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Abstract Stabilization problem for a class of
fractional-order nonlinear coupled systems on net-
works is addressed in the paper. By using Kirchhoff’s
matrix tree theory and comparison principle, a state
feedback control law is presented to stabilize such sys-
tems. The controller design approach could be adapted
to many classes of fractional-order delayed coupled
systems in ecology, biology and engineering. An exam-
ple is presented to illustrate the effectiveness of our
proposed method.
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1 Introduction

A wide variety of physical, biological and artificial
complex dynamical systems can be characterized by
coupled systems of nonlinear differential equations
about networks, such as neural networks on artificial
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intelligence, complex ecosystems, the spread of infec-
tious diseases, nonlinear oscillators on lattices and so
on.Thenetworks canbeviewed as directed graphs from
the viewpoint of mathematics, which are composed of
vertices and directed arcs connecting them. Now, cou-
pled systems on networks(CSNs) have attracted con-
siderable attention from bothmathematicians and engi-
neers. Some fundamental and interesting problems on
CSNs have been considered, for instance, stability [1],
control [2], synchronization [3], consensus [4], cluster-
ing [5], phase transitions and bifurcations [6].

In practice, information interaction between individ-
uals within a complex network is in general not instan-
taneous, the finite speed of signal transmission over
a distance gives rise to a finite time delay. Therefore,
time delays are considered as ubiquitous in networks.
Time delays may decrease the quality of the system
and even lead to oscillation, divergence, and instabil-
ity. The dynamics of complex networks with delays
have become a topic of both theoretical and practical
importance and have been extensively studied in recent
years. See Refs. [7–13].

Note that above results mainly focus on integer-
order CSNs models, in which dynamical behavior of
the vertex system is describedby integer-order differen-
tial equations.With the rapid development of fractional
calculus and its applications, fractional-order deriva-
tives have been proven to provide an excellent instru-
ment to characterize memory and hereditary properties
of system variables, such as anomalous diffusion, time-
dependent materials and processes with long-range
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dependence, allometric scaling laws, as well as power
law in complex systems. This is because it not only
takes into account the history of the process involved
but also carries its impact to present and future devel-
opment of the process. Some scholars have employed
fractional-order derivative operators into the classical
CSNs model to form fractional-order CSNs one and
believed that it is an important improvement in accu-
racy, for instances, fractional-order neural networks
[14,15], fractional-order epidemic systems [16,17],
fractional-order ecosystem [18,19], fractional-order
synchronous motors [20] and fractional-order com-
plex networks [21,22]. In recent years, more and more
researchers are being devoted into investigating stabil-
ity and control of these systems. From another point
of view, these existing results about stability and con-
trol of integer-order CSNs with time delay have been
developed with the help of constructing traditional
Lyapunov–Krasovskii functional and linear matrix
inequality (LMI) approach. However, the method and
these results could not be extended easily and applied
to fractional-order cases, since similar method has not
beenwell developed for fractional-order CSNs. To ana-
lyze stability of delayed fractional-order CSNs is still
a formidable problem. As we all know, there are few
results on stabilization of fractional-order CSNs with
delay in the existing literatures.

Motivated by the above discussions, in the paper,
by using results from graph theory and the comparison
theorem for fractional-order linear delayed system, a
linear feedback controller design scheme for stabiliz-
ing a class of fractional-order CSNs with time delay
is presented. The main contributions of this paper lie
in three aspects. First, stabilization of fractional-order
nonlinear delayed system on networks is considered;
Second, Kirchhoff’s matrix tree theory in graph theory
and the comparison theorem for fractional-order lin-
ear delayed systems are adopted to obtain the control
scheme;Third, the obtained result is associatedwith the
topological property of network and has more value in
the design and applications of fractional-order delayed
CSNs.

The rest of the paper is organized as follows. The
network model is introduced, and some necessary def-
initions, lemmas and hypotheses are given in Sect. 2.
Stabilization criteria for fractional-order coupled sys-
tems with delay on networks are presented in Sect. 3.
An example and its simulations are obtained in Sect. 4.
Finally, the paper is concluded in Sect. 5.

2 Preliminaries and model description

In the section, some notations, definition, lemma and
necessary basic concepts and theorems on graph theory
are presented.

The fractional-order integro-differential operator
is the generalized concept of integer-order integro-
differential operator. As we all know, the initial condi-
tions for fractional differential equations with Caputo
derivatives take on the same forms as those for
integer-order differential equations, which have well-
understood physical meanings. Another aspect is that
Caputo derivative of a constant is equal to zero, that
is not the case for the Riemann–Liouville derivative.
Therefore, in this paper, Caputo fractional derivative
operator is adopted [23], which is described as follows

Dαx(t) = 1

Γ (n − α)

∫ t

a
(t − τ)n−α−1x (n)(τ )dτ,

where n − 1 < α < n, n is an integer, Dα denotes
Caputo derivative operator, Γ (·) is the Gamma func-
tion.

Since the coupled system considered in this paper is
built on a directed graph, some basic concepts and nota-
tions on graph theory are necessary to be introduced,
which can be found in [1] and [24].

A directed graph G = (V, E) contains a set V =
{1, 2, . . . , n} of vertices and a set E of arcs (i, j) lead-
ing from initial vertex i to terminal vertex j . A subgraph
H ofG is said to be spanning if H andG have the same
vertex set. A digraph G is weighted if each arc ( j, i)
is assigned a positive weight ai j . Here ai j > 0 if and
only if there exists an arc from vertex j to vertex i in
G. The weight W (H) of a subgraph H is the product
of the weights on all its arcs. A directed path P in G is
a subgraph with distinct vertices {i1, i2, . . . , im} such
that its set of arcs is {(ik, ik+1) : k = 1, 2, . . . ,m − 1}.
If im = i1, we call P a directed cycle. A digraph G
is strongly connected if, for any pair of distinct ver-
tices, there exists a directed path from one to the other.
Given a weighted digraph G with n vertices, define the
weight matrix A = (ai j )n×n whose entry ai j equals the
weight of arc ( j, i) if it exists, and 0 otherwise. Denote
the directed graph with weight matrix A as (G, A). The
Laplacian matrix of (G, A) is defined as L = (li j )n×n ,
where li j = −ai j for i �= j and pi j = ∑

k �= j aik for
i = j . Let ci denote the cofactor of the i−th diagonal
element of L . The following result is standard in graph
theory, which is called Kirchhoff’s tree theorem [1].
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Lemma 1 [1] Assume n ≥ 2. Then the following iden-
tity holds:
n∑

i, j=1

ciai j Fi j (xi , x j )

=
∑
Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Frs(xr , xs),

here Fi j (xi , x j ), i ≤ i, j ≤ n, are arbitrary functions,
Q is the set of all spanning unicyclic graphs of (G, A),
W (Q) is the weight of Q, and CQ denotes the directed
cycle of Q.

Moreover, a weighed digraph (G, A) is said to be
balanced if W (C) = W (−C) for all directed cycle C .
Here, −C denotes the reverse of C and is constructed
by reversing the direction of all arcs in C . For a uni-
cyclic graph Q with cycle CQ , let Q̃ be the unicyclic
graph obtained by replacing CQ with −CQ . Suppose
that (G, A) is balanced, then W (Q) = W (Q̃). In this
case, Lemma1canbe rewritten as the following lemma.

Lemma 2 [1]
n∑

i, j=1

ciai j Fi j (xi , x j ) = 1

2

∑
Q∈Q

W (Q)

∑
(s,r)∈E(CQ)

[
Frs(xr , xs) + Fsr(us ,ur )

]
.

Given a network represented by digraph G with n
vertices, n ≥ 2, each vertex has its own internal dynam-
ics and these vertex dynamics are coupled based on
directed arcs in G. In this paper, each vertex dynamics
is described by the following fractional-order nonlinear
delayed systems:

Dαxi (t) = fi (xi (t), xi (t − τ))

+
n∑
j=1

ai j (x j (t)−xi (t)), i=1, 2, . . . , n,

(1)

where 0 < α ≤ 1, xi (t) ∈ Rm is the state variable of i th
dynamical node at time t . ai j represents the influence
of node j on node i , ai j = 0 if there exists no arc from
node j to node i inG. fi (·) ∈ Rm×m → Rm is a contin-
uous function. Function fi isLipschitz-continuouswith
Lipschitz constant li > 0, i.e., ‖ fi (x, y)− fi (x̄, ȳ)‖ ≤
li (‖x − x̄‖ + ‖y − ȳ‖) for all x, y, x̄, ȳ ∈ Rm . τ is the
system delay at each node. It is assumed that the initial
conditions of network (1) are given by xi (t) = φi (t),
−τ ≤ t ≤ 0.

Assume that system (1) admits an equilibrium point
x∗ = (x∗

1 , x
∗
2 , . . . , x

∗
n )

T , where x∗
i = (x∗

i1, x
∗
i2, . . . ,

x∗
im) ∈ Rm(i = 1, 2, . . . , n), which satisfies the fol-
lowing equation,

Dαx∗
i = fi (x

∗
i , x∗

i ). (2)

In order to force all states of the complex dynam-
ical network to the objective equilibrium point x∗,
controllers ui (t) are added to the node i . Denote
yi (t) = xi (t) − x∗

i and design ui (t) = −Ki yi (t),
where Ki = diag(ki1, ki2, . . . , kim) are feedback gain
matrices to be determined later, then we can obtain the
controlled dynamical network as follows:

Dα yi (t) = fi (yi (t) + x∗
i , yi (t − τ) + x∗

i ) − fi (x
∗
i , x∗

i )

+
n∑
j=1

ai j (y j (t) + x∗
j − (yi (t) + x∗

i ))

−
n∑
j=1

ai j (x
∗
j − x∗

i ) − Ki yi (t). (3)

Obviously, to illustrate that all states of the complex
dynamical network can be stabilized to the objective
equilibrium point x∗, it is sufficient to prove stability
of the origin of system (3). To this end, the following
lemmas are presented firstly.

Lemma 3 [25] Let x(t) ∈ Rn be a continuous and
differentiable function. Then, for any time instant t ≥ t0

Dα
(
xT (t)x(t)

) ≤ 2xT (t)Dαx(t), ∀α ∈ (0, 1).

Lemma 4 [26] Consider the following fractional-
order differential inequality with time delay{
DαV (t) ≤ −aV (t) + bV (t − τ), t > 0,

V (t) = ϕ(t), t ∈ [−τ, 0],
and the linear fractional-order differential systemswith
time delay{

DαW (t) = −aW (t) + bW (t − τ), t > 0,

W (t) = ϕ(t), t ∈ [−τ, 0], (4)

where W (t) ∈ R and V (t) ∈ R are continuous and
nonnegative in [0,+∞), and ϕ(t) ≥ 0, t ∈ [−τ, 0]. If
a > 0 and b > 0, then

V (t) ≤ W (t), t ∈ [0,+∞).

Lemma 5 [27] For fractional-order linear delayed
systems (4), if a > b, the zero solution of system (4) is
Lyapunov globally asymptotically stable.
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3 Main results

In this section, a sufficient criterion is presented to
stabilizing the fractional-order coupled system on net-
works based on state feedback controller.

Theorem 1 Assume that (G, A) in (1) is strongly
connected. If feedback gain matrices Ki = diag
(ki1, ki2, . . . , kim) satisfy

min
1≤i≤n

{2ki − 3li } > max
1≤i≤n

{li }, (5)

where ki = min1≤ j≤m{ki j }, then system (1) will
approach and stabilize to equilibrium point x∗ asymp-
totically.

Proof Constructing an auxiliary function V (t) =∑n
i=1 ci y

T
i (t)yi (t), where ci denotes the cofactor of

the i-th diagonal element of L . If (G, A) is strongly
connected, then ci > 0 for any 1 ≤ i ≤ n[1]. It fol-
lows from Lemma 3 that

DαV (t) = Dα

(
n∑

i=1

ci y
T
i (t)yi (t)

)

≤
n∑

i=1

2ci y
T
i (t)

[
( fi (yi (t) + x∗

i , yi (t − τ) + x∗
i )

− fi (x
∗
i (t), x∗

i )) +
n∑
j=1

ai j (y j (t) + x∗
j − (yi (t) + x∗

i ))

−
n∑
j=1

ai j (x
∗
j − x∗

i ) − Ki yi (t)
]

≤
n∑

i=1

ci
[
2‖yi (t)‖ × ‖( fi (xi (t), xi (t − τ)) − fi (x

∗
i , x∗

i ))‖

+ 2
n∑
j=1

ai j y
T
i (t)(y j (t) − yi (t)) − 2yTi (t)Ki yi (t)

]

≤
n∑

i=1

ci
[
2‖yi (t)‖ × (li‖yi (t)‖ + li‖yi (t − τ)‖)

+ 2
n∑
j=1

ai j y
T
i (t)(y j (t) − yi (t)) − 2yTi (t)Ki yi (t)

]

≤
n∑

i=1

ci
[
3li y

T
i (t)yi (t)+li y

T
i (t−τ)yi (t−τ)

+
n∑
j=1

ai j
( − (yi (t) − y j (t))

T (yi (t) − y j (t))

+ yTj (t)y j (t) − yTi (t)yi (t)
) − 2ki y

T
i (t)yi (t)

]

≤
n∑

i=1

ci
[
3li y

T
i (t)yi (t) − 2ki y

T
i (t)yi (t)

+ li y
T
i (t − τ)yi (t − τ)

+
n∑
j=1

ai j
(
yTj (t)y j (t) − yTi (t)yi (t)

)]

≤ − min
1≤i≤n

{2ki − 3li }
n∑

i=1

ci y
T
i (t)yi (t)

+ max
1≤i≤n

{li }
n∑

i=1

ci y
T
i (t − τ)yi (t − τ)

+
n∑

i, j=1

ci ai j (y
T
j (t)y j (t) − yTi (t)yi (t))

= −aV (x(t)) + bV (x(t − τ))

+
n∑

i, j=1

ci ai j Fi j (yi , y j ), (6)

where a = min1≤i≤n{2ki − 3li }, b = max1≤i≤n{li }
and Fi j (yi , y j ) = yTj (t)y j (t) − yTi (t)yi (t).

Along every directed cycle C of the weight digraph
(G, A), one has

∑
(s,r)∈E(CQ)

Frs(yr , ys)

=
∑

(s,r)∈E(CQ)

(yTs (t)ys(t) − yTr (t)yr (t)) = 0. (7)

It follows from Lemma 1, (6) and (7) that

DαV (t) ≤ −aV (x(t)) + bV (x(t − τ))

+
n∑

i, j=1

ci ai j Fi j (yi , y j )= − aV (x(t))+bV (x(t−τ))

+
∑
Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

Frs(yr , ys)

= −aV (x(t)) + bV (x(t − τ))

+
∑
Q∈Q

W (Q)
∑

(s,r)∈E(CQ)

(yTs (t)ys(t) − yTr (t)yr (t))

= −aV (x(t)) + bV (x(t − τ)). (8)

Now, in viewof system (4), Lemma5 and condition (5),
ifa > b,W (t) is Lyapunovglobally asymptotically sta-
ble. It follows from Lemma 4 that V (t) ≤ W (t), which
means that V (t) = ∑n

i=1 ci y
T
i (t)yi (t) → 0(t → ∞).

That is, the equilibrium point x∗ is asymptotically
stable. ��
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Remark 1 In Theorem 1, the condition that weight
digraph (G, A) is strongly connected is indispens-
able, which indicates the obtained result is associ-
ated with the topological property of network. In fact,
if the weighted digraph (G, A) is not strongly con-
nected, only parts of vertices system can be stabilized,
which implies that the whole controlled network may
not be stable. An example is given to illustrate the
case.

Consider a weighted digraph (G, A) with 3 ver-
tices which is not strongly connected, where A =

(ai j )3×3 =
⎛
⎝ 0 2 1
1 0 2
0 0 0

⎞
⎠, it is easy to obtain the Laplacian

matrix of (G, A), L = (li j )3×3 =
⎛
⎝ 3 −2 −1

−1 3 −2
0 0 0

⎞
⎠. By

simple computation, one has c1 = c2 = 0, c3 = 7.
Obviously, from the proof process of Theorem 1 and
constructed auxiliary function V (t), the stability of the
third controlled vertex can be obtained, but the stabil-
ity of the whole controlled networks cannot be guaran-
teed. So from the complex networks point of view, the
condition on strong connectedness of the networks is
necessary and important.

Remark 2 Suppose that weight digraph (G, A) is bal-
anced, It follows fromLemma2andproof ofTheorem1
that Theorem 1 holds if digraph (G, A) is strongly con-
nected and balanced.

Remark 3 [28–32] discussed synchronization of
fractional-order complex networks, but without con-
sidering the time delays in the dynamical nodes.

Remark 4 As we know, in many real-world complex
networks, there often exist the unknown system param-
eters and topological structure. Therefore, it is very nec-
essary to develop an effective method to identify the
network topological structure and system parameters.
Some effective approaches for parameter identification
proposed in [33–38] may be used. Here, the controlled
fractional-order dynamical networks with known sys-
tem parameters and fixed topological structure are only
considered.

4 Numerical example

In this section, to verify and demonstrate the effec-
tiveness of the proposed methods, a simple numerical
example is presented.

Consider a simple network with 5 nodes, the
fractional-order dynamical equation of each node is
described by the following fractional-order Chua oscil-
lators [39]

Dαx(t) = f (x(t), x(t − τ))

= Ax(t) + g1(x(t)) + g2(x(t − τ)), (9)

where α = 0.98, x(t) = (x1(t), x2(t), x3(t))T ∈ R3,
g1(x(t)) = (− 1

2a(m1 − m2)|x1(t) + 1| − |x1(t) −
1|, 0, 0)T ∈ R3. g2(x(t−τ)) = (0, 0,−bc sin(vx1(t−

τ)))T ∈ R3, A =
⎛
⎝−a(1 + m2) a 0

1 −1 1
0 −b −ω

⎞
⎠, a = 10,
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−10
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0
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10
−1

−0.5

0

0.5

1

x1(t)
x3(t)

x 2
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Fig. 1 Chaotic behaviors of fractional-order system (9) with
order α = 0.98
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Fig. 2 Time response curves of state x1(t) in the controlled
system (10) with α = 0.98
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0 1 2 3 4 5
−1

0

1

2

3

4

5

time(s)

x 2
1(
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x 2
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t),
x 2
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Fig. 3 Time response curves of state x2(t) in the controlled
system (10) with α = 0.98
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5

6

time(s)

x 3
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x 3

2(
t),
x 3

3(
t)

x31(t)
x32(t)
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Fig. 4 Time response curves of state x3(t) in the controlled
system (10) with α = 0.98

b = 19.53, ω = 0.1636, m1 = −1.4325, m2 =
−0.7831, v = 0.5, c = 0.2, τ = 0.2. System (9)
displays a chaotic attractor in Fig. 1. It is easy to verify
that li = 21.9888 (i = 1, 2, 3, 4, 5).

The controlled networks consists of 5 nodes
fractional-order delayed Chua system can be rewritten
as follow

Dαxi (t) = f (xi (t), xi (t − τ))

+
5∑
j=1

gi j (x j − xi ) + ui , (10)

where g13 = g14 = g21 = g24 = g25 = g51 =
g52 = 1, g31 = g32 = g35 = g53 = g54 = 2, g12 =
g15 = g23 = g34 = g42 = g45 = 0, g41 = g43 = 3.

0 1 2 3 4 5
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time(s)

x 4
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t),
x 4

2(
t),
x 4
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x41(t)
x42(t)
x43(t)

Fig. 5 Time response curves of state x4(t) in the controlled
system (10) with α = 0.98
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1(
t),
x 5

2(
t),
x 5

3(
t)

x51(t)
x52(t)
x53(t)

Fig. 6 Time response curves of state x5(t) in the controlled
system (10) with α = 0.98

Thus, we can obtain the Laplace matrix L =⎛
⎜⎜⎜⎜⎝

2 0 −1 −1 0
−1 3 0 −1 −1
−2 −2 6 0 −2
−3 0 −3 6 0
−1 −1 −2 −2 6

⎞
⎟⎟⎟⎟⎠, it is easy to obtain that c1 =

426, c2 = 126, c3 = 153, c4 = 116, c5 = 72. When
ui (t) = 0, system admits an equilibrium point x∗ = 0.
According to Theorem 1, let Ki = diag(45, 45, 45),
which satisfies min1≤i≤n{2ki − 3li } = 24.0336 >

21.9888 = max1≤i≤n{Li }. In the simulation, the initial
conditions are xi (0) = (i+1, i+2, i+3)T (1 ≤ i ≤ 5).
Figs. 2, 3, 4, 5 and 6 show the state response of each
node of the controlled dynamical network, respectively,

123



Stabilization of fractional-order coupled systems with time delay on networks 527

from which it can be seen that all the states can be sta-
bilized to equilibrium point x∗ = 0.

5 Conclusions

This paper is focused on the stabilization of fractional-
order dynamical coupled systems with time delay on
network. A sufficient condition for stabilizing such sys-
tems by using linear feedback and graph theory has
been presented. Future work is to give controller design
method for fractional-order delayed systemswith delay
coupling on network via linear delayed feedback con-
trol.
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