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Abstract In this paper, a predator–prey model with
double Allee effects and impulse is studied. The exis-
tence and stability of the prey-free periodic solution are
investigated. The sufficient conditions for global stabil-
ity of the prey-free periodic solution are obtained. We
also find a critical threshold that the predator and prey
populations will coexist. The existence of the transcrit-
ical bifurcations is considered by means of the bifur-
cation theory when the prey population is not subject
to Allee effect. Combining mathematical analysis and
numerical simulations, we show that the double Allee
effects and impulse greatly alter the outcome of the
survival of both species.
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1 Introduction

In 1931, Warder Clyde Allee observed that the per
capita growth rate increases initially as population size
gets larger and then declines thereafter. Such a biolog-
ical phenomenon is referred to as an Allee effect. It is
characterized by a positive correlation between popu-
lation size and the mean individual fitness of a popula-
tion.There are twomain types ofAllee effect: the strong
Allee effect and theweakAllee effect. The strongAllee
effect implies that there exists a critical population size
under which the population growth rate becomes nega-
tive. The weakAllee effect, however, implies a reduced
per capita growth rate at low population size but never
becomes negative. Allee effects can be caused by sev-
eral causes, such as difficulties in finding mates, social
dysfunction and inbreeding depression. There are quite
a few real-world examples exhibiting presence of Allee
effects. Therefore, analysis of systems involving Allee
effect has gained lots of concerns in various fields such
as conservation biology [1,2], sustainable harvesting
[3], population management [4], biological invasions
[5], interacting species [6].

The Allee effect has numerous impacts on pop-
ulation dynamics, distribution and conservation, and
attracts much attention in biomathematics. Recently,
the systems with the space and Allee effect have been
studied in ecosystems [7–12]. Meanwhile, epidemic
systems are also related to this topic [13–15]. Fur-
thermore, Allee effects in ecological models have been
reviewed in [16]. Especially, in predator–prey systems,
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many authors have considered the Allee effect in the
prey [17–26]. For example, in [17], the authors con-
sidered a predator–prey system with the Allee effect
in the prey and Holling type III functional response. It
was shown that the Allee effect could promote system
collapse. In [18], a predator–prey model with Holling
II type functional response and the Allee effect in the
prey was investigated. The authors found that the Allee
effect of prey species increased the extinction risk of
both the predator and prey populations and could lead
to unstable periodical oscillation. The predator–prey
systems with Allee effect for the predator have been
also developed in the literature [19,27,28].

However, as far as we are aware, there have only
been a few studies that consider predator–prey models
with Allee effect for both predator and prey (for exam-
ple, see [29–31]). In [29], Alan J. Terry considered the
following predator–prey model:
⎧
⎪⎪⎨

⎪⎪⎩

x ′(t) = x

(
bx

a + x
− d1 − mx

)

− r xy
1+k1x+k2 y

,

y′(t) = crxy

1 + k1x + k2y

(
y

h + y

)

− d2y,
(1.1)

where x(t) and y(t) denote the population densities of
prey andpredator at time t , respectively,b > 0 is the per
capita maximum fertility rate of the prey, k1, d1, d2,m
are positive constants, k2 is a non-negative constant,
r > 0 is the predation of predator, c > 0 is the con-
version efficiency of prey into predator, m denotes the
strength of intra-competition of prey population, d1 and
d2 are the death rates of prey and predator, respectively.
x/(a+x) and y/(h+y) are the terms for theAllee effect
in prey and predator populations, a and h are the Allee
effect constants imposed on prey and predator popula-
tions, respectively. The author derived conditions for
stable coexistence of the predator and prey and proved
that there was always a minimum viable predator pop-
ulation level, that was, a strong Allee effect held for the
predator. The sufficient conditions for prey resurgence
were obtained.

However, in [29], the author assumed their model
holds in a single region, where immigration of the
predator into or out of this region was considered neg-
ligible and did not contribute terms to their model.
However, as Cushing [32] pointed out, it is necessary
and important to consider models with perturbations
which might be quite naturally exposed. For example,
consider the interaction between crops and locusts in
a local region. Once a year or once several years, a

large amount of locusts may invade into the region
and cause damages to the crops together with the local
locusts. This has often been seen in recent years in the
northwest of Xinjiang Province and Inner Mongolia
in China. Systems with such sudden perturbations are
involving in impulsive equations. Wang et al. [33] con-
sidered a Beddington–DeAngelis interference model
with impulsive biological control:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ′(t) = x(b − mx) − r xy

1 + k1x + k2y
,

y′(t) = crxy

1 + k1x + k2y
− d2y,

⎫
⎪⎬

⎪⎭
t �= nT,

�x(t) = 0,
�y(t) = μT,

}

t = nT,

(1.2)

where μ represents the rate of predator release per unit
time and T is the release period. The author found that
the prey-free periodic solutionwas local asymptotically
stable if the impulsive control rate was larger than a
critical value or the release period was smaller than
another critical value. Conditions for permanence of
the model were established. The existence of nontrivial
periodic solution was investigated.

The above discussion leads naturally to the follow-
ing two problems:

1. How the dynamics of system (1.1) will change
whenwe take the impulse into consideration in sys-
tem (1.1)?

2. How do Allee effects affect the dynamics of both
the prey and the predator if we incorporate theAllee
effects for both the prey and the predator into impul-
sive system (1.2)?

The goal in this paper is to try to answer the ques-
tions raised above. To this aim, we consider the follow-
ing predator–prey systemwith double Allee effects and
periodic constant impulsive immigration of predator:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ′(t) = x

(
bx

a + x
− d1 − mx

)

− r xy

1 + k1x + k2y
,

y′(t) =
(

crxy

1 + k1x + k2y

)(
y

h + y

)

− d2y,

⎫
⎪⎪⎬

⎪⎪⎭

t �= nT,

�x(t) = 0,
�y(t) = p,

}

t = nT,

(1.3)

where p > 0 denotes periodic constant impulsive
immigration of predator. The other parameters are
defined as system (1.1) and (1.2), respectively.

The remaining part of this paper is organized as
follows. In the next section, we discuss the existence
and stability of the prey-free periodic solution of sys-
tem (1.3). In Sect. 3, the coexistence of the predator
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and prey populations of system (1.3) is considered.
In Sect. 4, the existence of transcritical bifurcations
in system (1.3) is discussed by means of the bifurca-
tion theory when the prey population is not subject to
Allee effect. In Sect. 5, some numerical simulations are
given to illustrate our results. Finally, some concluding
remarks are given.

2 The existence and stability of the prey-free
periodic solution

Due to the biological meaning, we may define the state
space of (1.3) as X = {(x, y) ∈ R

2+}.
In this section, we investigate the existence of the

prey-free periodic solution of system (1.3). In this case,
the prey population is entirely absent from the popu-
lation permanently, ie., x(t) = 0, t ≥ 0. system (1.3)
yields
⎧
⎪⎨

⎪⎩

y′(t) = −d2y, t �= nT,

�y(t) = p, t = nT,

y(0+) = y0 ≥ 0.

(2.1)

Lemma 2.1 [34] System (2.1) has a positive periodic
solution y∗(t) and for any solution y(t) of (2.1), |y(t)−
y∗(t)| → 0 as t → ∞. Moreover, y(t) ≥ y∗(t) if
y0 ≥ y∗(0+) and y(t) < y∗(t) if y0 < y∗(0+), where

y∗(t) = y∗(0+)e−d2(t−nT ), nT < t ≤ (n + 1)T, (2.2)

and

y∗(0+) = p

1 − e−d2T
. (2.3)

Lemma 2.2 R
2+ = {(x, y) | x > 0, y > 0} is the

positive invariant set of system (1.3).

Proof For any t > 0, there exists a n ∈ N, such that
t ∈ (nT, (n + 1)T ], hence we have

x(t) = x
(
nT+)

exp

(∫ t

nT

(
bx

a + x
− d1 − mx

− r y

1 + k1x + k2y

)

ds

)

y(t) = y
(
nT+)

exp

(∫ t

nT

((
crx

1 + k1x + k2y

) (
y

h + y

)

−d2) ds)

x
(
nT+) = x (nT ) , y

(
nT+) = y (nT ) + p.

Thus

y(t) = y
(
nT+)

exp

(∫ t

nT

((
crx

1 + k1x + k2y

)(
y

h + y

)

−d2) ds)

≥ y (nT ) exp

(∫ t

nT

((
crx

1 + k1x + k2y

)(
y

h + y

)

−d2) ds) .

Then we get

x(t) = x
(
0+)

exp

(∫ t

nT

(
bx

a + x
− d1 − mx

− r y

1 + k1x + k2y

)

ds

)

y(t) ≥ y
(
0+)

exp

(∫ t

nT

((
crx

1 + k1x + k2y

)(
y

h + y

)

−d2) ds) .

Therefore, x(t) > 0, y(t) > 0. So R2+ = {(x, y) | x >

0, y > 0} is the positive invariant set of system (1.3).

�

According to Lemma 2.1, we obtain the following
result:

Theorem 2.1 System (1.3) has a prey-free periodic
solution (0, y∗(t)).

Next, we will discuss the stability of the periodic
solution (0, y∗(t)).

Suppose that (x(t), y(t)) be any solution of sys-
tem (1.3). Let

x1(t) = x(t), y1(t) = y(t) − y∗(t). (2.4)

Substituting (2.4) into (1.3), we obtain the linearization
of the system (1.3) as follows
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1(t) = (−d1 − r y∗(t))x1(t),

y′
1(t) = cr(y∗(t))2

(1 + k2y∗(t))(h + y∗(t))
x1(t) − d2y1(t),

⎫
⎬

⎭
t �= nT,

�x1(t) = 0,
�y1(t) = 0,

}

t = nT .

Therefore, for 0 ≤ t < T, we have
(
x1(t)
y1(t)

)

= φ(t)

(
x1(0)
y1(0)

)

,

where φ(t) satisfies

φ′(t) =
⎛

⎝
−d1 − r y∗(t) 0
cr(y∗(t))2

(1 + k2y∗(t))(h + y∗(t))
−d2

⎞

⎠ φ(t),
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φ(0) = I, the identity matrix.
(
x1(T+)

y1(T+)

)

=
(
1 0
0 1

)(
x1(T )

y1(T )

)

.

The stability of the periodic solution (0, y∗(t)) is
determined by the eigenvalues of the following matrix

M =
(
1 0
0 1

)

φ(T ).

When a > 0, the eigenvalues of the matrix M are

λ1 = exp

(∫ T

0

(−d1 − r y∗ (t)
)
dt

)

< 1,

λ2 = e−d2T < 1.

Therefore, we have the following theorem:

Theorem 2.2 If a > 0, then the prey-free periodic
solution (0, y∗(t)) of system (1.3) is locally asymptot-
ically stable.

Similarly, we obtain the following result when a =
0:

Theorem 2.3 If a = 0 and p > d2T
r (b−d1) � p̄, then

the prey-free periodic solution (0, y∗(t))of system (1.3)
is locally asymptotically stable.

Remark 2.1 From Theorem 2 in [29], we know that
the predator of system (1.1) will become extinct if the
population density of predator becomes low or the prey
goes extinct. However, it follows from Theorems 2.2
and 2.3 that the predator of system (1.3) would not
go extinct. Thus, the periodic impulsive immigration
of predator increases the survivability of predator. In
addition, by Theorem 2.3, we obtain that the prey may
become extinct if p > p̄.Hence, the periodic impulsive
immigration of predator increases the extinction risk of
prey.

Remark 2.2 By Theorem 2.2, we find that if the popu-
lation density of prey becomes low, then prey will go
extinct. Therefore, the Allee effect of prey population
increases the extinction risk of prey.

Next, we will prove that the prey-free periodic solu-
tion (0, y∗(t)) of system (1.3) is globally attractive.

Lemma 2.3 All the solutions (x(t), y(t)) ∈ X of the
system (1.3) are uniformly upper bounded.

Proof Suppose that a > 0. From the first equation
of (1.3), we have

x ′(t) ≤ x

(
bx

a + x
− d1 − mx

)

= − x

a + x

(
mx2 + (am + d1 − b)x + ad1

)
.

(2.5)

It’s clear that if am+d1 −b ≥ 0, then x ′(t) < 0. Thus
x(t) < x(0+), t > 0. By (2.5) we get

x(t) ≤ x(0+) exp

{∫ t

0
G(x(s)) ds

}

, t ≥ 0,

where

G(x(s)) = − 1

a + x
(mx2 + (am + d1 − b)x + ad1)

≤ − 1

a + x
(ad1)

≤ − ad1
a + x(0+)

� η1 < 0.

Therefore, x(t) ≤ x(0+)eη1t . It is clear that x(t) → 0
as t → ∞. It is obvious that the prey is uniformly upper
bounded.

Now suppose am+d1−b < 0.Denote� = (am+
d1 − b)2 − 4amd1, f (x) = mx2 + (am + d1 − b)x +
ad1. If � < 0, then Eq. f (x) = 0 has no real root.
Obviously, x ′(t) < 0, t > 0. Thus, x(t) < x(0+), t >

0. By (2.5) we get

x(t) ≤ x(0+) exp

{∫ t

0
G(x(s)) ds

}

, t ≥ 0,

where

G (x (s)) = − 1

a + x

(
mx2 + (am + d1 − b) x + ad1

)

= − m

a + x

[(

x + 1

2m
(am + d1 − b)

)2

− 1

4m2 (am + d1 − b)2 + ad1
m

]

≤ m

a + x

[
1

4m2

(
(am + d1 − b)2 − 4amd1

)]

= �

4m (a + x)

<
�

4m (a + x (0+))

� η2 < 0.
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Dynamics of a predator–prey model 689

Therefore, x(t) ≤ x(0+)eη2t . It is clear that x(t) → 0
as t → ∞.

If � = 0, then Eq. f (x) = 0 has a unique root x1,

where x1 = am + d1 − b

2m
. Thus,

x ′(t) ≤ − x

a + x
(x − x1)

2 ≤ 0. (2.6)

We hope to obtain that for all t large enough, x(t) ≤
x1 + ε, where ε > 0 is small enough. From (2.6),
we find that for x > x1, x ′(t) < 0, t ≥ 0. Next, we
consider the case x > x1. Suppose that there is a l > x1
such that limt→+∞ x(t) = l. Obviously, x(t) ≥ l for
all t ≥ 0. By (2.6), we get

x ′(t) ≤ − l

a + l
(l − x1)

2 � −B̄, (2.7)

where B̄ = l
a+l (l − x1)2. Thus, by (2.7), we find that

x(t) ≤ x(0) − B̄t. It’s clear that x(t) → −∞ as t →
+∞,which is a contradiction. So, x(t) → x1 or x(t) <

x1, as t → +∞. Then there exists ε > 0 small enough
such that for all t large enough, x(t) ≤ x1 + ε.

If � > 0, then Eq. f (x) = 0 has two roots x2, x3,
where

x2 = −(am + d1 − b) − √
�

2m
,

x3 = −(am + d1 − b) + √
�

2m
. (2.8)

Since� = (am+d1−b)2−4amd1 < (am+d1−b)2

and am + d1 − b < 0, x3 < 1
m (b − am − d1) < b

m .

Therefore, for x > b
m ,wehave x ′(t) ≤ − x

a + x
(x−

x2)(x − x3) < 0. Similar to the above analysis, we
obtain that for all t large enough, x(t) ≤ b

m .

Synthesizing the above analysis, we obtain that there
are two positive constants M1 and T such that x(t) ≤
M1 for t > T .

Now,wediscuss the upper boundof y(t). LetV (t) =
cx(t) + y(t). Then

D+V (t) = cx

(
bx

a + x
− d1 − mx

)

−
(

crxy

1 + k1x + k2y

) (

1 − y

h + y

)

− d2y,

≤ − cx

a + x

(
mx2 + (am + d1 − b) x + ad1

)

− d2y.

Observe that f (x) is a quadratic in x and is eas-
ily seen to have a global minimum, namely ad1 −

(am + d1 − b)2

4m
� m1. Ifm1 ≥ 0, then f (x) ≥ m1 ≥

0. Thus, for t > T ,

D+V (t) ≤ −d2y = cd2x − d2(cx + y)

≤ cd2M1 − d2V (t). (2.9)

Ifm1 < 0, then D+V (t) ≤ − cm1x

a + x
−d2y. Hence, for

t > T ,

D+V (t) ≤ − cm1M1

a + M1
− d2y = − cm1M1

a + M1

+ cd2x − d2(cx + y)

≤ − cm1M1

a + M1
+ cd2M1 − d2V (t). (2.10)

Denote M2 = max{cd2M1, cd2M1− cm1M1

a + M1
}.By the

inequalities (2.9) and (2.10), we get
{
D+V (t) ≤ M2 − d2V (t), t �= nT,

V (nT+) = V (nT ) + p, t = nT .

By the comparison theorem of impulsive differential
equation, for t ∈ (nT, (n + 1)T ], we have

V (t) ≤
(

V (0+) − M2

d2

)

e−d2t

+ p
(
1 − e−nd2T

)

1 − e−d2T
e−d2(t−nT ) + M2

d2
.

Therefore, V (t) is ultimately bounded by a constant
and there exists a constant M > 0 such that for all t
large enough, x(t) ≤ M, y(t) ≤ M.

Let

R1 =
∫ T

0

(
b2

am + b
− d1 − rmy∗(t)

m + bk1 + mk2y∗(t)

)

dt

= b2T

am + b
− d1T

− r

k2d2
ln

k2 pm + (m + bk1)
(
1 − e−d2T

)

k2 pme−d2T + (m + bk1)
(
1 − e−d2T

) .

(2.11)


�
Theorem 2.4 Theprey-free periodic solution (0, y∗(t))
of system (1.3) is global attractive if one of the follow-
ing conditions is satisfied

(1) am + d1 − b ≥ 0,
(2) am + d1 − b < 0,� < 0,
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(3) am + d1 − b < 0,� ≥ 0, R1 < 0,

where � = (am + d1 − b)2 − 4amd1.

Proof By the above analysis, it is obvious that if am +
d1 − b ≥ 0, or am + d1 − b < 0 and � < 0, then
x(t) → 0 as t → ∞. Now suppose am + d1 − b <

0,� ≥ 0.
Since R1 < 0, one can choose ε > 0 small enough

such that

σ =
∫ T

0

(
b2

am + b
− d1

− rm (y∗(t) − ε)

m + bk1 + mk2 (y∗(t) − ε)

)

dt < 0.

By the above analysis, there exists T1 > 0 such that for
t > T1, x(t) ≤ x3.

By the second and fourth equations of system (1.3),
we obtain
{
y′(t) ≥ −d2y, t �= nT,

�y(t) = p, t = nT .

Consider the following impulsive comparison system
{
z′(t) = −d2z, t �= nT,

�z(t) = p, t = nT .
(2.12)

According to Lemma 2.1, we obtain that system (2.12)
has a globally asymptotically stable periodic solution
y∗(t),where y∗(t) is shown in (2.2). By the comparison
principle, there exists T2 > 0 such that for t > T2,

y(t) ≥ z(t) ≥ y∗(t) − ε. (2.13)

From the first equation of system (1.3), we get

x ′(t) ≤
(

b b
m

a + b
m

− d1 − r (y∗(t) − ε)

1 + k1
b
m + k2 (y∗(t) − ε)

)

x

=
(

b2

am + b
− d1 − rm (y∗(t) − ε)

m + bk1 + mk2 (y∗(t) − ε)

)

x,

(2.14)

for all t large enough, which leads to

x ((n + 1) T ) ≤ x
(
nT+)

exp

(
b2T

am + b
− d1T

−
∫ (n+1)T

nT

rm (y∗(t) − ε)

m + bk1 + mk2 (y∗(t) − ε)
dt

)

= x
(
nT+)

eσ .

Therefore, x(nT ) ≤ x(0+)enσ and x(nT ) → 0 as
n → ∞. From (2.14), for t ∈ (nT, (n + 1)T ], we
obtain

x(t) ≤ x
(
nT+)

exp

(∫ t

nT

(
b2

am + b

− d1 − rm (y∗(t) − ε)

m + bk1 + mk2 (y∗(t) − ε)

)

dt

)

≤ x
(
nT+)

exp

(
b2T

am + b

)

.

Hence, x(t) → 0 as t → ∞.Without loss of generality,
we may assume that for any ε1 > 0 and t ≥ 0, 0 <

x(t) < ε1.

From the second and fourth equations of sys-
tem (1.3), we get
{
y′(t) ≤ (crx − d2) y ≤ (crε1 − d2) y, t �= nT,

�y(t) = p, t = nT .

Consider the following impulsive comparison system
{
z′1(t) = (crε1 − d2)z1, t �= nT,

�z1(t) = p, t = nT .
(2.15)

According to Lemma 2.1, we obtain that system (2.15)
has a globally asymptotically stable periodic solution
z∗1(t), where

z∗1(t) = p exp (− (crε1 − d2) (t − nT ))

1 − exp (− (crε1 − d2) T )
,

nT < t ≤ (n + 1) T .

Obviously, z∗1(t) → y∗(t) as ε1 → 0. By the com-
parison theorem of impulsive differential equation, we
get

y(t) ≤ z1(t) ≤ z∗1(t) + ε. (2.16)

for all t large enough. Since z∗1(t)− y∗(t) → 0 as ε1 →
0, from (2.13) and (2.16), we obtain that for any ε2 > 0
and all t large enough, y∗(t)−ε2 ≤ y(t) ≤ y∗(t)+ε2,

which implies y(t) − y∗(t) → 0 as t → ∞. So the
prey-free periodic solution (0, y∗(t)) of system (1.3) is
globally attractive. The proof is completed. 
�

Synthesizing Theorems 2.2, 2.3 and 2.4 , we obtain
the following results

Corollary 2.1 Assume a > 0. Then the prey-free peri-
odic solution (0, y∗(t)) of system (1.3) is global asymp-
totically stable if one of the following conditions is sat-
isfied
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Dynamics of a predator–prey model 691

(1) am + d1 − b ≥ 0,
(2) am + d1 − b < 0,� < 0,
(3) am + d1 − b < 0,� ≥ 0, R1 < 0,

where � = (am + d1 − b)2 − 4amd1.

Corollary 2.2 Assume a = 0. Then the prey-free peri-
odic solution (0, y∗(t)) of system (1.3) is global asymp-
totically stable if one of the following conditions is sat-
isfied

(1) b ≤ d1,
(2) b > d1, R̄1 < 0,

where R̄1 = (b − d1)T − r

k2d2
ln

mk2 p + (m + k1(b − d1))(1 − e−d2T )

mk2 pe−d2T + (m + k1(b − d1))(1 − e−d2T )
.

3 The coexistence of the predator and prey

In this section, we discuss the coexistence of the preda-
tor and prey for system (1.3). The following theorem
reveals that the prey can persist in system (1.3) even
when the prey-free periodic solution is locally stable.

Theorem 3.1 (1) Assume a > 0. If the following con-
ditions

(H1) b > am + d1 + 2
√
amd1,

(H2) bcr < d2(m + bk1),
(H3) r + k2d1 − k2b > 0,

hold, then there exists a positive constant Lx ∈ (x2, x3)
and solutions (x(t), y(t)) of system (1.3)with x(0+) >

Lx and

0 < y
(
0+)

<

(
bLx
a+Lx

− d1 − mLx

)
(1 + k1Lx )

r + k2d1 + mk2Lx − bk2
− p,

such that x(t) ≥ Lx for t ≥ 0,where x2, x3 are defined
in (2.8).

(2) Assume a = 0. If the following conditions

(H̄1) b > d1,
(H̄2) cr(b−d1)

m+k1(b−d1)
− d2 < 0,

(H̄3) r + k2d1 > bk2,

hold, then there exists a positive constant lx ∈ (0, b−d1
m )

and solutions (x(t), y(t)) of system (1.3)with x(0+) >

lx and

0 < y
(
0+)

<
(b − d1 − mlx ) (1 + k1lx )

r + k2d1 + mk2lx − bk2
− p,

such that x(t) ≥ lx for t ≥ 0.

Proof Firstly, we will prove case (1). According to the
proof Theorem 2.4, there exist two positive constants
x2, x3 if b > am + d1 + 2

√
amd1 such that

x ′(t) ≤ x

(
bx

a + x
− d1 − mx

)

= − x

a + x
(x − x2)(x − x3).

So x ′(t) < 0 for x > b
m . Assume x2 < x(0+) ≤ b

m .

Then x(t) is bounded above by b
m for t ≥ 0.

Using the second equation of system (1.3), we have

y′(t) ≤
(

cr b
m

1 + k1
b
m

− d2

)

y

=
(

bcr

m + bk1
− d2

)

y

�M̄ y,

where M̄ = bcr

m + bk1
− d2 < 0. Hence, by the com-

parison principle, we see that for t ∈ (nT, (n + 1)T ],
y(t) ≤ y(nT+)eM̄(t−nT ). (3.1)

Thus,

y((n + 1)T+) ≤ y(nT+)eM̄T + p. (3.2)

Using (3.2), it is easily established by induction that

y(nT+) ≤ y(0+)enM̄T

+p
(
1 + eM̄T + · · · + e(n−1)M̄T

)
.

Let Sn = 1+eM̄T +· · ·+e(n−1)M̄T . If M̄ < 0, then 0 <

eM̄T < 1 and Sn is bounded above by (1−eM̄T )−1 > 0.
Therefore, assuming M̄ < 0, we will have

y(nT+) ≤ y(0+) + p

1 − eM̄T
. (3.3)

Using (3.1) and (3.3), for t ≥ 0, we get

y(t) ≤ y(0+) + p

1 − eM̄T
≤ y(0+) + p � M̄1. (3.4)

Now, let us ask for Lx such that

x2 < Lx < x3. (3.5)

and for t > 0, t �= nT,

x ′(t)|x=Lx > 0. (3.6)
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Assume that (3.5) holds. In view of (3.4), we have

x ′(t)|x=Lx

= Lx

(
bLx

a + Lx
− d1 − mLx − r y

1 + k1Lx + k2y

)

≥ Lx

(
bLx

a + Lx
− d1 − mLx − r M̄1

1 + k1Lx + k2M̄1

)

.

It’s clear that x ′(t)|x=Lx > 0 if

(
bLx

a + Lx
− d1 − mLx

)

(1 + k1Lx )

> M̄1

(

r + k2d1 + mk2Lx − bk2Lx

a + Lx

)

> M̄1 (r + k2d1 + mk2Lx − bk2) . (3.7)

Since x2 < Lx < x3,
bLx
a+Lx

−d1−mLx > 0. It is clear
that if r + k2d1 − bk2 > 0, then r + k2d1 + mk2Lx −
bk2 > 0. Thus, from (3.7), we obtain

y
(
0+) + p

= M̄1 <

(
bLx
a+Lx

− d1 − mLx

)
(1 + k1Lx )

r + k2d1 + mk2Lx − bk2
, (3.8)

provided that

r + k2d1 − bk2 > 0. (3.9)

Combining our observations, we see that if (3.5),
(3.8), (3.9) and M̄ < 0 hold, then any trajectory with
the initial condition (x(0+), y(0+)), where

x(0+) ∈ [Lx , x3], (3.10)

will exist and satisfy x(t) ≥ Lx for t ≥ 0, since (3.6)
will hold and x(t) is not changed at the time nT . In
other word, we have derived conditions such that the
case (1) in the statement of Theorem 3.1 holds.

Therefore, Theorem 3.1 will be true if (3.5), (3.8),
(3.9) and the conditions b > am+d1+2

√
amd1, M̄ <

0 can hold simultaneously. But we may easily satisfy
these conditions simultaneously if we choose param-
eters and initial conditions according to the following
procedure

(1) Choose a > 0,m > 0, d1 > 0, r > 0, k2 >

0, am + d1 + 2
√
amd1 < b < d1 + r

k2
.

(2) Choose Lx such that x2 < Lx < x3. Choose
y(0+) > 0, p > 0, T > 0. Choose k1 large
enough to satisfy (3.8) and M̄ < 0, where x2, x3
are defined in (2.8). This is clearly possible.

(3) Choose x(0+) to satisfy (3.10).

Similarly, wemay prove the case (2), ie., a = 0.The
proof is completed. 
�
Remark 3.1 It follows fromTheorem3.1 that under the
conditions of Theorem3.1, there exists a critical thresh-
old Lx > 0 (or lx > 0) such that the prey population
will become persistent if the population density of prey
is greater than the threshold Lx (or lx ). Of course, if the
population density of prey is smaller than the thresh-
old Lx (or lx ), then the prey population will go extinct.
Therefore, the threshold Lx (or lx ) is very important for
the conservation of the endangered species. It is obvi-
ous that there does not exist the critical threshold Lx

(or lx ) for model (1.2).

4 The existence of transcritical bifurcations

In Sect. 2,wefind that for the predator–preymodel (1.3)
with Allee effect in the prey, ie., a > 0, the prey-free
periodic solution (0, y∗(t)) is always locally stable.
Hence, the transcritical bifurcations do not occur. How-
ever, formodel (1.3)withoutAllee effect in the prey, ie.,
a = 0, one of the eigenvalues of the prey-free periodic
solution (0, y∗(t)) is 1 if bT = d1T + r

∫ T
0 y∗(t) dt .

Hence, the transcritical bifurcations may occur. There-
fore, we can see that Allee effect in the prey can extinct
the transcritical bifurcations.

Next, we will discuss the existence of transcritical
bifurcations of model (1.3) without Allee effect in the
prey, ie., a = 0, by means of the bifurcation theory.

4.1 The Poincaré map

Suppose the prey-free periodic solution (0, y∗(t))with
the initial point A0(0, y∗(0+)) and period T passes
through the points A0 and B0(0, y∗(T )) at time T ,
then jumps to the point A1(0, y∗(T+)) due to the pulse.
Thus, y∗(T+) = y∗(0+).

Consider another solution (x1(t), y1(t)) of sys-
tem (1.3) with the initial point Ak(xk, y∗(0+) + yk).
This disturbed trajectory starting from the point Ak

reaches the point Bk(x1(T ), y1(T )) at time T , then
jumps to the point Ak+1(xk+1, y∗(0+) + yk+1). Thus,
xk+1 = x1(T+), y∗(0+) + yk+1 = y1(T+).

Denote x(t) = x1(t), y(t) = y1(t) − y∗(t), then
x(0) = xk, y(0) = yk . Let
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F1 (x, y) = x (b − d1 − mx) − r xy

1 + k1x + k2y
,

F2 (x, y) =
(

crxy

1 + k1x + k2y

) (
y

h + y

)

− d2y.

Then system (1.3) may be written as

⎧
⎪⎪⎨

⎪⎪⎩

x ′(t) = F1(x, y + y∗) � G1(x, y),
y′(t) = F2(x, y + y∗) − F2(0, y∗) � G2(x, y),

}

t �= nT,

�x(t) = 0,
�y(t) = 0,

}

t = nT .

(4.1)

By the Taylor expansion, we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

G1 (x, y) = A1(t)x + A3(t)x
2 + A4(t)xy

+ o
(
(|x | + |y|)3

)
,

G2 (x, y) = B1(t)x + B2(t)y + B3(t)x
2 + B4(t)xy

+ o
(
(|x | + |y|)3

)
.

(4.2)

where

A1(t) = b − d1 − r y∗(t)
1 + k2y∗(t)

,

A3(t) = −m + rk1y∗(t)
(1 + k2y∗(t))2

,

A4(t) = − r

(1 + k2y∗(t))2
,

B1(t) = cr (y∗(t))2

(h + y∗(t)) (1 + k2y∗(t))
,

B2(t) = −d2,

B3(t) = crk1 (y∗(t))2

(h + y∗(t)) (1 + k2y∗(t))2
,

B4(t) = cry∗(t) (2h + y∗(t) + hk2y∗(t))
(h + y∗(t))2 (1 + k2y∗(t))2

.

For 0 < t ≤ T, let

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x(t) = a1(t)xk + a2(t)yk + a3(t)x
2
k + a4(t)xk yk

+ a5(t)y
2
k + o

(
(|xk | + |yk |)3

)
,

y(t) = b1(t)xk + b2(t)yk + b3(t)x
2
k + b4(t)xk yk

+ b5(t)y
2
k + o

(
(|xk | + |yk |)3

)
,

(4.3)

where

a1(0) = 1, a2(0) = a3(0) = a4(0) = a5(0) = 0,

b2(0) = 1, b1(0) = b3(0) = b4(0) = b5(0) = 0.

From system (4.1), (4.2) and (4.3), we get

a1(t) = exp

(∫ t

0
A1 (s) ds

)

, a2(t) = 0,

a3(t) = exp

(∫ t

0
A1 (s) ds

) ∫ t

0

(
A3 (s) a21 (s)

+A4 (s) a1 (s) b1 (s))

× exp

(

−
∫ s

0
A1 (τ ) dτ

)

ds,

a4(t) = exp

(∫ t

0
A1 (s) ds

) ∫ t

0
A4 (s) a1 (s) b2 (s)

× exp

(

−
∫ s

0
A1 (τ ) dτ

)

ds,

a5(t) = 0, b1(t) = e−d2t
∫ t

0
B1 (s) a1 (s) ed2s ds, b2(t)

= e−d2t ,

b3(t) = e−d2t
∫ t

0
(B1 (s) a3 (s)

+B3 (s) a21 (s) + B4 (s) a1 (s) b1 (s)
)
ed2s ds,

b4(t) = e−d2t
∫ t

0
(B1 (s) a4 (s)

+B4 (s) a1 (s) b2 (s)) ed2s ds, b5(t) = 0.

It follows from system (4.3) that
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(T ) = a1(T )xk + a3(T )x2k + a4(T )xk yk

+ o
(
(|xk | + |yk |)3

)
,

y(T ) = b1(T )xk + b2(T )yk + b3(T )x2k + b4(T )xk yk

+ o
(
(|xk | + |yk |)3

)
,

(4.4)

and
{
x(T+) = x(T ),

y(T+) = y(T ).
(4.5)

From (4.4) and (4.5), the following Poincaré map is
obtained
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 = a1(T )xk + a3(T )x2k + a4(T )xk yk

+ o
(
(|xk | + |yk |)3

)
,

yk+1 = b1(T )xk + b2(T )yk + b3(T )x2k + b4(T )xk yk

+ o
(
(|xk | + |yk |)3

)
.

(4.6)

4.2 Transcritical bifurcation

In this subsection, we discuss the existence of a trans-
critical bifurcation by means of map (4.6).
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Thefixedpoint (0, 0)ofmap (4.6) corresponds to the
prey-free periodic solution (0, y∗(t)) of system (1.3).
The associated eigenvalues of the fixed point (0, 0) is
given by

λ1 = a1(T ) = exp

(∫ T

0

(

b − d1 − ry∗(s)
1 + k2y∗(s)

)

ds

)

,

λ2 = b2(T ) = e−d2T < 1,

where y∗(t) is defined in (2.2).
Denote

p0 =
(1 − exp (−d2T ))

(
1 − exp

(
− (b−d1)k2d2T

r

))

k2
(
exp

(
− (b−d1)k2d2T

r

)
− exp (−d2T )

) .

(4.7)

If 0 < (b − d1)k2 < r , then p0 > 0. So λ1 |p=p0= 1.
By the above analysis, we find that one of the eigen-

values of the fixed point (0, 0) is 1. An eigenvalue with
1 is associated with a transcritical bifurcation in the
map (4.6). Hence, (0, 0, p0) is a candidate for a trans-
critical bifurcation point in the map (4.6).

Let

E =
∫ T

0

(

−m + rk1y∗ (s)

(1 + k2y∗ (s))2

)

exp

(∫ s

0
(b − d1

− r y∗ (τ )

1 + k2y∗ (τ )

)

dτ

)

ds.

Theorem 4.1 Assume 0 < (b − d1)k2 < r. If E ≤
0, then a subcritical bifurcation occurs at p = p0 in
system (1.3).

Proof Let p = p0+ p1, thenmap (4.6) can be rewritten
as

F :
(
x

y

)

→
(

1 0

f1 f2

)(
x

y

)

+
(

e1 p1x + e2x2 + e3xy

f3 p1x + f4 p1y + f5x2 + f6xy

)

+
(
o

(
(|p1| + |x | + |y|)3)

o
(
(|p1| + |x | + |y|)3)

)

, (4.8)

where

e1 = ∂a1(T )

∂p
|p=p0 , e2 = a3(T )|p=p0 , e3 = a4(T )|p=p0 ,

f1 = b1(T )|p=p0 , f2 = b2(T )|p=p0 , f3 = ∂b1(T )

∂p
|p=p0 ,

f4 = ∂b2(T )

∂p
|p=p0 , f5 = b3(T )|p=p0 , f6 = b4(T )|p=p0 .

According to map (4.8), we may let

J =
⎛

⎝
1 0
f1

1 − f2
1

⎞

⎠

and use the translation

(
x

y

)

= J

(
u

v

)

, then map (4.8)

becomes
(
u

v

)

→
(
1 0

0 f2

)(
u

v

)

+
(
h1(u, v, p1) + o

(
(|p1| + |u| + |v|)3)

h2(u, v, p1) + o
(
(|p1| + |u| + |v|)3)

)

, (4.9)

where

h1(u, v, p1) = e1 p1u + (e2 + e3 f1
1 − f2

)u2 + e3uv,

h2(u, v, p1) = E1 p1u + E2 p1v + E3u
2 + E4uv,

E1 = f3 + f1( f4 − e1)

1 − f2
, E2 = f4,

E3 = f5 + f1( f6 − e2)

1 − f2
− e3 f 21

(1 − f2)2
,

E4 = f6 − f1e3
1 − f2

.

Now the center manifold theorem is used to deter-
mine the nature of the bifurcations of the fixed point
(0, 0) at p1 = 0. There exists a center manifold for
(4.9) which can be locally represented as follows

wc(0) = {(u, v, p1) ∈ R3 | v = f (u, p1), f (0, 0)

= Df (0, 0) = 0}.
Letting v = f (u, p1) = g1u2 + g2up1 + g3 p21 +
o((|u| + |p1|)3), and substituting v into (4.9) yields
f (u + h1(u, v, p1), p1) = f2v + h2(u, v, p1). Equat-
ing term of like powers to zero gives

g1 = E3

1 − f2
, g2 = E1

1 − f2
, g3 = 0.

Then

v = E3

1 − f2
u2 + E1

1 − f2
up1 + o((|u| + |p1|)3).
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Hence, the map (4.9) restricted to the center manifold
is given by

H : u → u + e1 p1u +
(

e3 f1
1 − f2

+ e2

)

u2

+ o((|u| + |p1|)3) = uh̄(u, p1),

where

h̄(u, p1) = 1 + e1 p1 +
(

e3 f1
1 − f2

+ e2

)

u

+ o((|u| + |p1|)2).
Then we consider the following equation

h̄(u, p1) = 1. (4.10)

We find

∂ h̄(0, 0)

∂u
= e3 f1

1 − f2
+ e2.

From above analysis and λ1 |p=p0= 1, we obtain

e3 f1
1 − f2

+ e2 =
∫ T

0

(

−m + rk1y∗(t)
(1 + k2y∗(t))2

)

a1(t) dt

−
∫ T

0

re−d2t

(1 + k2y∗(t))2

[∫ t

0
D (s) ds

+
∫ T

0
D(t) dt

]

dt |p=p0 . (4.11)

where

D(t) = cred2t (y∗(t))2

(h + y∗(t)) (1 + k2y∗(t))
exp

(∫ t

0
(b − d1

− r y∗ (s)

1 + k2y∗(t)

)

ds

)

. (4.12)

It is obvious that if
∫ T

0

(

−m + rk1y∗(t)
(1 + k2y∗(t))2

)

a1(t) dt ≤ 0,

then ∂ h̄(0,0)
∂u < 0. Thus, by the implicit function theo-

rem, there exists ε > 0 and continuously differentiable
function β : (−ε, ε) → R, such that

h̄(β(p1), p1) = 1, (4.13)

where |p1| < ε, β(0) = 0.
Let u = β(p1) = p1k where k = k(p1), then

Eq. (4.13) can be written as

e1 + ∂ h̄(0, 0)

∂u
k + o(|p1k| + |p1|) = 0. (4.14)

It is easy to see that

e1 = −
∫ T

0

re−d2s

(1 − e−d2T )(1 + k2y∗(t))2
dt |p=p0 < 0.

Therefore, e1
∂ h̄(0,0)

∂u > 0. Hence, Eq. (4.14) has a
negative root k = k(p1) if p1 is small enough. How-
ever, u = p1k > 0. So, p1 < 0. Thus, system (1.3)
undergoes a subcritical bifurcation at p = p0. 
�
Remark 4.1 Using (4.7), we find that the critical
threshold p0 always exists if 0 < (b − d1)k2 < r . In
this case, once the periodic impulsive immigration of
predator crosses the threshold p0, a transcritical bifur-
cation will occur. It follows that the prey population
will go extinct or resurge. Hence, the periodic impul-
sive immigration of predator has an important impact
on the dynamics of the ecosystem.

Remark 4.2 It follows from Theorem 3.1 in [33] that if
we let μ be the bifurcation parameter, then for a fixed
T , there exist a sufficiently small ε andμ = μ1(T )−ε

such that system (1.2) has a positive periodic solution.
That is to say, once there exists a critical threshold
μ1(T ) and the parameter μ crosses this threshold, a
transcritical bifurcationwill occur.However, fromThe-
orem 4.1, we find that it is not sufficient for the exis-
tenceof a transcritical bifurcation in system (1.3). Thus,
the Allee effect in the predator makes the transcritical
bifurcation occur more difficultly.

5 Numerical simulation

In this section, we will give phase portraits and bifur-
cation diagrams of system (1.3) to illustrate the above
theoretical analyses and find new interesting complex
dynamical behaviors by using numerical simulations.
Our simulation results are created usingMATLAB.We
consider the following three cases.

(1) The impact of Allee effect in the prey for sys-
tem (1.3).

Consider the following set of parameters

b = 0.8, d1 = 0.1,m = 0.1, r = 0.2, k1 = 0.1, k2=2,

c = 0.8, h = 0.2, d2 = 0.2, T = 1, p = 0.2.

Time series of the solutions (x(t), y(t)) of sys-
tem (1.3) from the initial points (0.2, 0.2) are drawn
in Fig. 1. Figure 1 shows that Allee effect of the prey
population increases the extinction risk of prey.
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Fig. 1 Time series of the
solutions of system (1.3).
a Time series of the solution
with a = 0. b Time series of
the solution with a = 1.2
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Fig. 2 Time series of the
solutions of system (1.3)
with a = 1.2
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Time series of the solutions (x(t), y(t)) of sys-
tem (1.3) from the initial points (0.2, 0.2), (0.25, 0.2),
(0.3, 0.2), (0.35, 0.2), (0.4, 0.2), (0.45, 0.2) and (0.5,
0.2) with a = 1.2 are drawn in Fig. 2. Figure 2 shows
that there exists a positive constant Lx such that the
solutions (x(t), y(t)) of system (1.3) with the initial
point (x(0+), y(0+)) tends to a prey-free periodic solu-
tion when t increases if x(0+) < Lx and tends to a pos-
itive periodic solution when t increases if x(0+) > Lx .

Time series of the solutions (x(t), y(t)) of sys-
tem (1.3) from the initial points (0.1, 0.2) and (0.12, 0.2)
with a = 0.4 are drawn in Fig. 3a, b. By Fig. 3a, b,
we have 0.1 < Lx < 0.12. Similarly, from Fig. 3c–
f, we find 0.22 < Lx < 0.23 for a = 0.8 and
0.38 < Lx < 0.39 for a = 1.2. It is obvious that
the threshold value Lx increases when the parameter a
increases.

(2) The impact of Allee effect in the predator for
system (1.3).

Case (A) : a > 0.
In this case, we let a = 1.2. The other parame-

ters are the same as case (1). By Fig. 4a, b, we see
that Allee effect in the predator may cause the predator
of system (1.3) without the periodic constant impul-

sive immigration of predator to die out. However, from
Fig. 4e, we find that predator and prey populations of
system (1.3) with impulse coexist. So the impact of
Allee effect in the predator can be eliminated by the
impulse. Hence the periodic constant impulsive immi-
gration for the predator is beneficial. Fig. 4c, d shows
that Allee effect in the predator may make the densities
of the predator decrease. However, the predator cannot
become extinct since there exists the periodic constant
impulsive immigration of predator.

Similar to case (1), we may find that there exists a
positive constant Lx1 ∈ (0.34, 0.35) such that the solu-
tion (x(t), y(t)) of system (1.3) with h = 0 and the
initial point (x(0+), y(0+)) tends to a prey-free peri-
odic solution when t increases if x(0+) < Lx1 and
tends to a positive periodic solution when t increases
if x(0+) > Lx1. Next, we let x(0+) = 0.3, 0.8 and
investigate the impact of Allee effect in the predator for
system (1.3). The bifurcation diagram of system (1.3)
with respect to h is presented in Fig. 5. It is seen from
the bifurcation diagram that the solution of system (1.3)
with the initial point (0.3, 0.2) always tends to a prey-
free periodic solution for h ∈ (0, 100). Figure 6 shows
that the solution of system (1.3) with the initial point
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Fig. 3 Time series of the
solutions of system (1.3).
a Time series of x and y
with a = 0.4 and the initial
point (0.1, 0.2). b Time
series of x and y with
a = 0.4 and the initial point
(0.12, 0.2). c Time series of
x and y with a = 0.8 and
the initial point (0.22, 0.2).
d Time series of x and y
with a = 0.8 and the initial
point (0.23, 0.2). e Time
series of x and y with
a = 1.2 and the initial point
(0.38, 0.2). f Time series of
x and y with a = 1.2 and
the initial point (0.39, 0.2)
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(0.8, 0.2) always tends to a positive periodic solution
for h ∈ (0, 100). Thus, wemay predict that Allee effect
for the predator does not affect the threshold value Lx1.

Case (B) : a = 0.
Consider the following set of parameters [34]

b = 8.1, d1 = 0.1,m = 5, r = 1, k1 = 1, k2 = 0.01,

c = 0.95, d2 = 0.2, T = 4, h = 1, p = 3.

The bifurcation diagramof system (1.3)with respect
to h is presented in Fig. 7. System (1.3) presents com-
plicated dynamics in this case. From Fig. 7, we can see
that there exist the chaotic regions and period orbits as
the parameter h varying. Figure 7 depicts that there are
T, 2T -periodic windows.

(3) The impact of the impulse for system (1.3).
The bifurcation diagramof system (1.3)with respect

to p is presented in Fig. 8. It is seen from the bifurcation
diagram that the prey-free periodic solution is stable
for p ∈ (7.01,+∞) and unable for p ∈ (0, 7.01). A
positive T -periodic solution bifurcates from the prey-
free periodic solution at p ≈ 7.01 through transcritical
bifurcation. This positive T -periodic solution is stable
for p ∈ (4.21, 7.01) and unable for p ∈ (0, 4.21). A
positive 2T -periodic solution bifurcates from the posi-
tive T -periodic solution at p ≈ 4.21 through flip bifur-
cation.

The bifurcation diagram of system (1.3) with a =
0.01 with respect to p is presented in Fig. 9. From
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Fig. 4 The solutions of
system (1.3) with a = 1.2.
a Time series of y with
h = 0 and p = 0. b Time
series of y with h = 1 and
p = 0. c Time series of the
solution with h = 0 and
p = 0.2. d Time series of
the solution with h = 1.2
and p = 0.2. e Phase
portraits with h = 1 and
p = 0.1 0 20 40 60 80 100 120 140
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Fig. 5 Bifurcation
diagrams of system (1.3)
with a > 0 and the initial
point (0.3, 0.2) with respect
to h
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Fig. 6 Bifurcation
diagrams of system (1.3)
with a > 0 and the initial
point (0.8, 0.2) with respect
to h
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Fig. 7 Bifurcation
diagrams of system (1.3)
with a = 0 and m = 4.2
with respect to h

Fig. 8 Bifurcation
diagrams of system (1.3)
with a = 0 with respect to p
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Fig. 9 Bifurcation
diagrams of system (1.3)
with a = 0.01 with respect
to p
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Fig. 8,wemay see that there exists a positive T -periodic
solution of system (1.3) for a = 0 and p ∈ (0, 1).
However, if we take a = 0.01, then Fig. 9 shows that
system (1.3) experiences a complicated process. Thus,
the Allee effect in the prey has a greatly effect on the
dynamical behaviors of system (1.3).

6 Discussion

In this paper, we mainly discuss the impact of Allee
effect and impulse on system (1.3). Using theoretical
analyses, we find that the strong Allee effect of the
prey population increases the extinction risk of prey.
This is the same as the continuous systems with the
strong Allee effect in the prey. However, in this case,
we may still make the predator and prey coexist by
Theorem 3.1. By numerical simulations, we may see
that there may be a positive periodic solution which is
locally stable. Of course, how do we prove the exis-
tence of a positive periodic solution. It will be our
future work. Additionally, since the prey-free periodic
solution of system (1.3) is always locally asymptoti-
cally stable, the transcritical bifurcation does not exist.
Hence, the strong Allee effect of the prey population
can extinct the transcritical bifurcation. By numerical
simulations, we may see that the threshold value Lx

always exists andwill be larger whenAllee effect in the
prey becomes stronger. Depending on the Allee effect
in the predator population, the predator may survive or
be driven to extinction as well for the continuous sys-
tems. However, if we incorporate the periodic constant
impulsive immigration for the predator, then the preda-
tor will survive. Hence, the periodic constant impulsive
immigration for the predator can extinct the impact of
Allee effect on the predator. By numerical simulations,
we may predict that Allee effect for the predator does
not affect the threshold value Lx . For theoretical anal-
yses, it will be our future work. In contrast, whether
Allee effect in the predator becomes stronger or not
when Allee effect in the prey becomes stronger. It is
very interesting. In a word, we can say that the Allee
effect of prey species may be a destabilizing force in
the system (1.3).Weather it may affect the stability of a
positive periodic solution or not, it will be a challenging
work which is different from the continuous systems.
It is clear that the impact of Allee effect of predator
species is relatively small since there exists the peri-
odic constant impulsive immigration for the predator.
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