δ = α1 = α2.

Subcase 3: When d1 �= 0, d2 = 0.

Subcase 4: When d1 = 0, d2 �= 0.

Next, we provide the approximate partial Hamilto-
nian operators and gauge terms for all these subcases.
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Subcase 1: d1 �= 0, d2 �= 0.
The partial Hamiltonian operators and gauge terms for
this case are given as follows:

X1 = ε
∂

∂t
, B1 = 0,

X2 = ε

(
sin 2ω1t

∂

∂t
+ q1ω1 cos 2ω1t

∂

∂q1

+q2ω1 cos 2ω1t
∂

∂q2

)
,

B2 = −ε(q21 + q22 )ω
2
1 sin 2ω1t,

X3 = ε

(
cos 2ω1t

∂

∂t
− q1ω1 sin 2ω1t

∂

∂q1

−q2ω1 sin 2ω1t
∂

∂q2

)
,

B3 = −ε(q21 + q22 )ω
2
1 cos 2ω1t,

X4 = ε

(
q2

∂

∂q1
− q1

∂

∂q2

)
, B4 = 0,

X5 = ε sinω1t
∂

∂q1
, B5 = εω1q1 cosω1t,

X6 = ε cosω1t
∂

∂q1
, B6 = −εω1q1 sinω1t,

X7 = ε sinω1t
∂

∂q2
, B7 = εω1q2 cosω1t,

X8 = ε cosω1t
∂

∂q2
, B8 = −εω1q2 sinω1t . (74)

Subcase 2: When d1 = 0, d2 = 0, δ = α1 = α2.
The approximate partial Hamiltonian approach for

this case yields the following two stable partial Hamil-
tonian operators and gauge terms in addition to the
unstable ones given in (74):

X9 = ∂

∂t
, B9 = ε

(
α1

4
q41 + δ

2
q21q

2
2 + α2

4
q42

)
,

X10 = q2
∂

∂q1
− q1

∂

∂q2
, B10 = 0. (75)

Subcase 3: When d1 �= 0, d2 = 0.
For this case, we obtain only unstable approximate par-
tial Hamiltonian operators (74).
Subcase 4: When d1 = 0, d2 �= 0.
For this case, in addition to the unstable partial Hamil-
tonian operators given in (74), we also obtain one stable
approximate partial Hamiltonian operator

X11 = q2
∂

∂q1
− q1

∂

∂q2
+ ε

2

(
− q2d2t

∂

∂q1

+d2q1t
∂

∂q2

)
, B11 = −ε

2
d2q1q2. (76)

5.1.1 Approximate first integrals

Next, we utilize formulas (48) and (49), to establish the
approximate first integrals I = I0+ε I1 associatedwith
the approximate partial Hamiltonian operators (74)–
(76) for different cases.

Subcase 1: d1 �= 0, d2 �= 0.
With the aid of formulas (48) and (49), we obtain the

following eight approximate first integrals I = I0+ε I1
associated with the approximate partial Hamiltonian
operators (74):

I 1 = −ε

2

[
p21 + p22 + ω2

1(q
2
1 + q22 )

]
,

I 2 = ε

[
ω1 cos 2ω1t (p1q1 + p2q2)

−1

2
sin 2ω1t (p

2
1 + p22 − ω2

1(q
2
1 + q22 ))

]
,

I 3 = −ε

[
ω1 sin 2ω1t (p1q1 + p2q2)

+1

2
cos 2ω1t (p

2
1 + p22 − ω2

1(q
2
1 + q22 ))

]
,

I 4 = ε

[
p1q2 − p2q1

]
,

I 5 = ε

[
p1 sinω1t − ω1q1 cosω1t

]
,

I 6 = ε

[
p1 cosω1t + ω1q1 sinω1t

]
,

I 7 = ε

[
p2 sinω1t − ω1q2 cosω1t

]
,

I 8 = ε

[
p2 cosω1t + ω1q2 sinω1t

]
. (77)

Note that all of these approximate first integrals are
multiplied by ε and thus all are unstable.

Subcase 2 When d1 = 0, d2 = 0, δ = α1 = α2.
For this case in addition to unstable approximate first

integrals I 1, . . . I 8, following two stable approximate
first integrals are derived:

I 9 = 1

2

[
p21 + p22 + ω2

1(q
2
1 + q22 ) + εα1

(
q41
2

+ q21q
2
2 + q42

2

) ]
,

I 10 = p1q2 − p2q1. (78)

Subcase 3 When d1 �= 0, d2 = 0.
For this case, we obtain only unstable approximate first
integrals I 1, . . . I 8 given in Eq. (77).
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Subcase 4 When d1 = 0, d2 �= 0.
For this case, in addition to the unstable approximate
first integrals I 1, . . . I 8 given in (77), we obtain the
following stable approximate first integral:

I 11= p1q2− p2q1+ εd2
2

[
− p1q2t+ p2q1t+q1q2

]
.

(79)

For the resonant case, the approximate partial
Hamiltonian approach yields eight unstable approxi-
mate first integrals for d1 �= 0, d2 �= 0 and for the case
d1 �= 0, d2 = 0.When d1 = 0, d2 = 0, δ = α1 = α2

then in addition to eight unstable approximate first inte-
grals, we have derived two stable approximate first inte-
grals I 9 and I 10. For the case d1 = 0, d2 �= 0, one
stable approximate first integral I 11 is attained in addi-
tion to eight unstable approximate first integrals.

5.2 Nonresonant case: ω1 �= ω2

For the nonresonant case ω1 �= ω2, following three
subcases arise.

Subcase 1: d1 �= 0, d2 �= 0.

Subcase 2: d1 = 0, d2 = 0.

Subcase 3: d1 �= 0, d2 = 0.

Now, we provide the approximate partial Hamilto-
nian operators andgauge terms for these three subcases.

Subcase 1: d1 �= 0, d2 �= 0.
The partial Hamiltonian operators and gauge terms for
this case are given as follows:

X1 = ε
∂

∂t
, B1 = 0,

X2 = ε sinω1t
∂

∂q1
, B2 = εω1q1 cosω1t,

X3 = ε cosω1t
∂

∂q1
, B3 = −εω1q1 sinω1t,

X4 = ε sinω2t
∂

∂q2
, B4 = εω2q2 cosω2t,

X5 = ε cosω2t
∂

∂q2
, B5 = −εω2q2 sinω2t . (80)

Subcase 2: d1 = 0, d2 = 0.
When d1 = 0, d2 = 0 , the approximate partial Hamil-
tonian approach yields the following one stable approx-
imate partial Hamiltonian operator and gauge term in

addition to the unstable ones provided in (80) :

X6 = ∂

∂t
, B6 = ε(

α1

4
q41 + δ

2
q21q

2
2 + α2

4
q42 ). (81)

Subcase 3: d1 �= 0, d2 = 0.
For the case, when d1 �= 0, d2 = 0 then we obtain
only unstable approximate partial Hamiltonian opera-
tors (80).

It is worthy to mention here that the subcase d1 =
0, d2 �= 0 does not arise for nonresonant case.

5.2.1 Approximate first integrals

With the aid of formulas (48) and (49), we establish
approximate first integrals I = I0 + ε I1 associated
with the approximate partialHamiltonian operators and
gauge terms given in Eqs. (80) and (81).

Subcase 1: d1 �= 0, d2 �= 0.
The approximate first integrals I = I0+ε I1 associated
with the approximate partialHamiltonian operators and
gauge terms given in Eq. (80) are given by

I 1 = −ε

2

[
p21 + p22 + ω2

1q
2
1 + ω2

2q
2
2

]
,

I 2 = ε

[
p1 sinω1t − ω1q1 cosω1t

]
,

I 3 = ε

[
p1 cosω1t + ω1q1 sinω1t

]
,

I 4 = ε

[
p2 sinω2t − ω2q2 cosω2t

]
,

I 5 = ε

[
p2 cosω2t + ω2q2 sinω2t

]
. (82)

Note that all of these approximate first integrals are
multiplied by ε and thus all are unstable.
Subcase 2: d1 = 0, d2 = 0.
The approximate first integral associated with the
approximate partial Hamiltonian operator and gauge
term (81) is given by

I 6 = 1

2

[
p21 + p22 + ω2

1q
2
1 + ω2

2q
2
2

+ε

(
α1q41
2

+ δq21q
2
2 + α2q42

2

)]
. (83)

Subcase 3: d1 �= 0, d2 = 0.
The approximate first integrals are the same as for the
subcase 1 and are given in Eq. (82).

The approximate partial Hamiltonian approach pro-
vided five unstable approximate first integrals for d1 �=
0, d2 �= 0 and for d1 �= 0, d2 = 0. For the case

123



746 R. Naz, I. Naeem

d1 = 0, d2 = 0, one stable first integral I 6 is attained
in addition to five unstable first integrals.

The approximate partial Hamiltonian approach is
utilized for the construction of approximate first inte-
grals of two perturbed cubically coupled Duffing–
Van der Pol oscillators. Both resonant and nonreso-
nant cases are investigated in detail. For the resonant
case approximate partial Hamiltonian approach pro-
vided three stable and eight unstable approximate par-
tial Hamiltonian operators. We established two sta-
ble approximate first integrals for the resonant case
when the damping coefficients d1 = 0, d2 = 0 and
α1 = α2 = δ. The condition α1 = α2 = δ means that
the coefficient of Duffing term and coefficients of cou-
pling terms of both the oscillators are the same.Another
stable approximate first integral for the resonant case
is derived for the case d1 = 0, d2 �= 0. We obtained
one stable and five unstable approximate first integrals

for the nonresonant case. The stable first integral for
the nonresonant case arises when the damping coeffi-
cients are zero, i.e., d1 = 0, d2 = 0. It is important to
mention here that these parameter restrictions naturally
arise in process of construction of approximate partial
Hamiltonian operators.

6 Reductions and exact solutions of two perturbed
cubically coupled Duffing–Van der Pol oscillators

In this section, we provide the reductions and exact
solutions of two perturbed cubically coupled Duffing–
Van der Pol oscillators governed by first-order system
of ODEs given in (32) with the aid of the stable first
integrals derived in the preceding section.We only con-
sider those cases for which stable first integrals have
been established.

6.1 Exact solutions for the resonant case when
d1 = 0, d2 = 0, δ = α1 = α2

The approximate partial Hamiltonian approach pro-
vided eight unstable approximatefirst integrals I 1 · · · I 8

given in Eq. (77) and two stable approximate first inte-
grals I 9, I 10 provided in Eq. (78). The stable approxi-
mate first integrals I 9 and I 10 are utilized to derive the
solution of first-order system of ODEs given in (32).
Setting I 10 = c1, we have

p1q2 − p2q1 = c1 (84)

and this yields

q1(t) = q2

∫
c1
q22

dt + c2q2, (85)

where c1 and c2 are arbitrary constants. Setting I 9 = c3
, we have

1

2

[
q̇21 +q̇22 +ω2

1(q
2
1 +q22 )+

εα1

2
(q21 +q22 )

2
]

= c3. (86)

Equations (85) and (86) give following exact solution
provided c1 = 0

q2(t) =
2Jacobi SN

(
1√
2

√
ω2
1 +

√
ω4
1 + 4c3α1εt + c4,

√
2εc3α1

εc3α+ω4
1+ω2

√
ω4
1+4εc3α

)√
c3

√
(c22 + 1)ω2

1 + (c22 + 1)
√

ω4
1 + 4εc3α1

, (87)

and

q1(t) = c2q2(t). (88)

From the first two equations of (32), we have q̇1 = p1
and q̇2 = p2. Thus, we have provided exact solution
for the first-order system of perturbed ODEs given in
(32) for the resonant case under parameter restriction
d1 = 0, d2 = 0, δ = α1 = α2. This solution is new in
the literature and not reported before.

6.2 Reduction for the resonant case when
d1 = 0, d2 �= 0

The approximate partial Hamiltonian approach pro-
vided eight unstable approximate first integrals listed in
Eq. (77) and one stable given in Eq. (79) approximate
first integrals for this case. The stable approximate first
integral I 11 is utilized to provide a reduction to the first-
order system of ODEs given in (32). Setting I 11 = c1,
we have

p1q2− p2q1+ εd2
2

[
− p1q2t+ p2q1t+q1q2

]
=c1,

(89)
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where c1 is arbitrary constant. Equation (89) yields

q1(t) =
( ∫ −2c1

q22 (εd2t − 2)2
dt + c2

)
(εd2t − 2)q2,

(90)

where c2 is arbitrary constant.

6.3 Exact solutions for the nonresonant case when
d1 = 0, d2 = 0

The approximate partial Hamiltonian approach pro-
vided five unstable approximate first integrals pre-
sented in Eq. (82) and one stable given in Eq. (83)
approximate first integrals for this case. Setting I 6 =
c1, we have

1

2

[
p21 + p22 + ω2

1q
2
1 + ω2

2q
2
2

+ ε

(
α1q41
2

+ δq21q
2
2 + α2q42

2

)]
= c1, (91)

and this provides reduction of first-order system of
ODEs given in (32).

7 Conclusions

The approximate partial Noether theorem proposed
earlier for ODEs is generalized in phase space, and
notion of approximate partial Hamiltonian is devel-
oped. An approximate Legendre-type transformation
connects the approximate partialLagrangian andapprox-
imate partial Hamiltonian. The formulas for approxi-
mate partial Hamiltonian operators determining equa-
tions and first integrals are provided explicitly.

First, it is applied to derive approximate first inte-
grals of perturbed orbit equation as an illustrative exam-
ple. The approximate partial Hamiltonian approach
provides three stable andfive unstable approximate first
integrals. It is worthy to mention here that for the per-
turbed orbit equation approximate Noether’s theorem
also provided three stable and five unstable approxi-
mate first integrals corresponding to an approximate
standard Lagrangian.

In order to show effectiveness of approach devel-
oped here, it is applied to derive approximate first
integrals, reductions and exact solutions of two per-
turbed cubically coupled Duffing–Van der Pol oscilla-
tors. Both resonant and nonresonant cases were inves-
tigated in detail. For the resonant case, four subcases

arise. The approximate partial Hamiltonian approach
provided eight unstable approximate first integrals for
all cases. Two stable approximate first integrals are
derived provided the coefficient of Duffing term and
coupling terms of both the oscillators are the same.
Moreover, the effects of damping term are neglected.
The third stable approximate first integral exists for the
case when the effect of damping term is neglected for
thefirst oscillator, but it is taken into account for the sec-
ond oscillator. For the nonresonant case three subcases
arise. We obtained five unstable approximate first inte-
grals for all cases. For the nonresonant case, the stable
approximate first integral is obtained when the effects
of damping term are neglected. The parameter restric-
tion for both resonant and nonresonant cases naturally
arises in process of construction of approximate par-
tial Hamiltonian operators. Then reductions and exact
solutions for two perturbed cubically coupled Duffing–
Van der Pol oscillators are constructed with the help of
these derived approximate first integrals. We have con-
sidered only those cases for which stable approximate
first integrals are established.
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