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Abstract In this paper, a nonlinear disturbance ob-
server-based backstepping finite-time sliding mode
control scheme for trajectory tracking of underwa-
ter vehicles subject to unknown system uncertain-
ties and time-varying external disturbances is pro-
posed. To reduce the influence of the uncertainties and
external disturbances, a nonlinear disturbance observer
is developed without any acceleration measurements
to identify the lumped disturbance term. Addition-
ally, the finite-time trajectory tracking controller is
designedby combining second-order slidingmode con-
trol and backstepping design techniquewith the nonlin-
ear disturbance observer. The finite-time convergence
of motion tracking errors and the stability of the over-
all closed-loop control system are guaranteed by the
Lyapunov approach. Besides, comprehensive simula-
tion studies on trajectory tracking control of underwater
vehicles are provided to demonstrate the effectiveness
and performance of the proposed control scheme.
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1 Introduction

Underwater vehicles are self-energizing and self-pro-
pelled intelligent equipments with autonomous con-
trollers and various sensors,where the efficient and reli-
able autonomous controllers are highly desired for dif-
ferent types of underwater missions. Thus, a great deal
of attentions have been paid to the accurate trajectory
tracking (TT) control of underwater vehicles, which
provides the fundamental technical support for vari-
ous dynamic and complex missions, mainly because of
the great practical significance for marine traffic safety.
Commonly in practical situation, underwater vehicles
are always coupled and highly nonlinear subject to
diverse external disturbances that adversely affect per-
formance, and the system parameters of underwater
vehicles may not be known exactly; therefore, the
design of TT controller of underwater vehicles is quite
challenging and difficult.

To achieve high-precision tracking performance,
a large variety of motion tracking control schemes
of underwater vehicles have been proposed in the
literatures for solving the TT control problem of
underwater vehicles, which includes adaptive con-
trol [1–3], backstepping design technique [4–6], slid-
ing mode control (SMC) [7–11], LMI-based con-
trol [12], fuzzy logic system [13–16], neural net-
work control [17–20] and fuzzy neural network [21–
25]. Among these methods, SMC has been shown
to be a potentially useful approach when applied to
a system subject to disturbances which satisfies the
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matched uncertainty condition. Moreover, SMC can
offer many good properties, such as insensitivity to
system uncertainties, disturbance rejection and fast
dynamic response. However, the SMC-based motion
controllers of underwater vehicles proposed in [7–11]
are designed based on an asymptotic stability anal-
ysis which implies that the system trajectories con-
verge to the equilibrium with infinite settling time.
Therefore, a faster convergence to the required ori-
entation in finite time is highly desired. Fortunately,
the finite-time stabilization of dynamic systems may
provide not only faster convergence but also better
disturbance attenuation. The terminal sliding mode
control (TSMC) [26,27] is a representative method
used to design a robust controller which can guaran-
tee a finite-time convergence to the origin. Another
advanced sliding mode, namely the second-order SMC
(SOSMC), which preserves the robustness ability of
SMC and also yields improved accuracy and perfor-
mance, has been paid attention in many literatures
[28–30]. Although SOSMC controller is less sensitive
to parameter uncertainties and external disturbances,
its robustness is normally obtained by a large switch-
ing gain which causes the undesired chattering phe-
nomenon. To alleviate above drawbacks, recently, the
backstepping design technique is combined with slid-
ing mode control to relax the matching condition at the
expense of a high feedback gain required for robustness
[31].

On the other hand, the system uncertainties and
external disturbance are always unknown and non-
linear; thus, it is necessary to employ some distur-
bance suppression or attenuation methods to achieve
the desired robust performance. Despite of abovemeth-
ods, an alternative emerged in recent years is the use
of so-called disturbance observers control (DOBC).
Roughly stated, the essence of the DOBC is to lump
all internal uncertainties and external unknown distur-
bances acting on the underwater vehicles into a sin-
gle term and then identify the unknown lumped term
with the disturbance observer. It is found that the dis-
turbance observers can provide fast, excellent tracking
performance and smooth control actions without the
use of large feedback gains such that the robustness of
controller can be improved [32–37]. A nonlinear dis-
turbance observer was proposed in [32] to handle non-
linear systems with disturbances, which is applied to
tracking control of pneumatic artificial muscle actua-
tor using dynamic surface control (DSC) scheme [33].

A new type of composite control scheme for the uncer-
tain structural systems was proposed in [34], which
combines the disturbance observer-based control and
the TSMC. Yang et al. [35] investigated a sliding mode
control for nonlinear systems with mismatched uncer-
tainties by the use of a disturbance observer. In the
design process of above disturbance observers, it is
assumed to vary slowly relative to the observer dynam-
ics, namely, the derivative of disturbance is approxi-
mately equal to zero. However, in practice, the exter-
nal disturbance usually varies in a complex way due
to the ocean currents and waves, and its change rate
is always bounded in the specific mission environ-
ment. Bu et al. [36] proposed a new nonlinear dis-
turbance observer (NDO) based on tracking differ-
entiator, which can be used to estimate many types
of uncertain disturbances, and can overcome the dis-
advantages of existing NDOs that need the priori
information concerning the upper and lower bounds of
the disturbance and its i th derivatives Lipschitz upper
bound. In [37], a novel NDO is constructed using a
new TD designed based on hyperbolic sine function
to estimate the model uncertainties and varying distur-
bances.

In this paper, a novel nonlinear disturbance observer-
based backstepping finite-time sliding mode control
(NDOB-BFTSMC) scheme is proposed for trajectory
tracking of underwater vehicles with system uncertain-
ties and external disturbances. In the proposed NDOB-
BFTSMC scheme, backstepping design technique and
the second-order sliding mode control are integrated to
preserve the advantages and alleviate the drawbacks of
eachmethod. Particularly, the finite-time stability of the
closed-loop control system is guaranteed by this way.
Under the framework of BFTSMC, to compensate the
unknown systemuncertainties and external disturbance
and further relax thematching condition of exactmodel
information, a nonlinear disturbance observer (NDOB)
is developed for online identifying the lumped distur-
bance term accurately. The main contributions of the
proposed control scheme are summarized as follows.

(1) A backstepping second-order sliding mode con-
trol framework is constructed for trajectory tracking
control of underwater vehicles. To relax the matching
condition at the expense of a larger switching gain of
SOSMC, the backstepping design technique is com-
bined with SOSMC such that a second-order sliding
surface is defined in backstepping procedures, and the
second-order sliding mode control law is designed to
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guarantee the finite-time stability of the overall control
system.

(2) Note that there exist unmodeled dynamics,
parameter variations and unknown external distur-
bances in the underwater vehicle systems, then these
uncertainties and disturbances are lumped into a sin-
gle disturbance term. To online identify the lumped
disturbance, a nonlinear disturbance observer is pro-
posed without any acceleration measurements, which
requires no knowledge of full dynamics such that fur-
ther relax the matching condition at the expense of a
larger switching gain on the basis of backstepping tech-
nique.

The remainder of this paper is organized as fol-
lows. The problem formulations and preliminaries are
described in Sect. 2. The design of nonlinear distur-
bance observer and the proposed NDOB-BFTSMC are
presented in Sect. 3. Moreover, the stability of the dis-
turbance observer and overall closed-loop control sys-
temare also addressed inSect. 3. The simulation studies
are given in Sect. 4. Finally, the conclusion is drawn in
Sect. 5.

2 Problem formulations and preliminaries

Consider the dynamics of an 5-DOF underwater vehi-
cles in following form [38,39]:

η̇ηη = JJJ (ηηη)vvv (1a)

MMMv̇vv +CCC(vvv)vvv + DDD(vvv)vvv + ggg(ηηη) = τττ + τττ ex (1b)

where ηηη = [x, y, z, θ, ψ]T is the positions and atti-
tudes vector, vvv = [u, v, w, q, r ]T is the linear and
angle velocities vector, MMM ∈ RRR

5×5 is the inertia
matrix, CCC ∈ RRR

5×5 is the Coriolis and centrifu-
gal matrix, DDD ∈ RRR

5×5 is the drag forces (grav-
ity) matrix, ggg ∈ RRR

5×1 is the restoring forces (buoy-
ancy) vector, τττ = [τ1, τ2, τ3, τ4, τ5]T is the con-
trol torques vector applied to the underwater vehi-
cles, τττ ex = [τex1, τex2, τex3, τex4, τex5]T is the time-
varying unknown external disturbances vector due to
ocean currents and waves, and JJJ (ηηη) is the rotation
matrix defined as

JJJ (ηηη) =

⎡
⎢⎢⎢⎢⎣

cosψ cos θ − sinψ cosψ sin θ 0 0
sinψ cos θ cosψ sinψ sin θ 0 0

− sin θ 0 cos θ 0 0
0 0 0 1 0
0 0 0 0 1

cos θ

⎤
⎥⎥⎥⎥⎦

(2)

Underwater vehicles have several inherent dynamic
properties, which are listed below and will be used for
designing the extend disturbance observer later.

Property 1 The inertia matrix MMM is symmetric pos-
itive definite and bounded, i.e., MMM = MMMT > 0,
�M0 ≤ ‖MMM‖ ≤ �M1 . By using body symmetry condi-
tions, i.e., xz−, yz− and xy-planes of symmetry, the
detailed expression of MMM is simplified as [39]

MMM = diag{m11,m22,m33,m44,m55} (3)

where �M0 and �M1 are unknown constants, m11 =
m−Xu̇,m22 = m−Yv̇ , m33 = m−Zẇ, m44 = Iy−Mq̇,
m55 = Iz − Nṙ . Here, m is the mass of the underwater
vehicle, Iy and Iz are the moments of inertia about
the pitch and yaw rotation, respectively, and X∗, Y∗,
Z∗, M∗ and N∗ are the corresponding hydrodynamic
derivatives.

Property 2 The matrix ṀMM −2CCC(vvv) is skew-symmetric
[39], i.e.,

[ṀMM − 2CCC(vvv)]T = −[ṀMM − 2CCC(vvv)]
⇒ ṀMM = CCC(vvv) +CCCT (vvv) (4)

it follows that

vvvT [ṀMM − 2CCC(vvv)]vvv ≡ 0, ∀vvv ∈ RRR
5×1 (5)

Here, the Coriolis and centrifugal matrix CCC(vvv) is
given by

CCC(vvv) =

⎡
⎢⎢⎢⎢⎣

0 0 0 c14 c15
0 0 0 0 c25
0 0 0 c34 0
c41 0 c43 0 0
c51 c52 0 0 0

⎤
⎥⎥⎥⎥⎦

(6)

where c14 = (m − Zẇ)w, c15 = −(m − Yv̇)v, c25 =
(m − Xu̇)u, c34 = −(m − Xu̇)u, c41 = −(m − Zẇ)w,
c43 = (m−Xu̇)u, c51 = (m−Yv̇)v, c52 = −(m−Xu̇)u.
Moreover, the drag force matrix and restoring force
vector are given by

DDD(vvv) = diag(d11, d22, d33, d44, d55) (7)

ggg(ηηη) = [g1, g2, g3, g4, g5]T (8)

where d11 = −Xu − X |u|u |u|, d22 = −Yv − Y|v|v|v|,
d33 = −Zw−Z|w|w|w|, d44 = −Mq−M|q|q |q|, d55 =
−Nr − N|r |r |r |, g1 = (P − B) sin θ , g2 = 0, g3 =
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−(P − B) cos θ , g4 = −zB B sin θ , g5 = 0. Here, P
and B are the gravity and the buoyancy of underwater
vehicles with center rrr P and rrr B , respectively.

Now, by considering the additive uncertainties �∗∗∗,
the parameters in (1b) can be defined asCCC = CCC0+�CCC ,
DDD = DDD0 + �DDD, ggg = ggg0 + �ggg. Then, the effect of
unknown parameter uncertainties and external distur-
bances can be lumped into a disturbance vector τττ d .
Therefore, the underwater vehicles dynamics (1) is
rewritten as

η̇ηη = JJJ (ηηη)vvv (9a)

v̇vv = FFF(vvv,ηηη) +GGG(τττ + τττ d) (9b)

where FFF(vvv,ηηη) = −MMM−1(CCC0(vvv)vvv + DDD0(vvv)vvv + ggg0(ηηη)),
GGG = MMM−1, τττ d = τττ ex − �CCC(vvv)vvv − �DDD(vvv) − �ggg(ηηη).

Lemma 1 [40] Suppose that V (xxx) is a smooth positive
definite function (defined on U ⊂ R

n) and V̇ (xxx) +
�V ς (xxx) is negative semi-definite on U ⊂ R

n for ς ∈
(0, 1) and � ∈ R

+, then there exists an area U0 ⊂ R
n

such that any V (xxx) which starts from U0 ⊂ R
n can

reach V (xxx) ≡ 0 in finite time. Moreover, if tr is the
time required to reach V (xxx) ≡ 0 then

tr ≤ V 1−ς (xxx0)

�(1 − ς)
(10)

where V (xxx0) is the initial value of V (xxx).

Lemma 2 [41] For ν ∈ R
+ and ε > 0 it holds that

0 < |v| − v tanh(εv) ≤ 0.2785

ε
(11)

The control objective of this paper is to design
a nonlinear disturbance observer-based backstepping
second-order slidingmode control scheme such that all
signals in the overall closed-loop system are bounded,
and the trajectory states can track the given refer-
ence trajectories in the presence of time-varying distur-
bances and system uncertainties. Moreover, the track-
ing errors and sliding surface converge to a invariant
region in finite time.

3 Nonlinear disturbances observer-based
backstepping finite-time sliding mode control

In this section, a nonlinear disturbance observer-
based backstepping finite-time sliding mode con-
troller (NDOB-BFTSMC) will be developed, where

the nonlinear disturbance observer is proposed with-
out any acceleration measurement to online identify
the unknown time-varying disturbances, and then the
control bandwidth and tracking precision are improved.

3.1 Nonlinear disturbance observer design

Acceleration measurements are usually available for
underwater vehicles system, so the disturbances ob-
server can take following form

˙̂τττ d = −LLLτ̂ττ d + LLL(MMMv̇vv + NNN (ηηη,vvv) − τττ) (12)

where

NNN (ηηη,vvv) = CCC0vvv + DDD0vvv + ggg0 (13)

and LLL = diag(l1, . . . , l5) is the observer gain matrix,
which is positive definite, i.e., li > 0, i = 1, . . . , 5.

Note that the precision of above observer relies
on that of acceleration measurements; however, high-
accuracy accelerometers are not available for many
underwater vehicles; thus, a nonlinear disturbance
observer without any acceleration measurement is
highly desired. Now, we introduce an auxiliary vari-
able given as

εεε = τ̂ττ d − ppp(vvv) (14)

where the auxiliary vector ppp(vvv) can be determined from
the observer gain matrix as follows

d

dt
ppp(vvv) = LLLMMMv̇vv (15)

By taking the time derivative of (14) together with
(12) yields

ε̇εε = ˙̂τττ d − ṗpp(v̇vv) = ˙̂τττ d − LLLMMMv̇vv

= −LLL(εεε + ppp) + LLL(MMMv̇vv + NNN (ηηη,vvv) − τττ − MMMv̇vv)

= −LLLεεε + LLL(NNN (ηηη,vvv) − τττ − ppp) (16)

Combining (14)–(16) together, the nonlinear distur-
bance observer takes following form

ε̇εε = −LLLεεε + LLL(NNN (ηηη,vvv) − τττ − ppp)

ṗpp = LLLMMMv̇vv

τ̂ττ d = εεε + ppp(vvv) (17)
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From (15), note that the proposed nonlinear disturbance
observer designed in (15) has no requirement of accel-
eration measurement due to cancellation of the term
MMMv̇vv. Then, with (9) and (12)–(14), the error dynamics
of observation ˙̃τττ d can be obtained as

˙̃τττ d = τ̇ττ d − ˙̂τττ d = τ̇ττ d − ε̇εε − d

dt
ppp(vvv)

= τ̇ττ d + LLL(τ̂ττ d − ppp) − LLL(τττ d − MMMv̇vv − ppp) − LLLMMMv̇vv

= τ̇ττ d − LLLτ̃ττ d (18)

The following theorem addresses the case when the
underwater vehicles are subject to complex distur-
bances with bounded change rate.

Theorem 1 Consider the underwater vehicles subject
to lumped disturbances described by (9), the distur-
bance observer is designed as (15) with the observa-
tion gainmatrix LLL and the auxiliary vector ppp(vvv). Under
the condition that the change rate of the lumped distur-
bance is bounded, i.e., there exists an unknown constant
�d > 0 such that ‖τ̇ττ d‖ ≤ �d for all t > 0. The distur-
bance tracking error τ̃ττ d is globally uniformly ultimately
bounded (GUUB) and can be made arbitrarily small.

Proof Consider the following Lyapunov candidate
function:

V0(τ̃ττ d) = 1

2
τ̃ττ T
d QQQτ̃ττ d (19)

where QQQ is a positive definite matrix satisfying ‖QQQ‖ ≤
�Q . From (16), taking the derivative of V0, it is
obtained that

V̇0 = τ̃ττ T
d QQQ ˙̃τττ d = τ̃ττ T

d QQQ(τ̇ττ d − LLLτ̃ττ d)

= −QQQLLL‖τ̃ττ d‖2 + τ̃ττ T
d QQQτ̇ττ d (20)

Since ‖τ̇d‖ ≤ �d , one can obtain following inequality

τ̃ττ T
d QQQτ̇ττ d ≤ ‖τ̃ττ d‖2 + ‖QQQ‖2‖τ̇ττ d‖2 ≤ ‖τ̃ττ d‖2 + � 2

Q� 2
d

(21)

By the inequality (19) and (41), it is observed that

V̇0 ≤ − (λmin(LLL) − 1)‖τ̃ττ d‖2 + � 2
Q� 2

d

≤ − α0V0 + β0 (22)

where α0 = λmin(LLL) − 1, β0 = � 2
Q� 2

d . From (20), it
can be seen that

0 ≤ V0(t) ≤ β0

α0
+

(
V0(0) − β0

α0

)
exp(−α0t) (23)

According to the uniform ultimate boundedness theo-
rems [51] and (21), it implies that V0(t) and the distur-
bance tracking error τ̃ττ d are GUUB, namely,

‖τ̃ττ d‖2 ≤ 2β0

α0
+ 2

(
V0(0) − β0

α0

)
exp(−α0t)

⇒ ‖τ̃ττ d‖ ≤
√
2β0

α0
+ 2

(
V0(0) − β0

α0

)
exp(−α0t)

(24)

Thus, the convergence rate of the disturbance tracking
error is α0, and there exists a time constant T0 > 0, for
any μ0 >

√
2β0/α0 such that ‖τ̃ττ d‖ ≤ μ0, where the

boundμ0 can bemade arbitrarily small sinceβ0/α0 can
be rendered arbitrarily small if parameter LLL is selected
appropriately, namely, a large enough LLL can guarantee
a arbitrarily small disturbance tracking error even in the
case of fast-varying disturbance. From (18) and (24),
it is concluded that ˙̃τττ d is bounded, i.e., ‖ ˙̃τττ d‖ ≤ �c,
where�c > 0 is an unknown constant. This concludes
the proof. ��

3.2 Design of NDOB-BFTSMC

Define the tracking error eee1 = [e11, . . . , e15]T as

eee1(t) = ηηη(t) − ηηηr (t) (25)

where ηηηr (t) is the reference trajectory. From (9), let vvv
be a virtual input given by

vvv = JJJ T
(
η̇ηηr − φφφ(κκκη,eee1)

) = ααα(eee1) (26)

where φφφ(κκκη,eee1) = κκκη tanh
( eee1

μη

)
. Here, κκκη = diag

(κη1, . . . , κη5) > 0, μη is a small positive scalar
and tanh

( eee1
μη

) = [tanh ( e11
μη

)
tanh

( e12
μη

)
tanh

( e13
μη

)

tanh
( e14

μη

)
tanh

( e15
μη

)]T .
Define the tracking error eee2 = [e21, . . . , e25]T as

eee2 = vvv − ααα. Then, (9) can be rewritten as follows

{
ėee1 = JJJeee2 − κκκη tanh

( eee1
μη

)

ėee2 = FFF +GGG(τττ + τττ d) − α̇αα(eee1)
(27)
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where φ̇φφ(eee1) in α̇αα(eee1) is determined by

φ̇φφ(eee1) = μ−1
η diag

(
κηi sech

2
(
e1i
μη

))
ėee1 (28)

Then, select the tracking errorsss1 = eee2 and its deriva-
tive sss2 = ėee2 as the sliding variables, such that the slid-
ing surface σσσ can be defined in following form

σσσ = sss2 + λλλsss1 + γγγ

∫ t

0
(sss2 + λλλsss1)dτ (29)

whereλλλ = diag(λ1, . . . , λ5) andγγγ = diag(γ1, . . . , γ5)
are positive definite matrices.

Therefore, the NDOB-BFTSMC law is designed to
drive the system trajectory onto the sliding surface as

τττ = GGG−1(−FFF + α̇αα + τττ s) − τ̂ττ d (30)

where τττ s is determined as

τ̇ττ s = −λλλsss2 − ρρρsgn(σσσ) − γγγ (sss2 + λλλsss1) − KσKσKσ (31)

Here,ρρρ = diag(ρ1, . . . , ρ5) andKKK = diag(k1, . . . , k5)
are positive definite matrices.

From (27), and according to the above definition of
sliding variables, the derivatives of sss1 and sss2 can be
obtained as

{
ṡss1 = sss2
ṡss2 = −λλλsss2 − ρρρsgn(σσσ) − γγγ (sss2 + λλλsss1) − KKKσσσ +GGG ˙̃τττ d

(32)

and then the time derivative of the sliding surface is
obtained as

σ̇σσ = −ρρρsgn(σσσ) − KKKσσσ +GGG ˙̃τττ d (33)

Theorem 2 Consider the system dynamics in (9), the
virtual inputααα in (26) and the control law τττ in (30) and
(31), in finite time, the tracking errors eee1 and eee2 and
the sliding surface σσσ of the underwater vehicle system
converge to the region

‖χχχ‖ ≤ �

φ
(34)

where χχχ = [ eeeT1√
2

σσσ T√
2
]T , � = 1.9325μη and φ =

min(
√
2κη,

√
2(ρ − �c)) with κη = min(κηi ) and

ρ = min(ρi ) (i = 1, . . . , 5).

Proof Substituting vvv defined in (26) into the first equa-
tion of (27), one can obtain

ėee1 = −κκκη tanh
( eee1
μη

)
(35)

Consider the Lyapunov candidate function as

V1 = 1

2
eeeT1 eee1 = 1

2

5∑
i=1

e21i (36)

Then from (35), differentiating (36)with respect to time
as follows

V̇1 = eeeT1 ėee1

= −eeeT1 κκκη tanh
( eee1
μη

)

= −
5∑

i=1

κηi e1i tanh
(e1i
μη

)
(37)

According to Lemma 2, it is obtained that 0 < |e1i | ≤
e1i tanh(

e1i
μη

) + 0.2785μη such that (37) can be rear-
ranged as

V̇1 ≤ −
5∑

i=1

κηi
(|e1i | − 0.2785μη

)

≤ −
5∑

i=1

κηi |e1i | + 0.2785
5∑

i=1

μη

≤ −√
2κη‖eee1‖ + � (38)

where κη = min(κηi ), i = 1, . . . , 5, and � =
1.3925μη.

From Lemma 1, if ‖eee1‖ > �√
2κη

, then the finite-

time stability is still guaranteed, namely, when the state
moves outside the region

‖eee1‖ ≤ �√
2κη

(39)

V̇1 < 0 is guaranteed. Hence, the states e1i of equilib-
rium of the differential equation ė1i = κηi tanh

( e1i
μη

)
will converge to the region (38) in finite time.

Furthermore, consider following Lyapunov candi-
date function

V2 = χχχTχχχ = V1 + 1

2
σσσ Tσσσ (40)
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From (33), the time derivative of V2 is obtained as

V̇2 = V̇1 + σσσ T σ̇σσ

= V̇1 + σσσ T ( − ρρρsgn(σσσ) − KKKσσσ +GGG ˙̃τττ d
)

≤ −
5∑

i=1

κηi |e1i | −
5∑

i=1

ρi |σi | + 0.2785
5∑

i=1

μη

+
5∑

i=1

|σi ||Gi || ˙̃τdi | (41)

From Theorem 1 and Property 1, it is obtained that
‖ ˙̃τττ d‖ ≤ �c and ‖GGG‖ ≤ �−1

M0
. Thus, (40) can be rewrit-

ten as

V̇2 ≤ − κη

5∑
i=1

|e1i |−ρ

5∑
i=1

|σi | + �−1
M0

5∑
i=1

�c|σi |+�

≤ − κη

5∑
i=1

|e1i | − (
ρ − �c

) 5∑
i=1

|σi | + �

≤ − min
(√

2κη,
√
2(ρ − �c)

)
(

5∑
i=1

( |σi |√
2

)2

+
5∑

i=1

( |e1i |√
2

)2
)1/2

+ �

= − φ‖χχχ‖ + � (42)

where φ = min
(√

2κη,
√
2(ρ − �c)

)
. Note that V̇2 <

0 if ‖χχχ‖ > �/φ, namely, the decrease of V2 finally
forces the trajectories of the closed-loop system into
‖χχχ‖ > �/φ. Thus, the trajectories of the closed-loop
system are ultimately bounded as

lim
t→∞χχχ ∈

(
‖χχχ‖ >

�

φ

)
(43)

which is a small set containing the origin of the closed-
loop system. Therefore, fromLemma 1, the stateχχχ will
converge to the region

‖χχχ‖ ≤ �

φ
(44)

in finite time. This implies that σi = 0 (i =
1, 2, . . . , 5), and it follows that si and ṡi are both quite
close to zero. This completes the proof. ��

It is worth noting that the accuracy of tracking errors
and the convergence time are determined by the values
of the parameters κκκη, ρρρ and μη, which can be made

arbitrarily small by increasing the value of κκκη and ρρρ

and decreasing the value of μη, namely, large enough
κκκη and ρρρ as well small enough μη can make the track-
ing errors arbitrarily small such that the convergence
performance is improved.

4 Simulation studies

In order to verify the effectiveness and superiority of the
proposed NDOB-BFTSMC scheme, several simula-
tions are conduct on the underwater vehicle developed
by the research group at Tokyo University of Marine
Science and Technology [42]. The nominal parameter
values of (1) are employed as follows: the mass m =
390kg; the moments of inertia Iy = 305.67kgm2 and
Iz = 305.67kgm2; the derivatives of the added mass
Xu̇ = −49.12,Yv̇ = −311.52, Zẇ = −311.52 and
Nr = −200; the coefficients of the linear skin friction
Xu = −20,Yv = −200, Zw = −200, Mq = −200
and Nr = −200; the coefficients of the quadratic drag
X |u|u = −30,Y|v|v = −300, Z|w|w = −300, M|q|q =
−300 and N|r |r = −300; the center of the underwa-
ter vehicle xB = 0, yB = 0, zB = −0.15. More-
over, the actual plant model in (9) is constructed under
the following conditions: for parameter uncertainties,
�CCC = −0.2CCC , �DDD = 0.2DDD, �ggg = 0.1ggg; for external
disturbances τττ ex (t), the complex environment involv-
ing ocean currents and waves are governed by

τττ ex (t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 + 5 sin(4t − π/3)

2 + 3 cos(2t − π/6)

4 + 7 sin(3t − π/4)

5 + 2 cos(0.5t − π/4)

2 + 2 sin(0.5t + π/6)

⎤
⎥⎥⎥⎥⎥⎥⎦

(45)

For achieving the control objective of high-accuracy
tracking, the reference trajectory ηηηr governed by

ηηηr (t) =

⎡
⎢⎢⎢⎢⎣

sin(0.02t)
cos(0.01t)

sin(0.01t) + 2 cos(0.01t)
−0.1 cos(0.01t) + 0.2 sin(0.01t)
0.1 cos(0.01t) − 0.1 sin(0.01t)

⎤
⎥⎥⎥⎥⎦

(46)

Moreover, the initial conditions are set as follows:
ηηη(0) = [0(m), 1(m), 1.5(m), 0(rad), 0(rad)]T , and
the design parameters associated with the BFTSMC
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and NDOB are selected as follows: λλλ = diag(3, 3, 3,
3, 3), γγγ = diag(30, 30, 30, 30, 30), KKK = diag(30, 30,
30, 30, 30),κκκη = diag(2, 2, 2, 1.1, 1.1),ρρρ = diag(5, 5,
5, 5, 5), LLL = diag(80, 80, 80, 80, 80), μη = 0.05.

The simulation results of reference and actual tra-
jectories of tracking underwater vehicles are shown in
Figs. 1 and 2, including the time history of the refer-
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Table 1 Performance comparison

Performance comparison SMC BFTSMC AFSMC NDOB-BFTSMC
Transient response Fair Good Fair Excellent
Steady-state error Fair Good Fair Excellent

IAE
e1,1 6.17896 1.81943 47.15735 0.54927
e1,2 0.08343 0.42633 19.68233 0.10454
e1,3 61.87908 15.16351 121.03432 7.2905
e1,4 0.24909 3.76569 15.34152 0.68086
e1,5 0.46998 3.98120 11.85191 0.71812

ISE
e1,1 0.35888 0.02260 4.52796 0.00641
e1,2 0.00003 0.00035 0.81758 0.00003
e1,3 16.81229 5.27161 31.73684 2.59959
e1,4 0.00140 0.17486 0.76993 0.04092
e1,5 0.00338 0.19674 0.57654 0.04398

RMSE
e1,1 0.02389 0.00599 0.08484 0.00319
e1,2 0.00022 0.00075 0.03605 0.00022
e1,3 0.16349 0.09155 0.22462 0.06429
e1,4 0.00149 0.01667 0.03499 0.00807
e1,5 0.00232 0.01769 0.03028 0.00836

Computational time (ms) 45.74 43.15 129.37 48.29
Lines of code 23 26 56 31

ence and actual trajectories of underwater vehicles in
3D and separate-dimension presentations, from which
one can clearly observe that underwater vehicles are
able to track the reference trajectory with high accu-
racy using the proposedNDOB-BFTSMC scheme, and
a remarkable transient response of trajectory tracking
can be obtained by the proposed control laws. The out-
put of disturbance observer, namely, the estimate of
the lumped disturbance, and the corresponding obser-
vation error of unknown lumped disturbance is shown
in Figs. 3 and 4, respectively, which show that a remark-
able estimation of the unknown lumped disturbance is
achieved by using NDOB-BFTSMC. Figures5, 6 and
7 show the responses of the sliding surface and the
sliding variables, from which one can observe that the
sliding surface is forced into a region of origin, namely,
the system trajectories can be forced into the region of
sliding surface σσσ , and the validity is demonstrated by
the convergence of sliding variables sss1 and sss2 in Figs. 6
and 7, respectively.

To verify the superiority of the proposed NDOB-
BFTSMC scheme in terms of tracking accuracy, the
comparisons with other schemes, i.e., SMC, BFTSMC,
AFSMC, on the tracking erroreee1 are exhibited in Fig. 8,
from which one can observe higher initial errors in
the first 20 runs for the NDOB-BFTSMC scheme

due to the high frequency disturbances, and then the
robustness of the controller is enhanced along with
the finite-time convergence stability. The responses of
tracking errors can immediately reflect the transient
responses of each control schemes such that the pro-
posed control scheme can obtain better transient and
steady-state responses by comparing with other control
schemes inFig. 8.Moreover, the comprehensive perfor-
mance comparisons for tracking errors of the position
and attitude of underwater vehicles are summarized
in Table1, where the integral time square error (IAE),
i.e., IAE= ∫ t

0 |e(τ )|dτ , the integral square error (ISE),
i.e., ISE = ∫ t

0 e
2(τ )dτ and the root-mean-square error

(RMSE), i.e., RMSE=
(
1
t

∫ t
0 e

2(τ )dτ
)1/2

, are utilized

to assess the transient and steady-state performance in
trajectory tracking of underwater vehicles. For com-
putational time of each scheme, we run each scheme
ten times and take the average value as the computa-
tion time of the corresponding scheme. According to
[43], theoretically, the computational time of the pro-
posed NDOB-BFTSMC is higher than that of SMC
and BFTSMC since there exists more online parame-
ters in the proposed scheme. The theoretical analysis
is demonstrated by computational time in Table1, but
there is only slight gaps with other schemes which is
acceptable for practical application. Furthermore, the
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Fig. 9 Comparisons on control inputs τττ among different
schemes

lines of code are used to assess the program complex-
ity of each control scheme since the program com-
plexity is an important fact for controller design in
practice. From Table1, it can be seen that the lines
of code for the proposed NDOB-BFTSMC are larger
than these of SMC and BFTSMC, but only slightly. In
addition, the control inputs are shown in Fig. 9, from
which one can see that the control inputs of the pro-
posed NDOB-BFTSMC scheme aremuch smaller than
these of BFTSMC and the chattering phenomenon is
suppressed, which demonstrates that the effectiveness
of the proposed NDO. From above simulation results,
it is evident that the NDOB-BFTSMC scheme can pro-
vide improved robust performance with regard to sys-
tem uncertainties and external disturbances.

5 Conclusion

In this paper, a novel backstepping finite-time slid-
ing mode control scheme using nonlinear disturbance
observer for trajectory tracking of the underwater vehi-
cle system which suffers from system uncertainties
and external disturbances. A robust output feedback

control framework has been constructed by integrating
backstepping design technique into the second-order
sliding mode control such that the finite-time stabil-
ity can be guaranteed. Under the control framework,
by combining the system uncertainties and external
disturbances into a single disturbance term, a nonlin-
ear disturbance observer is employed to online iden-
tify the unknown lumped disturbance term. The stabil-
ity of the overall closed-loop control system and the
boundedness of the signals have been proved using the
Lyapunov stability theorem, and the position and atti-
tude tracking errors can be arbitrarily small by adjust-
ing the designed parameters. From the comprehensive
simulation results, the effectiveness and superiority of
the proposed NDOB-BFTSMC scheme are indicated,
such that the robust finite-time tracking performance
of underwater vehicle systems with high-accuracy and
rapid transient responses is obtained.
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