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Abstract In this paper, a new lattice hydrodynamic
model (LH model) of traffic flow under consideration
of reaction time of drivers and a corresponding feed-
back control scheme are proposed. Based on themodel,
stability analysis is conducted through linear stability
analysis of transfer function. The obtained phase dia-
gram indicates that the reaction time of driver can affect
the instability region of traffic flow. Under the action
of a feedback control, the unstable region is shrunken
to reach suppressing jams. The numerical simulations
are performed to validate the effect of reaction time of
driver in the new LH model. The study results confirm
that the reaction time of driver significantly affects the
unstability of traffic system, and the feedback control
can suppress traffic jams. Furthermore, it is found that
the traffic system from the chaotic traffic state to peri-
odic steady one is successfully realizing the control of
traffic system.
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1 Introduction

In the last decade, traffic problems have attracted con-
siderable attention in many metropolitan cities. Schol-
lars and engineers have developed many traffic models
such as the car-following model, the cellular automa-
tonmodel, the gas kinetic model and the hydrodynamic
model [1–3]. They all provide us with a good under-
standing of stop-and-go traffic from different points
of view. A typical car-following model is the opti-
mal velocity model(OV model) presented by Bando
et al. [4]. Many improved OV models were proposed
by considering some physical effects and /or traffic
factors [5–7]. Among these, the lattice hydrodynamic
model, which describes the interaction of two succes-
sive cars from the macroscopic view, has been exten-
sively applied to investigate the characteristics of traffic
flow in many aspects.

The lattice hydrodynamic model (LH model) is
developed to represent themotion of vehicles following
each other on a single lane. It can successfully describe
the jamming transition of traffic flow in term of kink–
antikink soliton densitywaves byderivingmKdVequa-
tion near the critical point via nonlinear stability analy-
sis. Nagatani et al. [8,9] were pioneers in the develop-
ment of the lattice hydrodynamic model (LH model)
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of traffic flow in the early 1990s. Based on their works,
many extended lattice hydrodynamic models by intro-
ducing important real effects and environmental para-
meters, such as the backward looking effect [10], two-
lane traffic flow latticemodel [11,12], the driver’s delay
effect [13,14], the effect of interruption probability [15]
and drivers anticipation effect [16] with passing, have
been proposed. Ge et al. [10] considered the backward
looking effect in the lattice hydrodynamic models and
carried out the theoretical analysis and numerical sim-
ulation. The study confirmed the backward looking sta-
ble effect to some extent. Tang et al. [11] proposed the
improved two-lane lattice hydrodynamic traffic model.
Redhu and Gupta [12,15–21] systematically studied
jamming transitions, the effect of forward looking sites,
the effect of interruption probability and the driver’s
anticipation effect with passing, etc. in LH model of
traffic flow. Peng [22,23] studied the lateral effects of
the lane width and considered the driver’s anticipation
effect to induce the wide-moving jams. In refs of [13],
Ge et al. derived TDGL equation in lattice hydrody-
namicmodel by considering driver’s physical delay and
confirmed the relation of traffic jams with phase tran-
sition of traffic flow. Kang et al. [14] proposed a new
lattice hydrodynamic traffic flow model with explicit
drivers’ physical delay and illustrated the drivers phys-
ical delay affects stability of traffic flow. Moreover,
some LHmodels are extended to two-dimensional traf-
ficflowand triangular flow [20,21] by the consideration
of optimal current difference effect and are applied to
pedestrian traffic [24,25]. However, the reaction times
of drivers are an important factor contributing to traffic
instabilities and, consequently, are an essential element
inmany trafficmodels [26]. In 2003, Davis [27] studied
the effects of delay including the driver reaction time
by performing simulations and analysis in detail. It is
found that the stability of a platoon of vehicles is depen-
dent on the platoon size as well as delay time, and the
OVmodel displays an unrealistically strong sensitivity
to delay. He demonstrated that realistic delay time td
can be safely introduced in modifications of the OV
model and the unphysical high-frequency oscillations
in vehicle velocity are eliminated. In [28], Treiber et
al. [28] systematically investigated the delay, inaccura-
cies and anticipation effects inmicroscopic trafficmod-
els. In 2008, Kesting and Treiber [29] further explored
how reaction time, update time and adaptation time
influence the dynamical behaviors and stability of traf-
fic flow. They have found these times interplay with

each other and effectively influence the longitudinal
instability mechanisms for a platoon of vehicles. The
long-wavelength string instability is mainly induced
by the velocity adaptation time while short-wavelength
local instabilities arise for sufficiently high reaction and
update times. Orosz et al. [30,31] studied the bifurca-
tion phenomena and convergence effects with the con-
sideration of reaction-time delay in OV model. Ngo-
duy [32] proposed a generalized multi-anticipative car-
following model with time delays and accordingly car-
ried out the linear stability analysis to derive the sta-
bility condition. His study indicates that the combi-
nation of different choices of multi-anticipations and
time delays affects the instabilities of traffic flow with
respect to a small perturbation.More recent years,Ngo-
duy [33] obtained a generalized linear stability condi-
tion for a second-order macroscopic model with time
delay and investigate analytically the effect of such time
delay on traffic instabilities from a macroscopic scale.
His research has shown that the choice of the equi-
librium speed function in a second-order macroscopic
model will determine the stability of system by time
delay.

At the same time, traffic control scheme inOVmodel
and LHmodel causes many researcher’s concern. Kon-
ishi K etc. first introduced the delay-feedback control
method in the coupled-map (CM) car-following model
with the discrete-time OV model to achieve effective
control for traffic jamming in [34,35]. Motivated by
the Konishi’s work, many control models have been
developed by considering the different important real
situations and control parameters [36–40]. Zhao and
Gao [36] proposed a simple control model to suppress
the traffic congestion in 2006. Jin and Hu [39] stud-
ied the stabilization of traffic flow in optimal velocity
model via delayed-feedback control. In 2012, Ge et
al. [37] presented a simple control method to suppress
traffic jams for car-following model. In recent years,
the delayed-feedback control theory is applied to the
macroscopic model. In 2015, Ge et al. [38] proposed
a control scheme to suppress of traffic jams by intro-
ducing the flow difference value between lattice posi-
tion j and j + 1 at time t as the feedback gain in LH
model. And then, Redhu and Gupta [40] introduced
the flow difference value at time t and t − τ down-
stream along lane as the feedback gain to propose the
delayed-feedback control method in LH model. Zhang
and Zhu [41] studied reduction of CO2 emission for
traffic system by introducing the delay-feedback con-
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trol strategy. Moreover, the cooperative adaptive cruise
control strategy of traffic is greatly developed in traffic
model [42].

In this paper, we attempt to analyze the stability
of traffic flow through a macroscopic lattice hydro-
dynamic traffic model by introducing driver’s reaction
time td and suppress the traffic congestion using the
feedback control method. The rest of the present paper
is organized as follows. In Sect. 2, a new modified
lattice hydrodynamic model considering the effect of
driver reaction time is proposed. Stability analysis is
carried out in Sect. 3. In Sect. 4, the suppression of
traffic jamming by using the feedback control method
is investigated based on the numerical simulation. The
last section is devoted to a summary and the prospect
of further study.

2 Model and the control method

In 1998, Nagatani [8] firstly proposed the lattice hydro-
dynamic traffic model as follows:

∂tρ j + ρ0(q j − q j−1) = 0 (1)

∂t q j = a[ρ0V (ρ j+1(t)) − q j ] (2)

where q j = ρ jv j is the flux of traffic; j indicate lat-
tice position; ρ j and v j , respectively, indicate the local
density and velocity at position j at time t . a = 1/τ is
the sensitivity of a driver; ρ0 is the average density; the
optimal velocity function V (ρ) is adopted as

V (ρ) = Vmax

2

[
tanh

(
1

ρ
− 1

ρc

)
+ tanh

(
1

ρc

)]
(3)

where Vmax indicate the maximal velocity, and ρc
denote the safety critical density. In 2003, Davis [27]
studied the effects of delay in the OV model of traf-
fic dynamics and considered the introduction of driver
reaction time td in modifications of the OV model can
eliminate the defects with unphysical high-frequency
oscillations in vehicle velocity. By incorporating Davis
microscopic model and Nagatani macroscopic model,
we propose the lattice hydrodynamic trafficmodel with
driver reaction time td as follows:

∂tρ j + ρ0(q j − q j−1) = 0 (4)

∂t q j = a[ρ0V (ρ j+1(t − td)) − q j ] (5)

where td is the reaction time of drivers.

We use the flow difference value between lattice
position j and j + 1 at time t as the feedback con-
trol to eliminate traffic jams.

∂tρ j+1 + ρ0(q j+1 − q j ) = 0 (6)

∂t q j = a[ρ0V (ρ j+1(t − td)) − q j ]
+ ak[q j+1(t) − q j (t)] (7)

where k denotes feedback gain and ak denotes the cou-
pling strength between flow upstream and downstream
along direction of vehicle motion to keep consistent
dimension in Eq. (7). For k = 0 and td = 0, the model
is same as Nagatani’s model. When the traffic state is
unstable, the feedback control term in Eq. (7) plays
control role to eliminate instability in the system.

3 Linear stability analysis with control method

In this section, the linear stability analysis is carried
out to investigate the effect of feedback control on sup-
pressing the traffic jam. Assume that there exits the
steady-state uniform flow solution [ρn, qn] = [

ρ∗, q∗]
in the traffic flow system. The linearized equation of
Eqs. (6) and (7) around steady state can be rewritten as
follows:

∂tρ
0
j+1 + ρ0

(
q0j+1 − q0j

)
= 0 (8)

∂t q
0
j

= a
[
ρ0�(ρ∗)

(
ρ0
j+1+ρ0tdq

0
j+1 − ρ0tdq

0
j

)
− q0j

]

+ ak
[
q0j+1 − q0j

]
(9)

By performing Laplace transformation, we have

sPj+1(s) − ρ j+1(0) + ρ0
(
Q j+1(s) − Q j (s)

) = 0

(10)

sQ j (s) − q j (0)

= a{ρ0�(ρ∗)[Pj+1(s) + ρ0td Q j+1(s)

− ρ0td Q j (s)] − Q j (s)} + ak[Q j+1(s) − Q j (s)]
(11)

where L(q0j ) = Q(s), L(ρ0
j ) = Pj (s), L(∂tρ

0
j ) =

sPj (s) − ρ j (0). The linearized equation from Eqs. (8)
and (9) can be written as

Q j (s)

=
(

−aρ2
0�(ρ∗) + aρ2

0�(ρ∗)tds + aks

s2 − aρ2
0�(ρ∗) + aρ2

0�(ρ∗)td + as + aks

)

×Q j+1(s) + aρ0�(ρ∗)ρ j+1(0)

d(s)
(s) + s

d(s)
q j (0)

(12)
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where transfer function G(s) is
−aρ2

0�(ρ∗)+aρ2
0�(ρ∗)td s+aks

s2−aρ2
0�(ρ∗)+aρ2

0�(ρ∗)td+as+aks
and d(s) is the charac-

teristic polynomialwhich is s2+as+aks−aρ2
0�(ρ∗)+

aρ2
0�(ρ∗)tds.

‖G(s)‖∞ = sup |G( jw)| ≤ 1

|G( jw)|
= √

G( jw)G(− jw)

=
√√√√

(
aρ2

0�(ρ∗)
)2 + (aw)2

(
ρ2
0�(ρ∗)td + k

)2
(
w2 + aρ2

0�(ρ∗)
)2 + (aw)2

(
1 + k + ρ2

0�(ρ∗)td
)2

≤ 1

We set

g(w) =
(
aρ2

0�(ρ∗)
)2 + (aw)2

(
ρ2
0�(ρ∗)td + k

)2
(
w2 + aρ2

0�(ρ∗)
)2 + (aw)2

(
1 + k + ρ2

0�(ρ∗)td
)2

Obviously, g(0) = 1, simplifying g(w) ≤ 1, w ∈
[0,∞], we obtain
w2 + 2aρ2

0�(ρ∗) + a2 + 2a2
(
k + ρ2

0�(ρ∗)td
)

≥ 0

(13)

The sufficient condition of Eq. (13) is 2ρ2
0�(ρ∗) +

a + 2a(k + ρ2
0�(ρ∗)td) ≥ 0. The stability condition is

obtained as a > − 2ρ2
0�(ρ∗)

1+2k+2ρ2
0�(ρ∗)td

. If k = 0, td = 0,

the stability condition is same as one ofNagatani lattice
model.

Figure 1 depicts the effect of feedback gain k and
reaction time td on traffic flow. It can be clearly found
that the amplitude of transfer function is declined with
increase in feedback gain k, when td is determined. It
indicates that the feedback control plays an important
role on reducing and eliminating traffic jams. Addi-
tionally, it can be concluded that the traffic jams occurs
more easily with increase in driver reaction time td .
Comparing the neutral stability lines in Fig. 2, the
increase in driver reaction time td can obviously extend
the unstable region, which is consistent with the occur-
rence of traffic jamming in real traffic situation. Due
to the increase in driver reaction time, the free flow is
blocked and the average velocity of whole traffic flow
is decreased.

Upon all the above analysis, the satisfied stable con-
dition can be represented as follows:

a > − 2ρ2
0�(ρ∗)

1 + 2k + 2ρ2
0�(ρ∗)td

(14)
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Fig. 1 Bode-plot for different value of feedback gain k and reac-
tion time td
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Fig. 2 Phase diagram in parameter space (ρ, a)

The corresponding feedback gain is

k > −1

2
− ρ2

0�(ρ∗)
a

− ρ2
0�(ρ∗)td (15)

Thus, the traffic can be effectively controlled by sup-
pressing traffic jams in the traffic flow model.

According to Eq. (14), the neutral stable curves in
the parameter space (ρ, a) are calculated and displayed
in Fig. 2. Traffic flow remains steady state up the neutral
stable curves. The area of unstable state expands with
increase in reaction time td . It indicates that response
speed of drivers directly affect traffic flow on the roads.
The region of steady state is enlarged by exerting con-
trol on lattice hydrodynamic model. Correspondingly,
the sensitivity of driver response is enhanced and the
relaxation time is decreased, traffic flow reaches its
desire flux and velocity as soon as possible.

4 Numerical simulation and analysis

In this section, we carry out the numerical simulations
to validate the effect of the control method in the lat-
tice hydrodynamic model. The circular road is com-
posed of 140 discrete lattices under the periodic bound-
ary. To realize the effect of feedback control on traffic
dynamics, the corresponding parameters are chosen as:
the safety density ρc = 0.25, the maximum velocity
vmax = 2, sensitive coefficient a = 2.1 and the initial
density ρ0 = 0.25. And assuming the density of sites
from 50 to 55 is 0.5 and one in the range of site 56
to 60 is 0.2. By eliminating the velocity v j in Eqs. (6)
and (7), we yield the following evolution equation of
density.

ρ j (t + 2τ) − ρ j (t + τ)

+ τρ2[V (ρ j+1(t − td)) − V (ρ j (t − td))]
+ k[ρ j (t + τ) − ρ j (t)] = 0 (16)

For k = 0 and td = 0, the model becomes Nagatani’s
model.

At first, we study the effect of reaction time td on
the lattice model with control signal. Figure 3 depicts
the change of temporal density at different sites j = 2,
25, 55 and 80 for early time i.e. 1–200s for td = 0
with the different feedback gain k. With the increase
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Fig. 3 Temporal density change of four sites for the different
reaction time td and k = 0
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tion time td and k = 0.3

123



Feedback control for the lattice hydrodynamics model 151

0.20

0.25

0.30

0.35

0.40

0.45

0.50

time

de
ns

ity

 site-2
 site-25
site-55
site-80

0.20

0.25

0.30

0.35

0.40

0.45

0.50
 site-2
 site-25
site-55
site-80

time

de
ns

ity

0 50 100 150 200

0 50 100 150 200

0 50 100 150 200

0.20

0.25

0.30

0.35

0.40

0.45

0.50
 site-2
 site-25
site-55
site-80

0, 0.5dt k

0.3 , 0.5dt k

0.5 , 0.5dt k

time

de
ns

ity

(b) 

(a) 

(c) 
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the reaction time td and k = 0.5
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Fig. 6 Temporal density change of four sites for different feed-
back gain k and reaction time td = 0

123



152 Y. Xue et al.

203002020020100

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
 site-2
 site-25
 site-55
 site-80

time

de
ns

ity

203002020020100

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
 site-2
 site-25
 site-55
 site-80

time

de
ns

ity

203002020020100

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.3 , 0dt k

0.3 , 0.3dt k

0.3 , 0.5dt k  site-2
 site-25
 site-55
 site-80

time

de
ns

ity

(b) 

(a) 

(c) 

Fig. 7 Temporal density change of four sites for different feed-
back gain k and reaction time td = 0.3τ
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Fig. 8 Temporal density change of four sites for different feed-
back gain and k reaction time td = 0.5τ
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Fig. 9 Scatter plot at site-2 in the time range of 1–500s for
different feedback gain k at reaction time td = 0.3τ

in feedback gain k, temporal density gradually evolves
into stable state from unstable state.

Figure 3a–c, respectively, illustrate that the driver
reaction time td gives rise to the instability of traffic on
the road due to sharp oscillation of temporal density
at four sites in case of no control signal. Traffic sys-
tem does not need a long time to reach its desire flow
and desire speed. Thus, it is possible to block traffic on
the road. Accordingly, lowering traffic capacity causes
traffic congestion. In Fig. 4a–c, the temporal density at
four sites just has a small change under the action of
control. Although traffic feedback control is exerted on
traffic system, it needs a larger feedback gain k to attain
the desire steady state with the increase in reaction time
td . In Fig. 5a–c, the temporal density at four sites has a
less change under the action of a larger feedback con-
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Fig. 10 Scatter plot at site-25 in the time range of 1–500s for
different feedback gain k at reaction time td = 0.3τ

trol gain k. It is clearly observed that the strong feed-
back control gain k can expel unstable traffic system to
reach the steady state. The final state indicates the traf-
fic jams is successfully suppressed, which is confirmed
by next discussions for the long-time effect of control
and traffic patterns.

The long-time effect of control feedback gain on
LH model is explored. The relationship between den-
sity and time is obtained in Figs. 6, 7 and 8. It dis-
plays the control ability with the different feedback
gain in long time under the same condition of reaction
time. Density-time plots in Figs. 6, 7 and 8, respec-
tively, show the final situation of feedback control with
different gain k in the time range of 20100–20300s.
It is clearly observed that the kink–antikink density
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Fig. 11 Scatter plot at site-55 in the time range of 1–500s for
different feedback gain k at reaction time td = 0.3τ

waves in unstable region inducing by reaction time
take shape in Figs. 6a, 7a and 8a. From Figs. 6a, 7a
and 8a, we can see that the amplitude of density waves
in unstable region oscillates sharply with higher value
of driver reaction time. Feedback gain k takes an inter-
mediate value in Figs. 6b, 7b and 8b. The oscillation
amplitude of density waves in unstable region gradu-
ally decreases. With the increase in feedback gain k,
density waves decays quickly and achieves the steady
state in Figs. 6c, 7c and 8c. It implies that the traffic sys-
tem can reach target steady state through the feedback
control.

Furthermore, the scatter plots of density difference
ρ j (t) − ρ j (t − 1) against ρ j (t) in phase space for dif-
ferent feedback gain k at reaction time td = 0.3τ are
showed in Figs. 9, 10, 11 and 12, respectively. It can be
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Fig. 12 Scatter plot at site-80 in the time range of 1–500s for
different feedback gain k at reaction time td = 0.3τ

found that the patternwithout exerting control signal on
LHmodel obviously exhibits chaotic behaviors in early
time from 1s to 500s at sites-2,25,55,and 80,.respec-
tively (see Figs. 9a, 10a, 11a, 12a). The periodic orbits
are embedded in the chaotic pattern. It indicates that
the state of traffic system in unstable region can jump
from a periodic orbit to another and then forms chaotic
pattern. InFigs. 9b, 10b, 11b and12b, the traffic conges-
tion is successfully suppressed through the comparison
of density-time change. The traffic patterns at different
sites, respectively, achieve a target steady state with a
periodic orbit (limit cycle) under the action of exerting
control signal on LHmodel. It also helps in understand-
ing the formation of traffic congestion in the unstable
state and controlling traffic system from the unstable
state to steady one.
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5 Conclusion

A new lattice hydrodynamic traffic model which takes
the reaction time of drivers into account is proposed
in this paper. The stability condition for the lattice
hydrodynamic traffic model with the feedback control
is derived through linear stability analysis. The phase
diagram in parameter space (ρ, a) shows a larger unsta-
ble region. This result indicates that the larger reaction
time of driver easily leads to instability of traffic flow.
Conversely, the unstable region is shrunken under the
action of the feedback control. The numerical simu-
lations are performed to validate the effect of reaction
timeof driver and feedback control scheme in the lattice
hydrodynamicmodel. The temporal density at four typ-
ical sites for the different reaction time is obtained. The
results reveals that the reaction timeof driver can signif-
icantly affect the instability region of traffic system, but
the feedback control scheme and control strategy can
effectively eliminate instability of traffic system and
exhibits a high capability to efficiently remove traffic
jams. Next, we will continue to explore high efficient
and feasible control scheme to apply to real traffic.
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