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Abstract This paper describes an efficient method to
predict the nonlinear steady-state response of a com-
plex structure with multi-scattered friction contacts.
The contact friction force is equivalent to additional
stiffness and damping based on optimal approximation
theory, and as a consequence, the computation is sim-
plified greatly by the linearization for a nonlinear sys-
tem. In order to obtain accurate pressure distribution
on the contact interfaces, the dynamic contact normal
pressure is obtained by the equivalent static analysis
which is validated for most engineering cases. Consid-
ering the complex procedure to determine the transfor-
mation between two different contact states, the dif-
ferential forms of friction force are given to solve the
tangential force accurately under the complex move-
ment of interfaces. The approaches developed in this
paper are particularly suitable to solve the dynamic
response of large-scale structures with local contact
nonlinearities. The entire procedure to calculate the
steady-state response of a finite element model with
a large number of degrees of freedom is demonstrated
taking the blades with underplatform dampers as an
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example. The method is proved to be accurate and effi-
cient; in particular, it does not suffer convergence prob-
lem in the allowable range of precision error, which
exhibits remarkable potential engineering application
values.

Keywords Dry friction · Equivalent stiffness and
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dynamics

1 Introduction

Compared to linear systems which are currently well
described by finite element method (FEM), the pre-
diction for the nonlinear dynamic response of struc-
tures with contact interfaces [1] is a much more diffi-
cult issue, in particular for the complex structures with
several interfaces, owning to complex and non-smooth
mathematic descriptions of the contact behavior at the
interfaces related the non-penetration condition and the
constitutive equations to describe the friction [2]. A
large number of dry frictionmodels have been proposed
to obtain complicated motion modality and to describe
the nonlinear behavior due to contact and friction [3,4];
however, these methods are still difficult to be used to
analyze actual structures with contact and friction [5]
for most cases because of the complex contact states of
interfaces and the large number of degrees of freedom
(DOFs).
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In order to describe the mechanical behavior at con-
tact surface, the node-to-node contact elements [6] are
used in contact dynamic calculation, so that the relation
between contact force and state of motion of the system
can be clearly expressed. For the sake of simplification
of complex contact models, the lumped parameter sys-
tem with each contact surface reduced to one contact
element [6,7] is often used to study the properties of
structures, and the complex nonlinear phenomenon can
be observed due to dry friction. However, the distrib-
ution of contact force, to a great extent, may affect
the dynamic performance of the systems. As a result,
multi-contact elements are presented to better simulate
the contact surfaces [8,9].

When contact elements are used for a complex sys-
tem composed of large amount of DOFs, it is unprac-
tical to acquire the steady-state solution by direct time
integration (DTI) in time domain, on account of the
unbearable amount of calculation. Therefore, the har-
monic balance method (HBM), as an approximate but
highly efficient optional solution method in frequency
domain, is widely used in the dynamical simulation for
systems with friction contacts [10,11]. In steady-state
dynamic response calculation, the transformation from
nonlinear to linear system can greatly reduce compu-
tational costs, by making the contact force equivalent
to additional linear constraints in terms of the averag-
ing additional stiffness and damping. The additional
stiffness and damping can be calculated by employed
Fourier series expansion to divide the induced periodic
friction force into the combination of displacement and
velocity [12].

In the present paper, the nonlinear contact force is
substituted by additional linear stiffness and damp-
ing based on optimal approximation theory; conse-
quently, the steady-state response of the system can
be solved by linearization of the nonlinear differen-
tial equation using the multi-harmonic balance method
(MHBM). In complex mechanical systems, the differ-
ential forms of friction force described by relative dis-
placement and time are derived to calculate the tan-
gential force with great precision by integration. Con-
sidering the complexity of surface-to-surface contact,
the quasi-static state condition is given to calculate
the normal pressure distribution in the dynamic cal-
culation. These methods are applied to calculate the
dynamic response of amass on a vibrational foundation
and to predict the blade vibration with under-platform
dampers.

2 Governing equations of a system with contact
surfaces

2.1 Governing equations

The dynamic of a spatially discrete mechanical system
with contact surfaces is governed by a second-order
ordinary differential equation,

Mü(t) + Cu̇(t) + Ku(t) = F(t) + Fc(t, u(t), u̇(t))

(1)

Herein, M,C and K are the matrices for the mass, the
linear viscous damping and the stiffness, respectively.
Fc(t) and F(t) are the vectors for the external force and
the contact force acting on the contact interface. u(t) is
the vector of generalized displacements. In the case of
periodical external excitation, the steady-state solution
u(t) and external force can be expressed in the form of
a truncated series of harmonic terms,

F(t) = f0 + Re

(
k=n∑
k=1

f (ωk)e
j (ωk t+φ f k )

)
(2)

u(t) = q0 + Re

(
k=n∑
k=1

q(ωk)e
j (ωk t+φuk )

)
(3)

where f0 and q0 are the vectors for the static com-
ponents of the external force and the displacement,
respectively; ωk is the main component of circular fre-
quencies; and φ f k and f (ωk) are the phase and ampli-
tude at the frequency ωk for the external force. Sim-
ilarly, φuk and q(ωk) are the phase and amplitude of
generalized coordinates at frequency ωk for the dis-
placement.

For a system with stable periodic vibration, all the
excitation force applied to the system must be period-
ical. Accordingly, the contact forces can be expressed
as a function of u(t) and u̇(t) in a whole stable vibra-
tion cycle.Without loss of generality, nonlinear contact
force can be represented as an approximately linear
combination of u(t) and u̇(t).

Fc(u(t), u̇(t)) = Kad(t)u(t) + Cad(t)u̇(t) + Fc0 (4)

where Fc0 is the constant part of the contact force
and Kad(t) and Cad(t) are the time-varying additional
equivalent stiffness and damping of the normal pressure
and friction acting on the contact surface, respectively.
By inserting Eq. (4) into (1), the equivalent form of the
nonlinear differential equation is obtained.
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Mü(t) + (C − Cad(t))u̇(t) + (K − Kad(t))u(t)

= F(t) + Fc0 (5)

here by substituting external force F(t) using Eq. (2)
and generalized displacements u(t) using Eq. (3), the
set of nonlinear differential balance Eq. (5) is trans-
formed into a set of nonlinear algebraic equations.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(K − Kad)q0 = f0 + Fc0[−ω2
k M + iωk

(
C − C ′

ad(q, ωk)
)

+ (
K − K ′

ad(q, ωk)
)]
q(ωk)e jφuk = f (ωk)e jφ f k

with k = 1, . . . , n

(6)

Supposing that the additional equivalent stiffness
Kad(t) and the damping Cad(t) show a weak correla-
tion with time t , the average additional stiffness and
damping can be used in Eq. (6) by substituting the
time-varying additional equivalent stiffness and damp-
ing. And as a consequence, we obtain the approximate
linearization of the nonlinear algebraic Eq. (6), which
makes it more efficient and convenient to solve these
equations. In most cases, the approximate solution is
more efficient andwith sufficient accuracy for practical
applications.

2.2 The optimal approximation of contact force

For most of the discrete mechanical structures related
to finite element method, there are only a small part
of nodes involved in the contact surface if compared
with the whole structure. Therefore, it is not difficult
to get the contact force for a given displacement of
the contacted nodes. Then, the time-varying additional
equivalent stiffness Kad(t) and damping Cad(t) should
be calculated to solve the nonlinear algebraic Eq. (6).
On condition that the average additional stiffness and
damping are used to approximately express the contact
force,Eq. (4) canbe rewritten as the following equation,

Fc(u(t), u̇(t)) ≈ K 0
adu(t) + C0

adu̇(t) + Fc0 (7)

where K 0
ad and C

0
ad are the average additional stiffness

and damping, whose values are constant. As we can see
from Eq. (7), the solution of K 0

ad and C
0
ad can be trans-

formed into the solution of combinatorial coefficient of
u(t) and u̇(t) which makes the right-hand side of the
equation becomes the best approximation of the contact
force. At present, the most common estimation method
is least-squares function approximation, and the idea

behind least-square approach is to minimize the dif-
ference between the original function and the approx-
imation. The difference can be measured by the error
function over the interval [0 T ], which is defined by:

∏
(t) =

T∫
0

(
Fc(t) − K 0

adu(t) − C0
adu̇(t) − Fc0

)2
dt

(8)

where T is the period of vibration, which satisfies the
condition u(t) = u(t + T ) and Fc(t) = Fc(t + T ).
u(t) and u̇(t) are mutually orthogonal, which means
they satisfy Eq. (9).
T∫

0

u(t)u̇(t)dt =
T∫

0

u(t)du(t) = 1

2
u(t)2|T0 = 0 (9)

The condition under which integral function
∏

(t)
reaches its minimum value is that the first-order partial
derivative of the function is zero, so we can derive,
∂

∏
(t)

∂Fc0
= 0,

∂
∏

(t)

∂K 0
ad

= 0,
∂

∏
(t)

∂C0
ad

= 0 (10)

By inserting Eq. (8) into (10), we obtain the solu-
tion of the averaging additional stiffness and damping,
through solving the equation group (11).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fc0 =
T∫
0
F(t)dt

T∫
0
u2(t)dt−

T∫
0
u(t)dt

T∫
0
u(t)F(t)dt

T
T∫
0
u2(t)dt−

(
T∫
0
u(t)dt

)2

K 0
ad =

T∫
0
F(t)dt

T∫
0
u(t)dt−T

T∫
0
u(t)F(t)dt

(
T∫
0
u(t)dt

)2

−T
T∫
0
u2(t)dt

C0
ad =

T∫
0
u̇(t)F(t)dt

T∫
0
u̇2(t)dt

(11)

The work WF done by the nonlinear force F(t) and
its approximation in a periodic vibration can be calcu-
lated by Eqs. (12) and (13), respectively,

WF =
T∫

0

F(t)du(t) =
T∫

0

F(t)u̇(t)dt (12)

WFp =
T∫

0

(
K 0
adu(t) + C0

adu̇(t) + Fc0
)
du(t)

= C0
ad

T∫
0

u̇2(t)dt =
T∫

0

F(t)u̇(t)dt = WF (13)
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Fig. 1 An example of the original curve and its fitting curve a hysteresis loops and b in time domain

It can be concluded that thework done by the nonlin-
ear force is equal to the work done by its approximation
force in Eqs. (12) and (13). Without loss of generality,
the nonlinear force F(t) and the displacement u(t) can
be represented as Fourier series.⎧⎪⎪⎨
⎪⎪⎩

Fc(t) = f0 +
n∑

k=1
( fsk sin(kωt) + fck cos(kωt))

u(t) =
n∑

k=1
(ak sin(kωt) + bk cos(kωt))

(14)

whereω is the angular velocity, and the period of vibra-
tion T can be expressed as 2π/ω. f0 is the static compo-
nent of the nonlinear force; fsk, fck and ak, bk are the
harmonic components of Fc(t) and u(t), respectively.
The solution of the averaging additional stiffness and
damping can be calculated by inserting Eq. (14) into
(11), so we can derive,

Fc0 = f0 (15)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K 0
ad =

T∫
0
u(t)F(t)dt

T∫
0
u2(t)dt

=
∑n

k=1 (ak fsk+bk fck)∑n
k=1

(
a2k+b2k

)

C0
ad =

T∫
0
u̇(t)F(t)dt

T∫
0
u̇2(t)dt

=
∑n

k=1 (ak fck−bk fsk)∑n
k=1 kω

(
a2k+b2k

)
(16)

As exhibited by Eq. (16), the averaging additional
stiffness is the equivalent average value of each har-
monic component of stiffness, which also goes for the
additional damping. In the case that only the first har-
monic component of the displacement is reserved, we
will obtain the same expressions for the additional stiff-
ness and damping which are given in Ref. [12].

An example of two-slope hysteresis curve and its
fitting curve are shown in Fig. 1a, and the fitting curve
is calculated using Eq. (11) in time domain. As shown
in Fig. 1a, b, the fitting curve does not guarantee the
force to be equal to its original value at every point, but
the minimum of square error is achieved between the
original data and fitting data in one cycle of oscillation.

3 Contact modeling

3.1 Node-to-node contact element

In order to derive the expression of contact forces
Fc(u(t), u̇(t)) in Eq. (5) acting on the contact surfaces,
the node-to-node contact element [12–14] (Fig. 2) is
widely used to model contact force. Normal con-
tact stiffness kn is defined to establish a relationship
between normal force and relative displacement in the
normal direction on the contact surface; then, expres-
sions for normal force can be derived in the following
form,

N =
{
kn(z2 − z1) = kngn for contact
0 for separation

(17)

Herein, z1 and z2 are the normal displacements for the
two contact nodes, respectively. Thus, gn defines the
magnitude of penetration of one body into the other at
the contact node.

In order to describe the dependence of friction force
and tangential relative displacement and velocity on the
contact interface, a series of frictionalmodels are devel-
oped in the last few decades. Coulomb friction model
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Fig. 2 Node-to-node contact element

f

g t

N
N

Fig. 3 Two-slope hysteresis friction model

[15], Dahl model [16] and LuGre model [17] are the
approximate descriptions for the dynamic of friction
force under different operating conditions. Two-slope
hysteresis friction model (Fig. 3) is widely applied in
the analysis of various nonlinear systems [13,18,19],
because of its intuitive physical meanings and numeri-
cal advantages in engineering.As a tiny tangential force
acting on a body, only the elastic deformation occurred
on the contact surface without relative displacement
between contact nodes on the interface, which is called
stick stage. When the tangential force exceed the criti-
cal value μN , where μ is the coefficient of friction, the
sliding occurs on the contact surface and the friction
force remains constant.

As shown in Fig. 2, the value of the tangential force
relays on the contact state. The integral form of the
friction force is defined as,

f =
⎧⎨
⎩
kt (x2 − x1) = kt gt for stick
μNsgn(ẋ2 − ẋ1) = μNsgn(ġt ) for slip
0 for separation

(18)

where x2 and x1 are the tangential displacements of
respective contact nodes. Thus, gt denotes the relative
tangential displacement on the interface.

As illustrated in Eq. (18), friction force is equal to
0 when x2 = x1, which shows this formula is valid
at reciprocating vibration near the equilibrium point.
On condition that the equilibrium point changes in the
moving process, new contact element should be recre-
ated. The determination of the state transition time is
critical for friction calculation. The literature [13,20]
has given an analytical criteria based on friction contact
model to determine the transformation among stick,
slip and separation of the friction contact. However,
complex formulas must be calculated to determine the
transformation between two different contact states,
resulting from the different types of combinations of
normal movement and tangential movement. To sim-
plify the calculation of contact frictions, it is convenient
to denote the friction force in a differential form with
respect to the relative displacement, as shown in Eq.
(19).

d f (gt , ġt )

d gt
= −kt H(μN − | f |)

−
(

1

d gt

)
H(| f | − μN ) |μN − | f || sgn( f )

(19)

where H(·) is a discontinuous function called Heavi-
side step function and can be written as,

H(x) =
{
0, x ≤ 0
1, x > 0

(20)

Moreover, the differential form of friction forcewith
respect to time can be derived by using Eq. (19). As we
can see from Eq. (19), the incremental form of friction
makes it convenient to calculate friction force through
integral in time domain without ignoring the changes
in normal pressure which has a great influence on the
friction force.⎧⎪⎪⎨
⎪⎪⎩

d f (gt ,ġt )
dt = d f (gt ,ġt )

d gt

d gt
dt

d f (gt ,ġt )
dt = −kt ġt H(μN − | f |)

−
(

1
dt

)
H(| f | − μN ) |μN − | f || sgn( f )

(21)

Given a fluctuant normal force and relative tangen-
tial displacement described in Eq. (21), the hysteresis
loop of friction force can be investigated by numeri-
cal Runge–Kutta method, as shown in Fig. 4. Because
of the fluctuation of normal load, the hysteresis loop
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Fig. 4 Coupled vibration
hysteresis loops

becomes much more complicated, even there are more
than one open loop connected together to form a new
hysteresis loop.{

N (t) = N0 + N1 sin(ωnt)
gt (t) = gt0 sin(ωt t)

(22)

3.2 Surface-to-surface contact

It is always a challenge to analyze a structure with
contact surfaces, owning to the complexity of contact
calculation and the unacceptable computation time for
large complex systems. In order to simplify that prob-
lem, the contact surface with dry friction is reduced to
one contact element in some studies [21,22].Moreover,
many researchers [23–25] simulate the behavior of con-
tact surfaces by creating discrete node-to-node contact
elements at the interfaces in order that the distribution
of contact force could be considered. According to the
definition of stiffness, the normal contact stiffness for
the contact elements can be calculated by Eq. (23).

kni = Pi
uzi

(i = 1, 2, . . . , n) (23)

Herein, kni denotes the contact stiffness of the contact
element i ; Pi and uzi are the normal force and the rela-
tive normal displacement, respectively, for the contact
element i . As shown in Fig. 5, a rigid round punch with
a flat base of diameter 2a is pressed into the frictionless
surface of an elastic half-space, and the contact pres-
sure distributions on the contact surface [26] is given
by

Fig. 5 Indention by a rigid plat punch

{
p(x) = P

(a2−x2)1/2

uz = π P
E (1 − ν2)

(24)

where E is Elastic modulus, and ν is Poisson’s ratio.
Figure6 shows an equivalent alternativemodel using

discretized contact elements to simulate the contact in
Fig. 5. By inserting Eq. (24) into (23), the normal con-
tact stiffness can be written as the following expression
equation.

kn(x) = 2Ex�x

(a2 − x2)1/2(1 − ν2)
(25)

Because there is no interaction between the contact
elements of the model in Fig. 5, i.e., shear deforma-
tion between adjacent contact elements at the interface
is ignored, so that the changing stiffness with respect
to contact state in this model should be considered to
coincide with practical results. Typically, the contact
stiffness varies with contact surface geometry, relative
position of contact interface and external load. There-
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Fig. 6 Contact surface with discretized contact elements

fore, it is difficult to obtain the precise distributions of
contact stiffness allowing for unknown contact states,
especially in dynamic calculations.

The dynamic contact problem can be treated as a sta-
tic problem, on condition that the characteristic contact
time T is much larger than the time that elastic waves in
the continuum travel a distance on the order of contact
area diameter D [27], which is also called the quasi-
static state condition:

T > D/c (26)

where c is the speed of sound. Taking steel for exam-
ple, the sound propagation velocity in steel is about
5200m/s. For a contact with D = 1m, this condi-
tion is met for frequencies below approximately 5kHz.
Therefore, such assumption is reasonable formost con-
tact problems. Assuming that the dependence between
contact forces and contact statues (such as relative posi-
tion and external force) is obtained by static analysis in
advance, there is no need for iterative solution of con-
tact force in dynamic calculations. In order to reduce
the amount of calculation, only a few independent con-
tact states most likely to occur in dynamic calculation
should be solved by quasi-static analysis, and the con-
tact force in intermediate contact states can be obtained
through interpolation calculation.

4 A mass on a vibrational foundation

4.1 Solution method

Figure7 shows the case for a Z-shape mass which is
placed on a vibrational foundation under uniformly

Fig. 7 Z-shape mass on a vibrational foundation

Fig. 8 Contact pressure distribution

distributed normal load on its top surface. A mov-
ing coordinate system K1 fixed on the moving mass
is used to describe the pressure distribution on the
contact surface. Given a uniformly distributed pres-
sure P0, the contact pressure distribution is easily
obtained by static analysis in ANSYS 15.0, as shown in
Fig. 8.

As mentioned above, the normal pressure distribu-
tion depends on the relative position, the external force,
etc. In this case, only external normal load and tangen-
tial inertial load are the factors affecting the distrib-
ution of pressure. Due to the small thickness of this
mass compared with its length, the additional bending
moment along the X - and Y -axes produced by inertial
force is negligible; then, the additional normal con-
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x y
z

Fig. 9 Contact surface with discrete contact points

tact force used to balance the bending moment is also
negligible. If the two contact surfaces had the same
elastic parameters, any tangential traction transmitted
between them gives rise to equal and opposite normal
displacements of every point on the contact surface.
Consequently, the two bending contact surfaces con-
form exactly with each other, and the distribution of
normal pressure is not disturbed. The shape and size
of the contact area are fixed by the profiles of the two
surfaces and normal force, and independent of the tan-
gential force [26].

As shown in Fig. 7, the contact is the typical reced-
ing contact,where the loaded contact area is completely
contained within the unloaded contact area. The reced-
ing contact has been shown by Dundurs [28] to have
two special properties. Firstly, if the load increased
in magnitude and its distribution did not change, the
contact area will not change in shape or size, and sec-
ondly, the displacement, strain and stresses change lin-
early with the normal load. Therefore, the distribution
of normal load on the contact surface can be derived
by

Np(x, y) = p

p0
Np0(x, y) (27)

where Np(x, y) and Np0(x, y) are the normal pressure
distribution with normal load p and p0, respectively.
In order to describe the normal pressure distribution on
the contact surface, the interface is discretized into a
set of contact points, shown in Fig. 9 by the points of
crossing.

Considering the distribution of normal and tangen-
tial force on the contact surface, the dynamic equations
of the mass on a vibrational foundation can be derived
by using D’Alambert’s principle.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ =
n∑

i=1
fi x

m ÿ =
n∑

i=1
fiy

I θ̈ = −
n∑

i=1
fi x y1i +

n∑
i=1

fiy x1i

d fi x
dt = −kit ġt xi H( fx max i − | fi x |) −

(
1
dt

)
H( fi x − fx max i ) | fx max i − | fi x || sgn( fi x )
d fiy
dt = −kit ġt yi H( fymax i − ∣∣ fiy∣∣) −

(
1
dt

)
H( fiy − fymax i )

∣∣ fymax i − ∣∣ fiy∣∣∣∣ sgn( fiy)

(28)

where m and I are the mass and the moment of inertia
for Z -axis, respectively; x and y are two translational
degrees of freedom in yz plane of global coordinate
system K0; θ is the rotational degree of freedom along
the z-axis; x1i , y

1
i are the coordinates of node i on the

discrete contact surface in the moving coordinate sys-
tem K1; fi x , fiy are the friction force; and ġt xi , ġt yi
are the relative tangential velocity of node i in x and y
directions, respectively. fx max i and fymax i are critical
frictional force and can be given by Eq. (29).⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fx max i =
√(

μ
p
p0
N0i

)2 − f 2yi

fymax i =
√(

μ
p
p0
N0i

)2 − f 2xi
ġt xi = ẋi − ẋb − y1i θ̇
ġt yi = ẏi − ẏb + x1i θ̇

(29)

Herein, N0i denotes the normal load of node i on the
contact surface; ẋb and ẏb is the vibration velocity of
the foundation in the global coordinate system. In Eq.
(28), the derivative of friction force with respect to time
is given, instead of using the constitutive equations in
integral form, and it is capable of describing complex
friction with high precision under various situations of
different contact states.

Given a fluctuation of normal load P(t) and foun-
dation displacement ẋb and ẏb as shown in Eq. (30).⎧⎨
⎩

P(t) = P0 + P1 sin(2π f pt)
xb(t) = x0 sin(2π fbt)
yb(t) = 0

(30)

Herein, fb and f p are the vibration frequency of the
foundation and the normal load, and the relative dis-
placement of the mass with respect to the foundation
can be defined as:{
xr
yr

}
=

{
xb − x
yb − y

}
(31)
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Table 1 Parameters for the example

Parameter Value Parameter Value

m 0.035kg μ 0.3

P0 50N I 14.68e–6kgm2

P1 30N x0 0.005m

fb 100Hz f p 0, 25, 50, 200Hz

4.2 Results

The parameters of the system are given by Table1, and
it is easy to obtain the dynamic response of the mass
by Time Domain Integration (TDI).

Hysteresis loops of friction force versus relative dis-
placement are plotted together in Fig. 10 under different
normal loads. Figure10 shows that the shape of hystere-

sis loops are quite complex with fluctuations in normal
load, rather than a normal bilinear hysteresis loop at
constant normal load as shown in Fig. 10a. The shape
of hysteresis loop depends on the ratio of frequency and
phase lag between the horizontal displacement and the
normal load vibration. As shown in Fig. 10a, b, there
is only a complete hysteresis loop at the time when
the frequency of normal load is an integral multiple
of the foundation vibration frequency. However, when
the frequency of foundation vibration are N times of
normal load, the hysteresis loop is made up of N dif-
ferent open loops linked tighter end to end as shown
in Fig. 10d, c. Moreover, it is not difficult to draw the
conclusion that there is always an entire hysteresis loop
on the condition that the frequency ratio for the normal
load fluctuation over the foundation vibration is a ratio-
nal number, and the number of open loops equals the
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Fig. 10 Hysteresis loops for different frequency ratios
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Fig. 11 FRFs of the mass for different frequency ratios

value of denominator of the frequency ratio which is
reduced to its lowest terms.

The frequency response function (FRFs) of themass
is plotted in Fig. 11 at different normal loads. Friction
force is the only driving force of the mass in horizontal
direction, so that the shape of hysteresis loop deter-
mines the response of the mass. As shown in Fig. 10a–
c, there is only one loop in an entire hysteresis loop.
Thus, the vibrational energy is mainly concentrated on
the dominant frequency. In the meantime, it is possi-
ble to see in Fig. 11a, b that the lower energy leakage
on other frequencies will occur when the hysteresis
loop is closer to an ellipse shape. However, in the case
that the hysteresis loop contains more than one loop,
the vibration energy is distributed in several different
frequencies, such as the foundation and normal load
vibration frequency, as is found in Fig. 11c, d.

5 Blades with underplatform dampers

5.1 Solution method

In order to demonstrate the applicability of the pro-
posed method to more complex system, three plane
blades with underplatform dampers are shown in
Fig. 12a. In consideration of perfect cyclic symmetry,
only a single blade and one damper with cyclic bound-
ary condition are taken into account in the dynamic cal-
culation, as shown in Fig. 12b. The condition of cyclic
symmetry can be expressed by the equality relation of
contact force between the blade and damper which can
be written as:

FR
cd = −FL

cb (32)

where FR
cd is the contact force on the right side of

damper which is placed on the left side of the blade,
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Fig. 12 Finite element model for the blades with dampers

and FL
cb denotes the contact force on the left side of the

blade contact surface.
It is simple to analyze the nonlinear dynamic

response of damper with only the DOFs on contact sur-
faces included, because there are fewer DOFs if com-
pared with the whole system. A simplified dynamic
model of damper without considering the local defor-
mation is shown in Fig. 13. Supposing the vibration of
platform is known in prior, the dynamic response of
damper can be obtained by explicit dynamic analysis
as discussed in Sect. 4.

The given assumption of the vibration of platform is
used to obtain the dynamic response of damper. At the
same time, the vibration between the damper and the

platform interact; therefore, the iterative calculation is
required to obtain the response of the blade. The flow
chart for calculate the nonlinear vibration response of
blades with underplatform dampers is shown in Fig. 14.

First of all, the response of blade without damper is
calculated to obtain the stable response of platform by
MHBM, and then, the nonlinear response of damper
can be calculated by using DTI to obtain the contact
force during a stable oscillating cycle. Next, the dis-
tribution of average additional stiffness and damper on
the contact surface are calculated based on the theory of
optimal approximation, and the stable responseof blade
with additional stiffness and damping will be solved
once again by using MHBM. For a given response
of platform u, a new response of platform u′ will be
obtained by one cycle of iteration. And the procedure
can be represented by a function g(u) in Eq. (33).

g(u) = u′ (33)

Thediscrete formofNewtonmethod is used to deter-
mine the value of the next iteration and to accelerate
the convergence of the iteration. According to the idea
of discrete Newton method, the procedure of Newton
can be written as:{

u1 = g(u0)

uk+1 = g(uk )uk−1−g(uk−1)uk
g(uk )−uk−g(uk−1)+uk−1

( k > 1)
(34)

Herein, u0 is the initial iterative value. In this iterative
procedure, converge is achieved when the difference in
platform responsebetween twoadjacent iterative calcu-
lations is smaller than a critical value. The convergence
criteria can be expressed by

‖uk − uk−1‖ < εu ‖uk‖ (35)

Fig. 13 Simplified model
of the damper with contact
interface
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Fig. 14 Flow chart for
calculating the nonlinear
response of blade
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Fig. 15 FRFs for different normal loads (m = 60g)

where uk and uk−1 are the response amplitude of plat-
form in kth and (k − 1)th iterative calculation. εu is the
relative tolerance which is given by users.

As shown in Fig. 13, the dampers also vibrate
slightly in normal direction during its horizontal vibra-
tion, which leads to a fluctuation of normal load. Due to
the small vibration amplitude of platform, the normal
load is large enough to prevent the separation between
the contact surfaces. Compared to centrifugal load, the
amplitude of normal load fluctuation is small, so that
it does not affect the motion of damper in a great deal.
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Fig. 16 Hysteresis loops for different amplitudes of normal load
(m = 60g)

The horizontal vibration of the damper is only required
to consider in the kinetic calculation.

5.2 Results

The forced response of blades with underplatform
dampers has been calculated using the above proposed
method by giving a 2% convergence error. And the
influence of normal load and damper weight on the
nonlinear response of blade is investigated. The FRFs
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Fig. 17 Resonance frequency and amplitude with respect to normal loads for different weights of dampers, a the frequency and b the
amplitude for the first-order resonance, c the frequency and d the amplitude for the second-order resonance

of the blades around the second modal frequency are
plotted together in Fig. 15. The mass of the underplat-
form damper used in Fig. 15 is 60g, and 8 different nor-
mal load amplitudes are applied in the simulation. It is
obvious to see that the second-order resonant frequency
increases gradually with the increment of normal load,
while the resonant amplitude decreases firstly and then
increases.

As shown in Fig. 16, the relative displacement
of contact surfaces decreased and the friction force
increased for the increasing of the normal loads. Con-
sequently, the equivalent stiffness also increased which
leads to the increment of the resonant frequency. When
the normal load is greater than the critical value, the

equivalent stiffness becomes equal to tangential stiff-
ness of the contact surface in fully stick condition.

With a given weight of the damper, the percentage
of sliding stage time over a period decreases with the
increasing normal load. The dissipation of vibration
energy occurs only in sliding state and can be calculated
by the product of the friction force and the relative
displacement. The equivalent damping of the friction
force depends on the dissipated energy in one cycle of
oscillation, i.e., the total area enclosed by the hysteresis
curves. It is noticed that the enclosed area increases
first and then decreases with increasing normal load
which leads to corresponding behavior of the resonant
amplitude shown in Fig. 16.
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The first-order and second-order resonant frequency
and amplitude with respect to normal loads for differ-
ent weights of dampers are presented in Fig. 17. Fig-
ure17b, d shows that there is always a normal load,
called the optimal normal load, where the maximum
response amplitude reaches its minimum value. On the
vibrational foundation, the friction force on the damper
in horizontal direction is balanced by the inertial force
with a amplitude of Amω2. Figure17 also indicates
that the stick state is more likely to happen when the
ratio between the friction force and the inertial force is
larger. Therefore, the larger mass of damper will lead
to greater optimal normal load and smaller maximum
response amplitude at the optimal normal load. Com-
pared to the second-order resonant frequency, the first-
order resonant frequency is much lower, resulting in
smaller amplitude of inertial force, which makes the
optimal normal load much smaller.

The transformationof contact state fromsliding state
to fully sticking state occurs within a narrow normal
load range on condition of a small inertial force caused
by low vibrational frequency or small mass damper
with respect to normal load, as shown in Fig. 17. The
sharp decrease in response amplitude near the optimal
normal load leads to the steep increase in the equiva-
lent stiffness, so that the jump phenomenon of resonant
frequency is observed in Fig. 17a, c.

6 Conclusions

An effective numerical method to solve the nonlinear
steady-state response of structures with multi-scattered
friction contacts is achieved; both strict theoretical
derivation and entire solution procedure by two intu-
itionistic cases study are given. The results for the non-
linear response of blades with underplatform dampers
show that the resonant frequency increases and the
resonant amplitude of blade decreases first and then
increases for the increase in the normal load; the simu-
lation results are coincidentwith previous studies by the
other researchers to a great extent. The efficient method
described in this paper gives an alternative choice to
solve the dynamic problems of complex structures with
multi-surface-to-surface contacts.
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