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Abstract A 2-URR-RRU parallel manipulator has
two rotational degrees of freedom (DOF) and one trans-
lational DOF, where U denotes a universal joint and
R a revolute joint. The 2-URR-RRU parallel manipu-
lator has promising engineering potentials. However,
investigations on its kinematics, dynamics and optimal
design are deficient, which tremendously hinders its
application. This paper presents the kinematic/dynamic
modeling and motion/force performance-based opti-
mization of the 2-URR-RRU parallel manipulator.
Firstly two rotation axes and one translation direction
are found by mobility analysis based on screw the-
ory. Then forward/inverse kinematic models are con-
structed for position analysis. Based on the kinematics,
dynamicsmodeling is established through theNewton–
Euler method. The Jacobian matrix, which relates the
velocity of actuators and that of the end-effector, is
deduced to investigate the singularity of the paral-
lel manipulator. Analysis reveals that this manipula-
tor only has inverse singularities, with no forward or
combined singularities. In addition, its workspace is
obtained with a compromise of main practical limita-
tions. Furthermore, force/motion performance indices
are employed for optimization of geometrical param-
eters. This study brings valuable kinematic/dynamic
insights of the 2-URR-RRU parallel manipulator and
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is fundamental to further research in stiffness analysis
and control system design.

Keywords Parallel manipulator · Kinematics ·
Dynamics · Optimal design

1 Introduction

Lower-mobility parallel mechanisms (PM) whose
degrees of freedom (DOF) are less than six can be
implemented inmany applications like positioning, ori-
entation and axis-symmetrical machining. If the appro-
priate architecture of a lower-mobility PM is selected
and well optimized, the reduced cost for fabrication,
actuation, control and maintenance can be obtained.
The DELTA robot [1], Z3 head [2] and Tricept hybrid
robot [3] are typical examples of success.

One important category of the lower-mobility PM is
the 1T2R PM, where T denotes a translation degrees
of freedom (DOF) and R a rotational DOF. The most
famous 1T2R PM may be the 3-RPS PM proposed
by Hunt [4]. The 3-RPS or its variant 3-PRS PM is
rather useful in many applications like Z3 head in
machine tool [3], telescope application [5],motion sim-
ulator [6], micro-mechanism [7] and coordinate mea-
suring machine [8]. Thus, the 3-RPS or 3-PRS PM has
attracted a lot of attention and fruitful research progress
regarding kinematics analysis [9–11], dimensional syn-
thesis [12–15], singularity [16,17] and dynamics [18,
19] has been obtained.
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However, as pointed out in our previous work [20],
the notion 1T2R or 2R1T is not rigorous because it
ignores the information on axes of rotation and the
motion of the end-effector cannot simply be regarded
as a commutative addition of rotations and transla-
tions. Thus, we proposed the concepts of general aTbR
motion and special aTbR motion to clarify this fact.

The 3-RPS PM proposed by Hunt and its variants
belongs to the general 1T2R category. The motion of
its moving platform cannot always be decomposed into
a product of (1 + 2) factors, which leads to so-called
parasitic motion that is the motion happening in the
constrained DOF [21].

A special 1T2R motion can always be decomposed
into a product of one translation and two rotations.
Using Kong’s virtual chain approach [22], one can
understand the three subcategories of the special 1T2R
parallel mechanism in a straightforward manner. The
first subcategory is called the PU-equivalent parallel
mechanism, whose motion is equivalent to a PU serial
chain. The family of PU-equivalent PM was first pro-
posed by Li and Herve [20]. The second subcategory
is called the UP-equivalent parallel mechanism, whose
motion is equivalent to a UP serial chain. The fam-
ily of UP-equivalent PM was first proposed by Kong
and Gosselin [22]. The third subcategory is called the
RPR-equivalent parallel mechanism, whose motion is
equivalent to a RPR serial chain in which the two axes
of rotation do not intersect and remain perpendicular
to each other. The family of RPR-equivalent PM was
first proposed by Li and Herve [23].

In addition to the general merits of parallel struc-
ture: higher rigidity, precision and lower inertia, the
advantages of RPR-equivalent parallel mechanisms
also include reduced couplings of translation and rota-
tion and specified axes of rotation [20–24]. One RPR-
equivalent PM with promising engineering potentials
for fields where the manipulator needs to bear large
external loads like welding, milling and processing is
the 2-URR-RRU PM [23]. However, there is still a lack
of investigation on the basic kinematic/dynamic char-
acteristics and optimization of the 2-URR-RRU PM.

The organization of this paper is as follows. Sec-
tion 2 makes a description of the 2-URR-RRU robot.
Section 3 presents the mobility analysis of the 2-
URR-RRU PM using screw theory. Sections 4 and 5
present the position and velocity analysis, respectively.
In Sect. 6, the dynamic model is established and some
simulation results are provided for validation. Section 7
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Fig. 1 CAD model of the 2-URR-RRU PM (at initial configu-
ration)

performs the singularity analysis of the PM. Section 8
presents the workspace of the PM considering link
interference, singularity and joint limits. Section 9 dis-
cusses the force/motion transmission performance of
the mechanism. Section 10 conducts optimization of
the architecture dimensions.

2 Description of the 2-URR-RRU robot

A 2-URR-RRU PM is shown in Fig. 1. The moving
platform is connected to the base by three limbs, where
limb 1 and limb 2 are URR limbs and limb 3 is an
RRU limb. The URR limb is connected to the base by a
universal joint (U joint) and to the moving platform by
a revolute joint (R joint). The RRU limb is connected
to the base by an R joint and to the moving platform by
a U joint. Counting from the base, the second R joint of
each limb is actuated. The joints are actuated by servo
motors and reducers. The first revolute axis of the U
joint in limb 1 is coincident with the first revolute axis
of the U joint in limb 2. The other revolute axes in limb
1 are parallel to those in limb 2. The first revolute axis
of the U joint in limb 3 is parallel to the revolute axis
adjacent to the moving platform in limb 1 and limb 2.

A fixed frame O-XYZ (denoted as {O}) is attached
to the base, and the origin O lies at the midpoint of
B1B2. The Y -axis and X -axis are set along B3O and
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OB2, respectively, and the Z -axis is determined by the
right-hand rule. A moving frame o-uvw (denoted as
{o}) is attached to the moving platform, and the ori-
gin o lies at the midpoint of A1A2. The u-axis and
v-axis are set along A3O and OA2, respectively, and
the w-axis is determined by the right-hand rule. A
limb frame Bi − xi yi zi (denoted as {Bi }, i = 1, 2, 3) is
attached to the i th limb. For i = 1, 2, the xi -axis and
yi -axis point along the two axes of U joint located at
Bi , respectively. The angle between Y -axis and BiCi

is denoted as θi1 and that between Y -axis and Ci Ai

as θi2. For i=3, the axes are the same as those of the
frame {O}. The angle between x3-axis and B3C3 is
denoted as θ31 and that between x3-axis and C3A3 as
θ32. Besides, �A1A2A3 and �B1B2B3 are all isosce-
les right triangles, i.e., oA1 = oA2 = oA3 = e1 and
OB1 = OB2 = OB3 = e2. The length of each link of
limbs is denoted as l. The distance between the origin
of the moving frame and the tool tip is defined as H .

3 Mobility analysis

Mobility analysis determines the motion pattern of
a manipulator, which is indispensable in mechanical
design. Screw theory [25] is used to perform the mobil-
ity analysis of the 2-URR-RRUparallel manipulator. In
screw theory, a unit screw $ is defined by a pair of vec-
tors

$ = (s; s0) = (s; r × s + hs), (1)

where s is a unit vector specifying the direction of the
screw axis, r is the position vector of any point on the
screw axis in terms of a reference coordinate system,
and h denotes pitch.

A screw, $r = (sr; s0r), and a set of screws,
$1, $2, . . . , $n , are said to be reciprocal if they satisfy
the condition

$i ◦ $r = si · s0r + sr · s0i (i = 1, 2, . . . , n), (2)

where “◦” denotes reciprocal product and $i represents
the i th screw in the screw set. We call the screw a twist
if it represents an instantaneous motion of a rigid body,
or a wrench if it represents a force or a couple, or a
combination of both, acting on a rigid body.

Let $i j be a twist associated with the j th joint in the
i th limb. Let $ri j be the j th constraint wrench acting
on the moving platform by the i th limb. With respect
to frame {O}, the position vectors of points Ai and Bi

are as follows. The coordinates of A1, A2 and A3 are
(xA1 , yA1 , zA1), (xA2 , yA2 , zA2) and (xA3 , yA3 , zA3),
respectively. The coordinates of B1, B2 and B3 are
(0,−e2, 0), (0, e2, 0) and (−e2, 0, 0), respectively.The
coordinates of C1,C2 and C3 are (xC1 , yC1 , zC1),

(xC2 , yC2 , zC2) and (xC3 , yC3 , zC3), respectively.
In the initial configuration, the twist system of limb

1 is given by
⎧
⎪⎪⎨

⎪⎪⎩

$11 = (0 1 0 ; 0 0 0)
$12 = (1 0 0 ; 0 0 e2)
$13 = (1 0 0 ; 0 − zC1 yC1)

$14 = (1 0 0 ; 0 − zA1 yA1)

. (3)

Using reciprocity between twists and wrenches, the
wrench system of limb 1 is obtained as
{
$r11 = (0 0 0 ; 0 0 1)
$r12 = (1 0 0 ; 0 0 0)

, (4a)

where $r11 represents a constraint couple whose axis is
perpendicular to the base plane, while $r12 represents a
constraint force passing through point B1 and parallel
to X -axis. Similarly, the constraint wenches of limb 2
and limb 3 are given by:
{
$r21 = (0 0 0 ; 0 0 1)
$r22 = (1 0 0 ; 0 0 0)

, (4b)

and
{
$r31 = (0 0 0 ; 0 0 1)
$r32 = (0 1 0 ; −zA3 0 0)

, (4c)

where $r21 or $
r
31 represents a constraint couple whose

axis is perpendicular to the base plane, while $r22 rep-
resents a constraint force passing through point B2 and
parallel to X -axis; $r32 represents a constraint force
passing through point A3 and parallel to Y -axis. Cal-
culating twists that are reciprocal to Eqs. (4a), (4b) and
(4c) yields

$m1 = (0 0 0 ; 0 0 1)
$m2 = (0 1 0 ; 0 0 0)
$m3 = (1 0 0 ; 0 zA3 0)

. (5)

The three twists in Eq. (5) represent the three DOFs in
the initial configuration, that is, one translation along
the Z -axis and two rotations about the u- and Y -axes.

Because a twist or wrench is inherently instanta-
neous, it is necessary to analyze the mobility of the
moving platform in a general configuration. We verify
the configuration where the moving platform under-
goes a finite translation along the Z -axis and two finite
rotations about the u- and Y -axes. In a general config-
uration as shown in Fig. 2, the twist system of limb 1
is given by
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Fig. 2 Mobility of the PM at a general configuration

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

$11 = (0 1 0 ; 0 0 0)

$12 = (l11 0 n11 ; −e2n11 0 e2l11)

$13 = (l11 0 n11 ; yC1n11 − xC1n11 + zC1 l11 − yC1 l11)

$14 = (l11 0 n11 ; yA1n11 − xA1n11 + zA1 l11 − yA1 l11)

,(6)

where l11, n11 are direction cosines of the universal
joint in B1. The constraint wrench system of limb 1 is
obtained as
{
$r11 = (0 0 0 ; −n11/ l11 0 1)

$r12 = (l11/n11 0 1 ; 0 0 0)
. (7a)

Similarly, the constraint wenches of limb 2 and limb 3
are given by:
{
$r21 = (0 0 0 ; −n22/ l22 0 1)

$r22 = (l22/n22 0 1 ; 0 0 0)
, (7b)

and
{
$r31 = (0 0 0 ; −n33/ l33 0 1)

$r32 = (0 1 0 ; (xA3n33 − zA3l33)/ l33 0 0)
, (7c)

where l22, n22, l33, n33 are direction cosines of the uni-
versal joints in B2 and A3. Note that the first revolute
axes in universal joint B1 and B2 are always parallel
to the second revolute axis in universal joint A3, i.e.,
(l11, 0, n11) = (l22, 0, n22) = (l33, 0, n33). Thus, we
have
{
$r11 = $r21 = $r31
$r12 = $r22

. (7d)

Calculating twists that are reciprocal to Eqs. (7a), (7b)
and (7c) yields

$m1 = (0 0 0 ; −n11/ l11 0 1)
$m2 = (0 1 0 ; 0 0 0)
$m3 = (l11/n11 0 1 ; 0 (l11zA3 − n11xA3)/n11 0)

,(8)

where $m1 represents a translation along the w-axis, $m2
represents a rotation about the Y -axis, and $m3 repre-
sents a rotation about the u-axis.

4 Position analysis

4.1 Inverse kinematics

In the inverse kinematics, the position and orienta-
tion parameters of the moving platform (β, γ, z0) are
known and the actuated joint parameters (θ12, θ22, θ32)

are to be found. The rotation matrix of the moving
frame relative to base frame is given by

RB
A = RY (β)Ru(γ ) =

⎡

⎣
cβ sβsγ sβcγ

0 cγ −sγ
−sβ cβsγ cβcγ

⎤

⎦ , (9)

where “c” stands for cosine and “s” stands for sine. The
position vectors of points Ai relative to the frame {o}
and {O} are denoted as bAi and bi , respectively. Thus
we have
⎧
⎨

⎩

bA1 = [ 0 −e1 0 ]T
bA2 = [ 0 e1 0 ]T
bA3 = [−e1 0 0 ]T

, (10a)

bi = RB
Ab

A
i + P, (10b)

where vector P = [
x0 y0 z0

]T
denotes the position

vector of point o in frame {O}. The rotation matrix of
frame {Bi } relative to frame {O} is given by

R1 = R2 =
⎡

⎣
cβ 0 −sβ
0 1 0
sβ 0 cβ

⎤

⎦ ,R3 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ . (11)

The origins of limb frames represented in frame {O}
are
⎧
⎪⎨

⎪⎩

p1 = [
0 −e2 0

]T

p2 = [
0 e2 0

]T

p3 = [−e2 0 0
]T

. (12)

The position vector bi expressed in frame {Bi } can be
written as
⎧
⎪⎨

⎪⎩

b11 = [
0 lcθ11 + lcθ12 lsθ11 + lsθ12

]T

b22 = [
0 lcθ21 + lcθ22 lsθ21 + lsθ22

]T

b33 = [
lcθ31 + lcθ32 0 lsθ31 + lsθ32

]T
. (13a)
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Moreover, bi is deduced by

bi = Ribii + pi . (13b)

Since Eqs. (10b) and (13b) give the position vector of
the same point, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sβ
(
lsθ11 + lsθ12

) = e1sβsγ − x0

lcθ11 + lcθ12 = e2 − e1cγ

cβ

(
lsθ11 + lsθ12

) = −e1cβsγ + z0

sβ
(
lsθ21 + lsθ22

) = −e1sβsγ − x0

lcθ21 + lcθ22 = −e2 + e1cγ

cβ

(
lsθ21 + lsθ22

) = e1cβsγ + z0

lcθ31 + lcθ32 = e2 − e1cβ + x0

lsθ31 + lsθ32 = e1sβ + z0

. (13c)

Based on the mobility analysis and geometrical condi-

tions, we have P = [
z0tβ 0 z0

]T
, where “t” stands for

tangent. Thus Eq. (13c) is simplified:
⎧
⎪⎨

⎪⎩

lsθ11 + lsθ12 = a1, lcθ11 + lcθ12 = c1

lsθ21 + lsθ22 = a2, lcθ21 + lcθ22 = c2

lcθ31 + lcθ32 = a3, lsθ31 + lsθ32 = c3

, (13d)

where

a1 = z0secβ − e1sγ , c1 = e2 − e1cγ ,

a2 = z0secβ + e1sγ ,

c2 = −e2 + e1cγ , a3 = e2 − e1cβ + z0tβ,

c3 = e1sβ + z0.

Solutions to inverse kinematics canbeobtainedby solv-
ing Eq. (13d):
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

for i = 1, 2 :
θi2 = 2atan

2lai−
√

(a2i +c2i )(4l
2−a2i −c2i )

a2i +c2i +2lci
for i = 3 :
θ32 = 2atan

2lc3−
√

(a23+c23)(4l
2−a23−c23)

a23+c23+2la3

(14)

Besides, the position vector of the end-effector is

denoted as d = [
0 0 H

]T
. Hence its position vector

expressed in {O} is given by

D = P + RB
Ad =

⎡

⎣
Hsβcγ + z0tβ

−Hsγ
Hcβsγ + z0

⎤

⎦ =
⎡

⎣
Hx

Hy

Hz

⎤

⎦ . (15)

4.2 Forward kinematics

The forward kinematics is solving the position and ori-
entation parameters of the moving platform (β, γ, z0)

with the preset joint parameters (θ12, θ22, θ32). From
Eq. (13d), we have

a21 + c21 − 2a1lsθ12 − 2c1lcθ12 = 0, (16a)

a22 + c22 − 2a2lsθ22 − 2c2lcθ22 = 0, (16b)

a23 + c23 − 2a3lcθ32 − 2c3lsθ32 = 0. (16c)

Square difference of Eqs. (16a) and (16c) results in

f (γ ) = z0secβ = u4 + u5 − 4e1e2cγ

4e1sγ + 2l(sθ12 − sθ22)
, (17)

where

u4 = 2le1sγ (sθ12 + sθ22),

u5 = 2l(cθ12 + cθ22)(e1cγ − e2).

Substituting f (γ ) into Eq. (16a), we have

f1(γ ) + f2(γ ) = 0, (18)

where

f1(γ ) = (
f (γ ) − e1sγ

)2 − 2lsθ12
(
f (γ ) − e1sγ

)

f2(γ ) = (
e2 − e1cγ

)2 − 2lcθ12

(
e2 − e1cγ

) .

Mathematically, Eq. (18) is a univariate equations
of eight degrees, which only numerical solutions are
found. Thus the forward kinematics of the 2-URR-RRU
PM only has numeric solutions and no analytic solu-
tions.

4.3 Numerical examples

Numerical examples are presented to verify the forward
kinematics. The link parameters, four groups of inputs
and their corresponding outputs of the PM are listed in
Table 1.

The configurations of the moving platform are
shown in Fig. 3.

5 Velocity analysis

The Jacobian matrix transforms the rates of actuated
joints to the velocity of the end-effector. Differentiating
Eq. (14) with respect to time t leads to

T
[
θ̇12 θ̇22 θ̇32

]T = G
[
β̇ γ̇ ż0

]T
, (19a)

T =
⎡

⎣
T11 0 0
0 T22 0
0 0 T33

⎤

⎦ , (19b)

123



508 Z. Wang et al.

Table 1 The parameters of the input and output links

No. Actuator angles (◦) Configurations of the PM

θ12 θ22 θ32 β (◦) γ (◦) z0 (mm)

(a) 20 120 40 12.40 30.99 603.02

(b) 40 120 50 4.14 13.41 684.29

(c) 50 135 50 8.80 3.63 668.17

(d) 65 110 70 1.37 1.56 768.65

Link parameters: l = 400mm, e1 = 250mm, e2 = 400mm, and H = 50mm

Fig. 3 Four solutions of forward kinematics

and

G =
⎡

⎣
G11 G12 G13

G21 G22 G23

G31 G32 G33

⎤

⎦ , (19c)

where

T11 = a1lcθ12 − c1lsθ12 , T22 = a2lcθ22 − c2lsθ22 ,

T33 = c3lcθ32 − a3lsθ32 , G11 = z0secβ tβ(a1 − lsθ12)

G12 = e1sγ (c1 − lcθ12) − e1cγ (a1 − lsθ12),

G13 = secβ(a1 − lsθ12), G21 = z0secβ tβ(a2 − lsθ22),

G22 = e1cγ (a2 − lsθ22) − e1sγ (c2 − lcθ22),

G23 = secβ(a2 − lsθ22),

G31 = (e1sβ + z0sec
2
β)(a3 − lcθ32) + e1cβ(c3 − lsθ32),

G32 = 0,G33 = tβ(a3 − lcθ32) + (c3 − lsθ32).

Then, the velocity equation of the 2-URR-RRU PM in
a non-singular configuration can be written as

[
β̇ γ̇ ż0

]T = G−1T
[
θ̇12 θ̇22 θ̇32

]T
. (19d)

6 Dynamics analysis

Newton–Euler method with generalized coordinates
[26,27] is employed for the dynamics modeling of the
parallel manipulator.

Let q = [β, γ, l0]T be the generalized coordinate of
the system, where l0 represents the distance between
the origins of {o} and {O}. We have

P = l0

⎡

⎣
sβ
0
cβ

⎤

⎦ . (20)

The poses of the upper and lower links in limbs 1 and
2 can be obtained as
{
RB
Ui

= exp(ê2β) exp(−ê1θi1)
rBUi

= pi − RB
Ui

ρUi ,1
, (21)

{
RB
Li

= exp(ê2β) exp(−ê1θi2)
rBLi

= P + RB
Ab

A
i − RB

Li
ρLi ,2

, (22)

where e1 = [1, 0, 0]T, e2 = [0, 1, 0]T; êi (i = 1, 2, 3)
is its 3 × 3 skew-symmetrical matrix; ρUi ,1 and ρUi ,2
are the body-joint vectors of the universal joint and the
actuated rotational joint in the upper links’ local frames,
ρLi ,1 and ρLi ,2 are the body-joint vectors of the actu-
ated rotational joint and the rotational joint connected
to the platform in the lower links’ local frames.

The local frames of the all the links in limbs 1 and 2
are located at the centers of mass and have their x-axes
parallel to the second rotational joint. The poses of the

123



Kinematic/dynamic analysis and optimization 509

upper and lower links in limb 3 can be obtained as
{
RB
U3

= exp(−ê2θ31)
rBU3

= p3 − RB
U3

ρU3,1
, (23)

{
RB
L3

= exp(−ê2θ32)
rBL3

= P + RB
Ab

A
3 − RB

L3
ρL3,2

. (24)

Then the velocities of the moving platform and all the
links can be derived by differentiating Eqs. (20)–(24).

The angular and linear velocity of the moving plat-
form and all the links in limbs 1 and 2 can be obtained
as
{

ωA = (Ṙ
B
A(RB

A)T)∨ = e2β̇ + exp(ê2β)e1γ̇ = J A,R q̇
vA = Ṗ = J A,T q̇

(25)
{

ωUi = (Ṙ
B
Ui

(RB
Ui

)T)∨ = e2β̇ − exp(ê2β)e1θ̇i1 = JUi ,R q̇
vUi = ṗi − ω̂Ui R

B
Ui

ρUi ,1 = JUi ,T q̇

(26)
{

ωLi = (Ṙ
B
Li (R

B
Li

)T)∨ = e2β̇ − exp(ê2β)e1θ̇i2 = JLi ,R q̇
vLi = Ṗ + ω̂ARB

Ab
A
i − ω̂Li R

B
Li

ρLi ,2 = JLi ,T q̇

(27)

where θ̇i j = M i j q̇ (i = 1, 2, 3; j = 1, 2) could be
obtained from Eqs. (13d) and (14),

J A,R = [e2, exp(ê2β)e1, 03],

J A,T =
⎡

⎣
l0cβ 0 sβ
0 0 0

−l0sβ 0 cβ

⎤

⎦ ,

JUi ,R = [e2, 03, 03] − exp(ê2β)e1M i1,

JUi ,T = r̂Ui ,1 JUi ,R,

J Li ,R = [e2, 03, 03] − exp(ê2β)e1M i2,

J Li ,T = J A,T − r̂bi J A,R + r̂Li ,2 J Li ,R,

rUi ,1 = RB
Ui

ρUi ,1, rbi = RB
Ab

A
i , rLi ,2 = RB

Li
ρLi ,2.

The angular and linear velocity of the links in limb 3
can be obtained as
{

ωU3 = −e2θ̇31 = −e2M31q̇ = JU3,R q̇
vU3 = ṗ3 − ω̂U3R

B
U3

ρU3,1 = JU3,T q̇
, (28)

{
ωL3 = −e2θ̇32 = −e2M32q̇ = J L3,R q̇
vL3 = Ṗ + ω̂ARB

Ab
A
3 − ω̂L3R

B
L3

ρL3,2 = J L3,T q̇
,

(29)

where JU3,R = −e2M31, JU3,T = r̂U3,1 JU3,R ,

J L3,R = −e2M32,

J L3,T = J A,T − r̂b3 J A,R + r̂L3,2 J L3,R .

Then the accelerations of the moving platform and all
the links can be derived by differentiating Eqs. (25)–
(29) as
{

ω̇A = J A,R q̈ + δA

v̇A = J A,T q̈ + μA
, (30)

{
ω̇Ui = JUi ,R q̈ + δUi

v̇Ui = JUi ,T q̈ + μUi

, (31)

{
ω̇Li = J Li ,R q̈ + δLi

v̇Li = J Li ,T q̈ + μLi

, (32)

where δA = J̇ A,R q̇ = ê2 exp(ê2β)e1β̇γ̇ ,

μA = J̇ A,T q̇

=
[
2cβ l̇0β̇ − sβl0β̇

2, 0,−2sβ l̇0β̇ − cβl0β̇
2
]
,

μUi
= J̇Ui ,T q̇ = r̂Ui ,1δUi − ω̂

2
Ui
rUi ,1,

μLi
= J̇ Li ,T q̇

= μA − r̂bi δA + ω̂
2
Arbi + r̂Li ,2δLi − ω̂

2
Li
rLi ,2,

for limbs 1 and 2,

δUi = J̇Ui ,R q̇ = −β̇ ê2 exp(ê2β)e1M i1q̇

− exp(ê2β)e1Ṁ i1q̇,

δLi = J̇ Li ,R q̇ = −β̇ ê2 exp(ê2β)e1M i2q̇

− exp(ê2β)e1Ṁ i2q̇,

for limb 3,

δU3 = J̇U3,R q̇ = −e2Ṁ31q̇,

δL3 = J̇ L3,R q̇ = −e2Ṁ32q̇.

The accelerations of all the parts in the PM can be
assembled in a matrix form as
{

ω̇ = J R q̈ + δ

v̇ = JT q̈ + μ
, (33)

where

ω̇ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ω̇A

ω̇L1

ω̇L2
...

ω̇U3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

21×1

, v̇ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

v̇A

v̇L1

v̇L2
...

v̇U3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

21×1

,

J R =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

J A,R

J L1,R

J L2,R
...

JU3,R

⎤

⎥
⎥
⎥
⎥
⎥
⎦

21×3

,

123



510 Z. Wang et al.

JT =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

J A,T

J L1,T

J L2,T
...

JU3,T

⎤

⎥
⎥
⎥
⎥
⎥
⎦

21×3

, δ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

δA

δL1

δL2
...

δU3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

21×1

,

μ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

μA
μL1

μL2
...

μU3

⎤

⎥
⎥
⎥
⎥
⎥
⎦

21×1

.

The Newton–Euler formulation of the platform can be
derived as
{
I Aω̇A + εA = Ma

A + Mn
A

mAv̇A = Fa
A + Fn

A
, (34)

where I A represents the 3×3 inertia tensorwith respect
to frame {o},mA denotes the mass of the platform, Ma

A
and Fa

A are the equivalent applied moments and forces
summarized to the origin of {o}. Mn

A and Fn
A are the

vectors of constraint moments and forces in the joints
connected to the platform, which are derived as

{
Mn

A = P A1,RλA1 + P A2,RλA2 + P A3,RλA3 = P A,RλA

Fn
A = P A1,T λA1 + P A2,T λA2 + P A3,T λA3 = P A,T λA

,

(35)

where λA = [λT
A1

,λT
A2

,λT
A3

]T ∈ R
13×1 is the ideal

constraint force of all the joints connected to the plat-
form,

P A,R = [
P A1,R, P A2,R, P A3,R

] ∈ R
3×13,

P A,T = [P A1,T , P A2,T , P A3,T ] ∈ R
3×13,

P A1,R = [r̂b1, v, w] ∈ R
3×5,

P A2,R = [r̂b2 , v, w] ∈ R
3×5,

P A3,R = r̂b3 ∈ R
3×3,

P A1,T = P A2,T = [E3, 03×2] ∈ R
3×5,

P A3,T = E3 =
⎡

⎣
1
1
1

⎤

⎦ ∈ R
3×3.

The Newton–Euler formulation of the lower links in
the limbs can be derived as
{
I Li ω̇Li + εLi = Ma

Li
+ Mn

Li

mLi v̇Li = Fa
Li

+ Fn
Li

, (36)

where Mn
Li

and Fn
Li

can be derived as
{
Mn

Li
= LAi ,RλAi + LCi ,RλCi

Fn
Li

= LAi ,TλAi + LCi ,TλCi

, (37)

where λCi ∈ R
5×1,

LA1,R = −[r̂L1,2, v, w] ∈ R
3×5,

LA2,R = −[r̂L2,2, v, w] ∈ R
3×5,

LA3,R = −r̂L3,2 ∈ R
3×3,

LC1,R = [r̂L1,1, vL1 , wL1 ] ∈ R
3×5,

LC2,R = [r̂L2,1, vL2 , wL2 ] ∈ R
3×5,

LC3,R = [r̂L3,1, uL3 , wL3 ] ∈ R
3×5,

LA1,T = −P A1,T ,

LCi ,T = [E3, 03×2] ∈ R
3×5.

The Newton–Euler formulation of the upper links in
the limbs can be derived as
{
IUi ω̇Ui + εUi = Ma

Ui
+ Mn

Ui

mUi v̇Ui = Fa
Ui

+ Fn
Ui

, (38)

where Mn
Ui

and Fn
Ui

can be derived as
{
Mn

Ui
= UCi ,RλCi + U Bi ,RλBi

Fn
Ui

= UCi ,TλCi + U Bi ,TλBi
, (39)

where

UC1,R = −[r̂U1,2, vL1 , wL1 ] ∈ R
3×5,

UC2,R = −[r̂U2,2, vL2 , wL2 ] ∈ R
3×5,

UC3,R = −[r̂U3,2, uL3 , wL3 ] ∈ R
3×5,

U B1,R = r̂U1,1 ∈ R
3×3,

U B2,R = r̂U2,1 ∈ R
3×3,

U B3,R = [r̂U3,1, e1, e3] ∈ R
3×5,

UCi ,T = −LCi ,T

U B1,T = E3 ∈ R
3×3,

U B2,T = E3 ∈ R
3×3,

U B3,T = [E3, 03×2] ∈ R
3×5.

Then the system dynamics equations can be obtained
by assembling the equation of each body as
{
Iω̇ + ε = Ma + Mn

mv̇ = Fa + Fn , (40)

where

I =

⎡

⎢
⎢
⎢
⎣

I A
I L1

. . .

IU3

⎤

⎥
⎥
⎥
⎦

21×21

,

m =

⎡

⎢
⎢
⎢
⎣

mA I3
mL1 I3

. . .

mU3 I3

⎤

⎥
⎥
⎥
⎦

21×21

,
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ε =

⎡

⎢
⎢
⎢
⎣

εA

εL1
...

εU3

⎤

⎥
⎥
⎥
⎦

21×1

, Ma =

⎡

⎢
⎢
⎢
⎣

Ma
A

Ma
L1

...

Ma
U3

⎤

⎥
⎥
⎥
⎦

21×1

,

Mn =

⎡

⎢
⎢
⎢
⎣

Mn
A

Mn
L1

...

Mn
U3

⎤

⎥
⎥
⎥
⎦

21×1

,

Fa =

⎡

⎢
⎢
⎢
⎣

Fa
A

Fa
L1

...

Fa
U3

⎤

⎥
⎥
⎥
⎦

21×1

, Fn =

⎡

⎢
⎢
⎢
⎣

Fn
A

Fn
L1

...

Fn
U3

⎤

⎥
⎥
⎥
⎦

21×1

.

According to the analysis above, the system dynamics
equations could be obtained in the generalized coordi-
nates form as

ΦHq̈ + K (q, q̇) = F̄
a + Qλ, (41)

where

Φ =
[
I
m

]

42×42
, H =

[
J R

JT

]

42×3
,

K =
[
Iδ + ε

mμ

]

42×1
, F̄

a =
[
Ma

Fa

]

42×1
,

λ =
⎡

⎣
λA

λC
λB

⎤

⎦

42×1

,

Q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

P A,R 0 0
LA,R LC,R 0
0 UC,R U B,R

P A,T 0 0
LA,T LC,T 0
0 UC,T U B,T

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

42×39

,

LA,X =
⎡

⎣
LA1,X

LA2,X

LA3,X

⎤

⎦ ,

LC,X =
⎡

⎣
LC1,X

LC2,X

LC3,X

⎤

⎦ ,

UC,X =
⎡

⎣
UC1,X

UC2,X

UC3,X

⎤

⎦ ,

U B,X =
⎡

⎣
U B1,X

U B2,X

U B3,X

⎤

⎦ ,

X = R or T .

Table 2 The initial conditions of the manipulator

Symbols Values

Configuration [β, γ, l0] [10◦, 10◦, 1m]
Velocity [β̇, γ̇ , l̇0] [0, 0, 0]
Applied torque [T1, T2, T3] [−150, 150, 110] Nm

Table 3 The mass properties of the manipulator

Inertia (kgm2) Mass (kg)

Platform

⎡

⎣
0.614

0.457
1.005

⎤

⎦ 39.67

Linkages

⎡

⎣
1.121

0.050
1.145

⎤

⎦ 22.71

Left-multiplying Eq. (41) with the transportation of the
matrix H , we get

HTΦHq̈ + HT K (q, q̇) = HT F̄
a + HT Qλ. (42)

According to the principle of virtual work, the term
containing the constraint forces can be eliminated,

HT Qλ = 0. (43)

So the equation of motion of this PM could be derived
by rewriting the above equation as

HTΦHq̈ = HT F̄
a − HT K (q, q̇). (44)

Both the forward and inverse dynamic analysis equa-
tion could be derived from Eq. (44) which is a set of
3 ordinary differential equations. Left-multiplying Eq.
(41) with QTΦ−1, we get

QTΦ−1Qλ = QTΦ−1K (q, q̇) − QTΦ−1 F̄
a
. (45)

From Eq. (45), we can get the generalized constraint
forces of all the ideal joints.

In order to validate the analysis above, a numerical
example is presented here. The initial conditions and
mass properties of the manipulator are listed in Table 2
and Table 3.

Then the dynamic responses of the manipulator can
be obtained using the approach above. And simula-
tion results are illustrated throughout Figs. 4, 5 and
6. In these figures, the curves subscripted with M are
obtained according to the proposed approach in the
MATLAB/Simulink environment, while the curves sub-
scripted with A are got from the commercial software
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Fig. 4 Rotational accelerations of the platform

Fig. 5 Constraint forces of the U joint in limb 3

Fig. 6 Angles of the active joints

Adams/view for the validation of the numerical results.
These results validate the correctness of the proposed
approach.

7 Singularity analysis

Singularity is an inherent property of a PM. When the
PM is at a singularity configuration or in its neighbor-
hood, it becomes uncontrollable. Usually, singularities
occurring in PMs are divided into three groups: forward
kinematic singularity, inverse kinematic singularity and
combined singularity [25].

When |G| = 0, |T | �= 0, the PM is at its for-
ward kinematic singularity configuration. Since G is
too complicated to be analytically solved, a numerical
method is used for calculating |G|. When the parame-
ters are set as 50◦ ≤ β ≤ 50◦,−50◦ ≤ γ ≤ 50◦, and
250mm ≤ z0 ≤ 650mm, |G| is not equal to zero.
Hence the PM is not at a forward kinematic singu-
larity configuration under the conditions above. This
fact suggests that the forward kinematic singularity of
the 2-URR-RRU PM can be avoided by selecting link
parameters appropriately.

When |T | = 0, |G| �= 0, the PM is at its inverse
kinematic singularity configuration that is also called
boundary singularity. Explicitly, when any one of
T11, T22, T33is equal to zero, |T | = 0.

If T11 = 0, and l(a1cθ12 − c1sθ12) = 0, we have:

z0 = cβ tθ12(e2 − e1cγ ) (46a)

If T22 = 0, and l(a2cθ22 − c2sθ22) = 0, we have:

z0 = cβ tθ22(e1cγ − e2) (46b)

If T33 = 0, and l(c3cθ32 − a3sθ32) = 0, we have:

z0 = tθ32(e2 − e1cγ ) − e1sβ
(1 − tβ tθ32)

(46c)

Thus the 2-URR-RRU PM has three inverse kinematic
singular configurations, as shown in Fig. 7.

When |G| = 0 and |T | = 0, the PM is at its com-
bined singularity configuration. Since |G| �= 0, the PM
has no combined singularities.

8 Workspace

The workspace of a PM is the reachable scope of the
end-effector, which should satisfy the limitations of the
link length, singularity, joint angles and interference of
the manipulator.

Based on the architecture of the 2-URR-RRU PM,
three inverse kinematic singularities should be consid-
ered. As shown in Fig. 8, the transmission angle θi
should satisfy θi = acos(dini/ |di|) ≤ θimax, where
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Limb 1
Limb 2

Limb 
3

Limb 1Limb 2

Limb 
3

Limb 1Limb 2

Limb 
3

(a) (b) (c)

Fig. 7 Singular configurations. a T11 = 0, limb 1. b T22 = 0, limb 2. c T33 = 0, limb 3

x

yz

in

id
iθ

iR

Fig. 8 Angle constraints

θimax is the maximum rotation angle and is defined as
50◦ in this paper.Within the limit of the rotation angles,
there is no interference.

The range of β, γ and z0 is constrained as
⎧
⎨

⎩

−θimax ≤ β ≤ θimax

−θimax ≤ γ ≤ θimax

2lcθimax ≤ z0 ≤ √
4l2 − (e2 − e1)2

. (47)

Figure 9 shows the procedure for obtaining the work-
space. Figure 10a shows the workspace when z0 =
350mm. Figure 10b shows the workspace when z0
changes.

9 Force/motion transmission performance

Force/motion transmission performance is one of the
main indexes for dimension synthesis of a lower-
mobility parallel manipulator. Here we use the indices

confirm 12 , 22 , 32

if 12, 22, 32  meet conditions

record z0

calculate Hx Hy Hz

start

= min

= min

z0 =zmin

 = +

= +

z0=z0+ z

Y

Y

Y

N

max

max

z0 zmax

end

N

N

N

Y

Fig. 9 The procedure of workspace calculation

proposed by Liu et al. [29,30] to optimize the parame-
ters of the 2-URR-RRU PM. Readers are suggested to
refer to [27–29] for detailed information of themethod-
ology. The force/motion transmission performance of a
manipulator can be divided into two parts: input trans-
mission performance and output transmission perfor-
mance. Input transmission performance represents the
efficiency of power transmitted from the actuated joints
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Fig. 10 Workspace of the PM

to the limbs, while output transmission performance
represents the efficiency of power transmitted from
limbs to the moving platform. The transmission per-
formance indices are defined as

λi = ∣
∣$Ai ◦ $Ti

∣
∣ /

∣
∣$Ai ◦ $Ti

∣
∣
max , (48a)

and

ηi = ∣
∣$Oi ◦ $Ti

∣
∣ /

∣
∣$Oi ◦ $Ti

∣
∣
max . (48b)

where λi and ηi denote the input transmission index
and output transmission index of the i th limb, respec-
tively, $Ai represents the input twist of the i th limb
(i = 1 ∼ n), $Ti represents the transmission wrench
(TWS), and $Oi represents the output twist. Obviously,
the index range is from zero to one, and the bigger
the index is, the better the transmission performance
will be. Moreover, LTI is defined as Γ = min {λi , ηi }.
According to the definition of transmission angle, it
is assumed that when Γ ≥ 0.7 [30] the manipula-
tor reaches a good-transmission workspace (GTW) in

which the manipulator has a good force/motion trans-
missibility.

Without loss of generality, we take limb 1 for exam-
ple. The twist system and constraint wrench are given
in Eqs. (6) and (7a), respectively. Since the actuated
joint of limb 1 is an R joint, we have $13 = $Ai . The
TWS, which is reciprocal to

[
$11, $12, $14

]
, is given by

$T1 = (−asβ b acβ ; −ae2cβ 0 − ae2sβ). (49)

Similarly, the constraint wrenches and TWS of the
other two limbs are derived:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

$C3 = (
0 0 0 ; −tβ 0 1

)

$C4 = (
ctβ 0 1 ; 0 0 0

)

$C5 = (
0 0 0 ; −tβ 0 1

)

$C6 = (0 1 0 ; ss 0 0)

$T2 = (− f sβ g f cβ ; f e2cβ 0 f e2sβ)

$T3 = (z 0 v ; 0 e2v 0)

, (50)

where

a = l(−sβ + sθ11 ), b = l(cβ + cθ11 ), f = l(sθ21 + sβ),

g = l(cθ21 + cβ), ss = tβ(lcθ31 + lcθ32 − e2) − l(sθ31 + sθ32 ),

z = l(cθ31 + cθ32 ), v = l(sθ31 + sθ32 ).

From Eq. (7b), we can find that $C1 = $C3 = $C5
and $C2 = $C4, and thus the constraint wrenches of
the PM are $C1, $C2 and $C6. When limb 1 is actu-
ated and the other two limbs are locked, the screw sys-
tem

[
$C1, $C2, $C6, $T2, $T3

]
is five-dimensional and

the PM degenerates to a 1-DOF manipulator. The out-
put motion twist $O1 is reciprocal to the screw system
above. The other two output motion twists of limb 2
and limb 3 can be derived by the same way:

$O1=
(

−ctβ
−(z+vctβ)(m+n)

ve2 f secβ

1; m+n

f secβ

ge2tβ−m

gtβ

c2β(m+n)

f sβ

)

(51)

where m = gl(sθ31 + sθ32 + tβcθ31 + tβcθ32),

n = e2 f secβ − e2gtβ.

The other two output motion twists of limb 2 and
limb 3 can be derived by the same way. Substituting
solved TWS and input/output twists into Eqs. (48a) and
(48b), we can obtain the force/motion transmission per-
formance of the PM. Figure 11 shows the force/motion
transmission performance of the PMs with different
architecture parameters. The area covered with slash is
GTW, where Γ ≥ 0.7. The LTI atlases are closely
related to parameters (l, e1, e2), so are the GTWs.
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()
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Fig. 11 LTI for PMs with different architecture parameters: a l = 500mm, e1 = 250mm, e2 = 400mm; b l = 500mm, e1 =
300mm, e2 = 400mm; c l = 500mm, e1 = 300mm, e2 = 445mm; d l = 445mm, e1 = 300mm, e2 = 445mm

Figure 11a shows a rectangle-like GTW . Since e1 is
larger in the second group than that of the first group,
the GTW is more narrow along the direction of β, as
shown in Fig. 11b. For the third group, the parame-
ter e2 is larger than that of the second group; thus, the
GTW has a wider range of β, as shown in Fig. 11c.
In the fourth group, γ is smaller than that of the third
group, which leads to a GTW with a wider range of β

and a more narrow range of γ , as shown in Fig. 11d.
Besides, due to the architecture of the 2-URR-RRU
PM, the GTWs are all symmetrical to γ and asymmet-

rical toβ, which depicts the PM has a wider GTW in
the range of [−50◦, 0◦] of β.

10 Optimization of geometrical parameters

The performance (GTW) of the 2-URR-RRU PM is
highly dependent on the geometrical parameters. In
actual conditions, the parameters cannot be assigned
arbitrarily and should be restricted in an area where the
PM possesses good performance [31]. For the 2-URR-
RRU PM, we define
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Fig. 12 Parameter design space of a PM. a Spatial view. b Plan
view

{
D = (e1 + e2 + l)/3
r1 = e1/D , r2 = e2/D , r3 = l/D

, (52)

where D is a normalized factor and ri (i = 1−3) is a
non-dimensional and normalized parameter. To ensure
the PMbeing properly assembled, the three normalized
parameters should satisfy
{
r2 > r1
0 < r1 , r2, r3 < 3

. (53)

Thus the parameter design space can be planned based
on the restrict conditions of Eq. (53), as Fig. 12a shows.
The shadow area (�ABC) contains all the possible
parameter values. In the plan view, as Fig. 12b shows,
the mapping relationships between parameters in spa-
tial space (r1 , r2 , r3) and plan space (s, t) are derived
as
⎧
⎪⎨

⎪⎩

r1 = s

r2 =
√
3
2 t − s

2

r3 = 3 −
√
3
2 t − s

2

. (54)

The global transmission index (GTI) can also indi-
cate force/motion transmissibility [30–32]. Both the
force/motion transmission performance atlas of GTW
and GTI are derived by non-dimensional parameters
(s, t), as shown in Fig. 13. The blank area represents
the region where the GTW/GTI is extremely small or
there is no GTW/GTI. The optimal solution set should
be solved considering actual requirements.

The steps for the atlas of performance optimization
are as follows.

Step 1 Given the goals of optimization are GTW ≥
1.0 and GTI ≥ 0.78. The optimum region is the
intersection of corresponding atlases of GTW and
GTI, i.e., the blue area in Fig. 14.
Step 2 Choose a group of solution candidate from
the optimum region. Given the dimension error of
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Fig. 13 Force/motion transmission indices. a GTW. b GTI

0

0.5
1

2
1.5

2.5

3

0.5 1 1.5

t

1s r( )

2r

3r

0

1.5

3 0

1.5

3

Fig. 14 Optimum region

the real body, parameters chosen from boundary
region should be avoided. We can select 12 groups
of data points in the optimum region, and the non-
dimensional parameters can be obtained by Eq.
(54), as Table 4 lists.
Step 3 The purpose of our optimization is to find
the region of highly good performance and not
the largest region of relatively good performance.
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Table 4 Geometrical parameters and performance indices in the optimum region

No. s t r1 r2 r3 GTI GTW e1 (mm) e2 (mm) l (mm)

1 0.78 1.75 0.78 1.126 1.095 0.784 1.203 312 450.2 437.8

2 0.8 1.78 0.8 1.142 1.059 0.787 1.161 320 456.6 423.4

3 0.82 1.8 0.82 1.149 1.031 0.788 1.136 328 459.5 412.5

4 0.83 1.82 0.83 1.161 1.009 0.782 1.098 332 464.5 403.5

5 0.85 1.79 0.85 1.125 1.025 0.787 1.186 340 450.1 409.9

6 0.88 1.83 0.88 1.145 0.975 0.789 1.116 352 457.9 390.1

7 0.89 1.82 0.89 1.131 0.979 0.789 1.182 356 452.5 391.5

8 0.92 1.85 0.92 1.142 0.938 0.789 1.086 368 456.8 375.2

9 0.94 1.80 0.94 1.089 0.971 0.780 1.160 376 435.5 388.5

10 0.95 1.83 0.95 1.11 0.94 0.785 1.112 380 443.9 376.1

11 0.97 1.84 0.97 1.109 0.922 0.785 1.076 388 443.4 368.6

12 0.98 1.82 0.98 1.086 0.934 0.777 1.077 392 434.5 373.5

Fig. 15 LTI comparison

Thus GTI is the preferred factor and GTW the
secondary factor. Thus we firstly pick the groups
with the largest GTI and secondly select the largest
GTW in the picked groups. The data of the 7th
group can be regarded as optimal solution, i.e.,
r1 = 0.89 , r2 = 1.131 and r3 = 0.979.
Step 4 The final geometrical parameters are deter-
mined by optimal non-dimensional parameters and
normalized factor D. Considering occupied area,
we set D = 400mm, and the geometrical parame-
ters are shown in Table 4.

This method provides various solutions of geo-
metrical parameters. To determine the optimum solu-

tion, we should consider the performance require-
ments of the PM. Since the preferred factor is GTI
in this paper and the corresponding LTI can depict
the performance, we can appeal to LTI atlases to
examine the effect of optimization. From Fig. 15,
we can find contour line of 0.9 in the LTI atlases
after optimization, which verifies the validity of this
method.

After optimization, the PM has good motion/force
transmissibility in a relatively large collision-free space
and its working configurations are far from singularity,
which meets the demands of engineering requirements
in welding, milling and processing.
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11 Conclusions

Overall kinematic/dynamic analysis andoptimal design
of a 2-URR-RRU PM are presented. Mobility analy-
sis shows that the PM has two rotational DOFs and
one translation DOF, which has promising engineer-
ing potential. Analytical inverse and numerical for-
ward kinematic models are established. Next, forward
and inverse dynamic analysis equation is derived by
the Newton–Euler approach, and simulation results are
obtained for validation. Based on the Jacobian matrix,
it is shown that the PM only has inverse singulari-
ties and no forward or combined singularities. The
workspace is obtained while considering the practical
limits of links and joints. The results demonstrate that
the PM has a large workspace without singularities,
which is an advantage. Based on motion/force perfor-
mance indices, the optimal design of the 2-URR-RRU
PM is performed, where optimal dimensional param-
eters are found. It is shown that the PM has a good
motion/force transmisibility. This study is helpful to
the design and application of the 2-URR-RRU PM.
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