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Abstract This paper investigates the synchronization
of two memristive chaotic circuits via state-dependent
impulsive control. Different from most existing pub-
lications, impulses occurring is not at fixed instants
but depends on the states of systems. Furthermore, the
state variables of the driving system (driving system
which does not involve the impulses) are transmitted
to the response system, and then the state variables of
response system are subjected to jumps at the state-
dependent impulsive instants, and ultimately to achieve
synchronization. Based on the Lyapunov stability the-
ory, impulsive differential equation, and inequality
techniques, the sufficient conditions with theoretical
demonstration ensuring every solution of error system
intersects each surface of the discontinuity exactly once
are derived. Then, by applying B-equivalence method,
the error system with state-dependent impulses can be
reduced to the case of fixed-time impulses. Finally, the
numerical simulations are carried out to demonstrate
the effectiveness of the obtained results.
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1 Introduction

The memristor was postulated as a new two-terminal
circuit element byChua in 1971 [1] andwas realized by
Williams’s Team in 2008 [2]. Recently, a lot of works
have been done to analyze the memristive chaotic cir-
cuits, in which the Chua’s diode was replaced by var-
ious memristors with different nonlinearities [3–8].
The above memristive chaotic circuits produce chaotic
behaviors due to the nonlinear equations.We have stud-
ied the stabilization and synchronization of memristor-
based chaotic circuit via fixed-time impulsive control
in [6]. Furthermore, the impulsive synchronization and
initial value effect for memristor-based chaotic system
have been investigated in [9]. However, there has been
no relevant published results in the literature effectively
applied to the synchronization on coupled memristive
chaotic circuits via state-dependent impulsive control.
Due to the extensive applications of memristor, more
and more researchers have been working to study the
dynamic behavior of memristive system, investigating
its properties and functions, which are becoming the
active research topics.

Over the past years, synchronization have been
extensively investigated and applied to secure com-
munications, signal processing, image processing, pat-
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tern classification, and associative memory by [10–
21]. Meanwhile, many control approaches have been
proposed to synchronize chaotic networks and nonlin-
ear systems such as impulsive control [15–18] (state-
independent impulsive control), sampled data control
[20], and intermittent control [21]. Many important
results have been reported on the synchronization con-
trol of nonlinear systems [13–21]. Based on the impul-
sive theory and linear matrix inequality technique, Li
et al have been obtained impulsive synchronization of
chaotic systems in [13] and the chaotic delay systems in
[14]. Based on the impulsive control theory, the authors
in [15] have been established the global exponential
synchronization of complex networks. The exponen-
tial synchronization of fractional-order complex net-
works via pinning impulsive control have been inves-
tigated in [16]. By applying switching Lyapunov func-
tion method, the synchronization of coupled delayed
switched neural networks with impulsive time window
have been studied in [18]. By using a convex combi-
nation technique, the problems of the novel impulsive
synchronization scheme have been proposed in [19],
which allowed to synchronize two identical discrete-
time neural networks (DDNNs) with unknown delays.
It is noted that there are few results about the synchro-
nization of state-dependent impulsive control, where
the state is included in the impulsive moment.

Generally, impulsive control has been widely recog-
nized as a powerful control approach for stabiliz-
ing linear and nonlinear systems, and synchronizing
two chaotic systems, or driving the system to a limit
cycle [10–19,22–26]. According to different switch-
ing rule, impulsive system can be classified into two
types: impulsive systems with fixed-time impulses and
impulsive systems with variable-time impulses, that
is, impulsive systems with state-dependent impulses.
If the impulsive instants are absolutely predetermined
and independent of state, then we get an impulsive sys-
tem with fixed-time impulses. If the impulses occur
when the trajectory hits a hypersurface in the extended
phase space, then the impulsive instants are depen-
dent on state, that is, state-dependent impulsive sys-
tems. Recently, the impulsive systems with fixed-time
impulses analysis problem for nonlinear system or lin-
ear system has received increasing research attention
and many relevant results have been reported in the
literature [10–19,22–26]. For example, the impulsive
effects on stability of discrete-time complex-valued
neural networkswith both discrete anddistributed time-

varying delays have been investigated in 2015 [24].
In [25], the authors researched the synchronization
of memristor-based bidirectional associative memory
(BAM) neural networks with time-varying delays by
applying impulsive control. In [26], the authors pro-
posed a novel impulsive control law for synchroniza-
tion of stochastic discrete complex networks with time
delays and switching topologies.

To our knowledge, the most existing publications
focus on the fixed-time impulsive systems, and the
readers are referred to the references [10–19,22–26].
But only a few results on dynamics for state-dependent
impulsive systems have been published. Recently,
series significant theoretical results are the generaliza-
tion of the studies with fixed-time impulses to state-
dependent impulse time t = θk + τk(x) [27–35]. How-
ever, in [27–35], the authors investigated the dynam-
ics of state-dependent impulsive control system via
comparison system method, and the established com-
parison systems yet also be variable-time impulsive
systems but with one dimension. Therefore, it is still
difficult to analyze the dynamics for such compari-
son systems. The critical challenge for the research
on state-dependent impulsive system is that the dwell
time is completely indeterminate, and the moments of
impulses are arbitrary in R+, that is, solutions with dif-
ferent initial data have different impulse time.Recently,
Akhmet in [37] proposed a powerful analytical tool
for discontinuous ystems: B-equivalence method. By
applying this method, the global robust asymptotic sta-
bility of variable-time impulsive BAMneural networks
have been obtained in [36]. Unfortunately, in [36,37],
the relationship between the original jump operator in
variable-time impulsive system and new jump opera-
tor in corresponding fixed-time impulsive system have
not been obtained. It is noted that the authors in [36]
just simply assumed that new jump operator is linear
with respect to system state. However, we have suc-
cessfully handled these problems through our analysis
in this paper. Although there are many results concern-
ing the state-dependent impulsive control for nonlinear
systems, one should underline that there have no rele-
vant published results in literature where the reduction
principle based on B-equivalence is effectively applied
to synchronization on memristive chaotic circuit via
state-dependent impulsive control.

Motivated by the above discussions, the main objec-
tive of this paper is to find the sufficient conditions
which ensure the synchronization of two memristive

123



Synchronization of coupled memristive chaotic circuits 117

chaotic circuit system via state-dependent impulsive
control by means of B-equivalence method. More-
over, we will establish several assumptions that guar-
antee every solution of the error system intersects each
surface of discontinuity exactly once. Based on the
Lyapunov stability theory and inequality techniques,
the state-dependent impulsive error systems can be
reduced to the fixed-time impulsive ones, which can
be regarded as the comparison systems of the original
impulsive system. The numerical simulations are car-
ried out to demonstrate that the driving system with-
out impulses can be synchronized by state-dependent
impulsive control, and finally establish a set of stabil-
ity criteria of error system by using of B-equivalent
comparison system. Therefore, investigating the syn-
chronization on the system with non-fixed moments of
impulses is necessary and more general than the fixed-
time impulsive system.

This paper is organized as follows: In following sec-
tion, the theoretical model for memristive chaotic sys-
tem, some definitions and lemmas are presented. In
Sect. 3, the conditions of absence of beating and the cor-
responding B-equivalence method are introduced. The
synchronization via state-dependent impulsive control
are established in Sect. 4. The numerical simulations
are carried out to demonstrate the effectiveness of the
obtained results in Sect. 5, and the conclusion is drawn
in Sect. 6.

2 Model description and some preliminaries

Notations The notations used in this paper are quite
and fairly standard. Throughout this paper, Rn and
Rn×ndenote, respectively, the n-dimensional Euclid-
ean space and the set of all n × n real matrices.
‖x‖ = √

xTx refers to the Euclidean vector norm. AT

represents the transpose of matrix A. Matrices, if not
explicitly specified, are assumed to have compatible
dimensions. Let R+ = [0,+∞), Z+ = 1, 2, 3, . . .,
andG = ⋃∞

i=1 Gi .We further denoteΓi = {(t, x(t)) ∈
R+ × G : t = θi + τi (x(t)), t ∈ R+, x ∈ G, G ⊂ Rn}
the i−th surface of discontinuity, and the sequence
θ = {θi }∞i=1 satisfies 0 = θ0 < θ1 < θ2 < · · · <

θi < θi+1 < · · · with limi→∞ θi = ∞.
In this section, some preliminaries including the

memristive chaotic circuit model, some necessary def-
initions and lemmas are presented, which are used
throughout this paper. In 2010, Muthuswamy [5] pro-

Fig. 1 The memristor chaotic circuit, which is derived from
Chua’s circuit by replacing the Chua diode with the flux-
controlled memristor

posed the possible nonlinear circuits as shown in
Fig. 1, which replaces the Chua’s diode with a flux-
controlled memristor. The equations of the memristor-
based chaotic circuit in Fig. 1 can be written as
following:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dv1(t)
dt = 1

C1

(
v2(t)−v1(t)

R − i(t)
)

,

dv2(t)
dt = 1

C2

(
v1(t)−v2(t)

R − iL(t)
)

,

diL (t)
dt = v2(t)

L ,

dϕ
dt = v1(t).

(1)

where i(t) is defined as:

i(t) = W (ϕ(t))υ1(t) = dq

dϕ
υ1(t), (2)

We choose a cubic nonlinearity for theq−ϕ function
[5]:

q(ϕ) = αϕ + βϕ3, (3)

Then, the memductance function W (ϕ) is given by:

W (ϕ) = dq

dϕ
= α + 3βϕ2. (4)

In order to obtain the chaos generation, we then set-
tled the parameter values of Eq. (1) which yield chaotic
dynamics are: R = 2 kΩ, L = 15.5m H, C1 =
8 uF, C2 = 200 uF potentiometer. Letting α =
−0.663 × 10−3 and β = 0.004 × 10−3 in Eq. (4),
similar to values in [38]. Choosing the initial conditions
(υ1(0), υ2(0), iL(0), ϕ(0)) = (0.132, 0.147, 0.691, 0)
the attractor generated by means of numerical integra-
tion is illustrated in Fig. 2.

For convenience, we let υ1 = x1, υ2 = x2, iL =
x3, ϕ = x4; a1 = 1/C1, a2 = 1/C2, a3 =

123



118 S. Yang et al.

Fig. 2 Several projections
of the chaotic attractor
codified by Eq. (1)
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1/R, a4 = 1/L . Then the memristor-based chaotic
circuit system is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = a1(a3(x2 − x1) − W (x4)x1),

ẋ2 = a2(a3(x1 − x2) − x3),

ẋ3 = a4x2,

ẋ4 = x1.

(5)

By decomposing the linear and nonlinear parts of
the memristor-based chaotic circuit system in (5), we
can rewrite it as

ẋ = Ax + Φ(x), (6)

where xT = (x1, x2, x3, x4), A =⎡

⎢
⎢
⎣

−a1a3 a1a3 0 0
a2a3 −a2a3 −a2 0
0 a4 0 0
1 0 0 0

⎤

⎥
⎥
⎦ , Φ(x) =

⎡

⎢
⎢
⎣

−a1W (x4) x1
0
0
0

⎤

⎥
⎥
⎦.

In order to synchronize the memristive chaotic sys-
tem (6) (called the driving system) via state-dependent
impulsive control, another system (called the response
system) is designed as

{
ẏ = Ay + Φ(y) + u, t �= θi + τi (y − x)

�y |t=θi +τi (y−x)= Ji (y − x), i ∈ Z+
(7)

where yT = (y1, y2, y3, y4), A is the same as in Eq.

(6), and Φ(y) =

⎡

⎢
⎢
⎣

−a1W (y4) y1
0
0
0

⎤

⎥
⎥
⎦ .u = (u1, u2, u3,

u4)
T is the state feedback controller to be designed.

Ji (y − x) denotes the jump operator function with
Ji (0) = 0.

Let the error between the states of system (6) and (7)
be e = y − x . Then, we can easily obtain the following
impulsive error system:
{

ė = Ae + f (x, y) + u, t �= θi + τi (e)

�e |t=θi +τi (e)= Ji (e), i ∈ Z+
(8)

where f (x, y) � Φ(y) − Φ(x) =⎡

⎢
⎢
⎣

−a1W (y4)y1 + a1W (x4)x1
0
0
0

⎤

⎥
⎥
⎦.

In this paper, we shall choose a state feedback con-
troller which is defined by:

u = −K (y − x),

where K = diag(k1, k2, k3, k4) and ki > 0 (i =
1, 2, 3, 4). The impulsive controller is designed as
Ji (e).
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Synchronization of coupled memristive chaotic circuits 119

Then the error system are governed by

{
ė = (A − K )e + f (x, y), t �= θi + τi (e)

�e |t=θi +τi (e)= Ji (e), i ∈ Z+
(9)

where eT = (e1, e2, e3, e4) ∈ G ⊆ Rn stands for the
state vector of the error system at time t,
e |t=ξk =
e(ξk+) − e(ξk) with e(ξk+) = limt→ξk+0 e(t) stands
for the state jump at moment ξk , satisfying ξk = θk +
τk(e(ξk)). Without loss of generality, we assume that
the solution e(t) is left continuous at impulse point, that
is, e(ξk−) = limt→ξk−0 e(ξk).

Remark 1 In [10–19,22–26], the authors investigated
the dynamic behaviors of fixed-time impulsive sys-
tems. In real-world problems, the impulses of many
systems do not occur at fixed time, for example, pop-
ulation control systems, saving rates control systems,
ecological systems, and some circuit control systems.
These types of systems are called state-dependent
impulsive differential systems or impulsive systems
with variable-time impulses. The fixed-time impulsive
control can not deal with these problems. Compared
with them, our results are generalization of the stud-
ies with fixed-time impulses to the state-dependent
impulse time t = θi + τi (x). In other words, the results
obtained in the previous articles are just the specific
case of our resultswith τi (x) = 0.Therefore, the results
of this paper are more practically and more advanced
version of the previously constructed results.

Definition 1 [28] Let V : R+ × Rn → R+, then V is
said to belong to class Ω if

1. V is continuous in (τi−1, τi ] × Rn and for each
x ∈ Rn, i = 1, 2, · · · ,

lim
(t,y)→(τ+

i ,x)

V (t, y) = V (τ+
i , x)

exists, and V (τ−
i , x) = V (τi , x).

2. V is locally Lipschizian in x .

From this definition, one can see that a function V
associated with the impulsive system (9) is similar to
a Lyapunov function for stability analysis of an ordi-
nary differential equation. Because these Lyapunov-
like functions are generally discontinuous, we then
need the following definition of the right and upper
Dini’s derivative.

Definition 2 [28] For (t, x) ∈ (τi−1, τi ]×Rn , the right
and upper Dini’s derivative V ∈ Ω with respect to time
variable is defined as

D+V (t, x) ≡ lim
h→0+ sup

1

h
{V [t + h, x + h f (t, x)] − V (t, x)}.

Definition 3 The origin of system (9) is said to be
globally exponentially stable if there exist some con-
stants α > 0 and M > 0 such that ‖e(t, t0, e(t0))‖ ≤
Me−α(t−t0), for any t ≥ t0.

To prove the global exponential stability of the error
system (9), the following lemma is necessary.

Lemma 1 [39] Given any real matricesΣ1,Σ2,Σ3 of
appropriate dimensions and a scalar s > 0, such that
0 < Σ3 = ΣT

3 , then the following inequality holds:

ΣT
1 Σ2 + ΣT

2 Σ1 ≤ sΣT
1 Σ3Σ1 + s−1ΣT

2 Σ−1
3 Σ2.

Throughout this paper, we further make the follow-
ing assumption.

(H) Ji (e) : G → G, τi (e) : G → R with Ji (0) =
0, τi (0) = 0 are continuous functions, for all i ∈ Z+,
and there exist positive numbers lJ and lτ such that

‖e + Ji (e)‖ ≤ l J ‖e‖,
‖τi (α) − τi (β)‖ ≤ lτ‖α − β‖
for all i ∈ Z+, α, β ∈ Rn .

3 Absence of beating and B-equivalent system

The task of investigation of the globally exponentially
stable for system (9) with state-dependent impulses is
more complex than that of systemswith impulses acting
at prescribed moments. A reason for this is the possi-
bility of the ‘beating’ of solutions against the surfaces
of discontinuity. Therefore, our goal is to reduce state-
dependent impulsive system (9) to fixed-time impul-
sive analog as its comparison system by means of B-
equivalence method.

3.1 Absence of beating phenomena

Throughout this paper, we will present a new of condi-
tions that ensure that each solution of (9) intersects each
surface of discontinuity exactly once. For this purpose,
we make the following assumptions.
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120 S. Yang et al.

(H1) There exists a positive number ν such that
0 ≤ τi (e) < ν, therefore, θi ≤ θi + τi (e) ≤ θi + ν.
(H2) There exist two positive numbers θ, θ̄ such
that θ+ν < θi+1−θi < θ̄−ν for all i ∈ Z+, e ∈ G.
(H3) Fix j , and let e(t) : [θ j , θ j + ν] → G is a
solution of (9) in time interval [θ j , θ j + ν]. One of
the following two conditions is satisfied:

(i)

{
dτ j (e)
de · [(A − K )e + f (x, y)] > 1, f or all e ∈ G,

τ j (e(ξ)) + J j (e(ξ)) ≥ τ j (e(ξ)), t = ξ

(i i)

{
dτ j (e)
de · [(A − K )e + f (x, y)] < 1, f or all e ∈ G,

τ j (e(ξ)) + J j (e(ξ)) ≤ τ j (e(ξ)), t = ξ

where t = ξ is the discontinuity point of (9), i.e.,
ξ = θ j + τ j (e(ξ)).

From assumptions (H1)–(H3), the following lem-
mas could be obtained.

Lemma 2 Assume that (H1) and (H2) hold, then each
solution of system (9) which intersects surfaces Γ j and
Γk, j < k −1, must intersects all surfaces Γi , j < i <

k, between the two.

Proof Let e(t) be a solution of system (9), which inter-
sects Γ j and Γk . Then, there exist ξ j and ξk (ξ j < ξk),
such that ξ j = θ j + τ j (e(ξ j )) and ξk = θk + τk(e(ξk)).

Define a function �(t) = t − θi − τi (e(t)), ( j <

i < k). Notably,�(t) is continuous with respect to t by
virtue of the continuity of τi (e(t)). Note that assump-
tions (H1) and (H2) implies

θ < [θi+1 + τi+1(e)] − [θi + τi (e)] < θ̄,

and

[θi + τi (e)] − [θ j + τ j (e)] = [θi − θi−1 + τi (e) − τi−1(e)],
+ [θi−1 − θi−2 + τi−1(e) − τi−2(e)] + · · ·
+ [θ j+1 − θ j + τ j+1(e) − τ j (e)],

hence

(i − j)θ < θi − θ j + τi (e) − τ j (e) < (i − j)θ̄ .

Then we have

�(ξ j ) = ξ j − θi − τi (e(ξ j )) < θ j − θi + τ j (e(ξ j ))

−τi (e(ξ j )) < −(i − j)θ ≤ 0,

�(ξk) = ξk − θi − τi (e(ξk)) < θk − θi + τk(e(ξk))

−τi (e(ξk)) < (k − i)θ̄ ≥ 0.

Then there exists a positive number ξi , ξ j < ξi <

ξk , such that�(ξi ) = 0, that is ξi = θi +τi (e(ξi )). Then
e(t) intersects all surfaces Γi , j < i < k, between Γ j

and Γk . This completes the proof. ��
Lemma 3 Assume that (H1) and (H2) hold, and e(t) :
R+ → G is a solution of system (9). Then e(t) inter-
sects all surfaces Γi , i ∈ Z+.

Proof The proof of this lemma is similar to Lemma
5.3.2 in [24], thus we omit it. ��
Lemma 4 Assume that (H3) holds. Then every solu-
tion e(t) : R+ → G of system (9) intersects each of
the surfaces Γi , i ∈ Z+ at most once.

Proof Assume on the contrary there exists a solution
e(t) intersects the surface Γ j at points (s1, e(s1)) and
(s2, e(s2)), where we assume that s1 < s2, and there
exists no discontinuity point of e(t) between s1 and s2.
Then, s1 = θ j + τ j (e(s1)), s2 = θ j + τ j (e(s2)). For
the case (i) in (H3), we have, by the differential mean
value theorem,

s2 − s1 = τ j (e(s2)) − τ j (e(s1))

≥ τ j (e(s2)) − τ j (e(s1) + J j (e(s1)))

= τ j (e(s2)) − τ j (e(s1+))

=
{
dτ j (e)

de
· [(A − K )e + f (x, y)]

}

(s2 − s1)

> s2 − s1

This is a contradiction. Similarly, for the case (ii) in
(H3), we have

s2 − s1 = τ j (e(s2)) − τ j (e(s1))

≤ τ j (e(s2)) − τ j (e(s1) + J j (e(s1)))

= τ j (e(s2)) − τ j (e(s1+))

=
{
dτ j (e)

de
· [(A − K )e + f (x, y)]

}

(s2 − s1)

< s2 − s1

This is also a contradiction (H3), and thus, Lemma
4 holds. The proof is completed. ��

Based on Lemmas 2–4, we obtain the following
result immediately.

Theorem 1 Assume that (H1)–(H3) hold, then every
solution e(t) : R+ → G of system (9) intersects each
of the surfaces Γi , i ∈ Z+ exactly once.
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Fig. 3 Construction principle of map Wi (e)

3.2 B-equivalent system

In this subsection, we will introduce the B-equivalent
system for (9).

Let e0(t) = e(t, θi , e), that is e0(θi ) = e, be a solu-
tion of the first equation in Eq. (9) in [θi , ξi ]. Denote
ξi the meeting moment of the solution with the sur-
face Γi of discontinuity so that ξi = θi + τi (e0(ξi )).
Let e1(t) also be the a solution of the first equation
in Eq. (9) in [θi , ξi ], such that e1(ξi ) = e0(ξi+) =
e0(ξi ) + Ji (e0(ξi )).

Define the following map (as shown in Fig. 3):

Wi (e) = e1(θi ) − e

= e1(ξi ) −
∫ ξi

θi

[(A − K )e1(s)

+ f (x1(s), y1(s))]ds − e

= e0(ξi ) + Ji (e
0(ξi )) −

∫ ξi

θi

[(A − K )e1(s)

+ f (x1(s), y1(s))]ds − e

=
∫ ξi

θi

[(A − K )e0(s) + f (x0(s), y0(s))]ds

+e + Ji (e
0(θi ) +

∫ ξi

θi

[(A − K )e0(s)

+ f (x0(s), y0(s))]ds)

−
∫ ξi

θi

[(A − K )e1(s) + f (x1(s), y1(s))]ds − e

=
∫ ξi

θi

[(A − K )e0(s) + f (x0(s), y0(s))]ds

+Ji (e
0(θi ) +

∫ ξi

θi

[(A − K )e0(s)

+ f (x0(s), y0(s))]ds)

−
∫ ξi

θi

[(A − K )e1(s) + f (x1(s), y1(s))]ds

(10)

The impulsive synchronization between two mem-
ristor chaotic circuits is depicted in Fig. 4. In this imple-
mentation, we have determined the circuit parameters
for each memristor chaotic circuits are same as Fig. 1.
Because the occurrence of the impulses is determined
by the statement of the system, we know that the impul-
sive intervals of the system also depend on the state-
ment of the memristive chaotic circuits, as shown in
Fig. 3.

From the definition of Wi (e) together with Fig. 3,
we get the following observations:

Observation 1 e0(t) = e(t, θi , e) can be extended as
the solution of (9) in R+;

Observation 2 e1(t) = e(t, ξi , e0(ξi+)) can be
extended as the solution of the following fixed-time
impulsive system in R+:
{

ė(t) = (A − K )e(t) + f (x(t), y(t)), t �= θi ,


e|t=θi = Wi (e).
(11)

Observation 3 For all i ∈ Z+, on time internal
(ξi−1, θi ] with ξ0 = t0,

⎧
⎪⎨

⎪⎩

e0(t) = e1(t),

e1(θi+) = e0(θi ) + Wi (e0(θi )),

e1(ξi ) = e0(ξi+) = e0(ξi ) + Ji (e0(ξi )).

Observation 4 For all i ∈ Z+, on time internal
(θi , ξi ],

e1(t) − e0(t) = e + Wi (e) +
∫ t

θi

[(A − K )e1(s)

+ f (x1(s), y1(s))]ds

− e −
∫ t

θi

[(A − K )e0(s) + f (x0(s), y0(s))]ds

= Wi (e) +
∫ t

θi

[(A − K )e1(s) + f (x1(s), y1(s))]ds

−
∫ t

θi

[(A − K )e0(s) + f (x0(s), y0(s))]ds (12)

Then for all t ∈ (θi , ξi ], we have,

‖e1(t) − e0(t)‖ ≤ ‖Wi (e)‖ +
∫ t

θi

‖(A − K )e1(s)
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Fig. 4 The impulsive
synchronization between
two memristor chaotic
circuits

+ f (x1(s), y1(s))‖ds

+
∫ t

θi

‖(A − K )e0(s) + f (x0(s), y0(s))‖ds

≤ ‖Wi (e)‖ + 2Me(t − θi )

= ‖Wi (e)‖ + 2Meτi (e
0(t)) (13)

where Me = sup
(t,e)∈R+×G

‖(A−K )e(t)+ f (x(t), y(t))‖,
and

‖Wi (e)‖

= ‖
∫ ξi

θi

[(A − K )e0(s) + f (x0(s), y0(s))]ds

+ Ji (e
0(θi ) +

∫ ξi

θi

[(A − K )e0(s)

+ f (x0(s), y0(s))]ds)

−
∫ ξi

θi

[(A − K )e1(s) + f (x1(s), y1(s))]ds‖

≤ ‖
∫ ξi

θi

(A − K )e0(s) + f (x0(s), y0(s))ds‖

+ ‖Ji (e
0(θi ) +

∫ ξi

θi

[(A − K )e0(s)

+ f (x0(s), y0(s))]ds)‖

+ ‖
∫ ξi

θi

(A − K )e1(s) + f (x1(s), y1(s))ds‖

≤ Me(ξi − θi ) + l J ‖e‖ + l J Me(ξi − θi ) + Me(ξi − θi )

= (2Me + l J Me)τi (e
0(ξi )) + l J ‖e‖ (14)

and

τi (e
0(ξi )) ≤ lτ‖e0(ξi )‖ = lτ‖e +

∫ ξi

θi

[(A − K )e0(s)

+ f (x0(s), y0(s))]ds‖
≤ lτ‖e‖ + lτ Me(ξi − θi )

= lτ‖e‖ + lτ Meτi (e
0(ξi ))

which implies that

τi (e
0(ξi )) ≤ (1 − lτ Me)

−1lτ‖e‖. (15)

Therefore,

‖Wi (e)‖ ≤ [(2Me + l J Me)(1 − lτ Me)
−1lτ + l J ]‖e‖.

(16)

Thus,

‖e1(t) − e0(t)‖ ≤ [Me(4 + l J )(1 − lτ Me)
−1lτ + l J ]‖e‖.

(17)

4 Synchronization via state-dependent impulsive
control

In this section,we shall present that the global exponen-
tial stability property of system (11) implies the same
stability property of (9) under the previous discussion.

Theorem 2 Assume that (H1)–(H3) hold. Suppose that
there exist V ∈ Ω such that:

ν1‖e(t)‖p ≤ V (e(t)) ≤ ν2‖e(t)‖p, f or any e ∈ Rn,

(18)

and

D+V (e(t)) ≤ αV (e(t)), f or any t ∈ (θi , ξi ],
(19)

where ν1 > 0, ν2 > 0, α > 0, p > 0, and e(t) is a
solution of (9) in (θi , ξi ]. Then it holds that

1. ‖e + Wi (e)‖ ≤ μ1‖e‖, f or any e ∈ G,
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2. ‖e1(t) − e0(t)‖ ≤ μ2‖e‖, f or any t ∈ (θi , ξi ],
where

μ1 = l J
p
√

ν−1
1 ν2eαν/p + Me(1 − lτ Me)

−1lτ

μ2 = Me(4 + l J )(1 − lτ Me)
−1lτ + l J

e0(t) = e(t, θi , e) is an any solution of (9), which
intersects the surface Γi of discontinuity at ξi , ξi =
θi + τi (e0(ξi )). And e1(t) is a solution of (11) such
that e1(θi+) = e + Wi (e), e1(ξi ) = e0(ξi+) =
e0(ξi ) + Ji (e0(ξi )), Wi (e) is defined by (10).

Proof It follows from (18), (19) that:

[ν−1
2 V (e(t))] 1

p ≤ ‖e(t)‖ ≤ [ν−1
1 V (e(t))] 1

p , (20)

Integrate both side of inequality (19) from θi to t ,
where t ∈ (θi , ξi ], we get

V (e(t)) ≤ V (e(θi+))eα(t−θi ) (21)

From Eqs. (20)–(21) that

‖e(t)‖ ≤ [ν−1
1 V (e(θi+))eα(t−θi )] 1

p

≤ p
√

ν−1
1 ν2e

α
p (t−θi )‖e(θi+)‖, (22)

Therefore,

‖e0(t)‖ ≤ p
√

ν−1
1 ν2e

α
p (t−θi )‖e‖,

‖e1(t)‖ ≤ p
√

ν−1
1 ν2e

α
p (t−θi )‖e + Wi (e)‖.

Because 0 < t − θi = τi (e(t)) ≤ ν, then we can get

‖e0(t)‖ ≤ p
√

ν−1
1 ν2e

α
p ν‖e‖. (23)

Therefore, from Eqs. (15) and (23), we have

‖e + Wi (e)‖ = ‖e1(θi+)‖

= ‖e1(ξi ) +
∫ ξi

θi

[(A − K )e1(s)

+ f (x1(s), y1(s))]ds‖

≤ ‖e1(ξi )‖ + ‖
∫ ξi

θi

[(A − K )e1(s)

+ f (x1(s), y1(s))]ds‖

≤ ‖e0(ξi ) + Ji (e
0(ξi ))‖ + Me(ξi − θi )

≤ l J ‖e0(ξi )‖ + Meτi (e
0(ξi ))

≤
(

l J
p
√

ν−1
1 ν2eαν/p + Me(1 − lτ Me)

−1lτ

)

‖e‖
= μ1‖e‖. (24)

The proof of condition (b) has been obtained in Eq.
(17), and thus we omit it.

Then, we complete the proof. ��
Remark 2 Assume that (H1)–(H3) hold; theTheorem2
implies that the state-dependent impulsive error system
(9) has the same stability property with the fixed-time
impulsive error system (11).

Theorem 3 Assume that all the assumptions hold.
Suppose that there exist V ∈ Ω such that:

1. ν1‖e(t)‖p ≤ V (e(t)) ≤ ν2‖e(t)‖p

2.

{
D+V (e(t)) ≤ αV (e(t)), t �= θk, k ∈ Z+
V (e(θk+)) ≤ dk V (e(θk)),

3. α(θ̄ −ν)+ ln dk < −δ where ν1 > 0, ν2 > 0, p >

0, dk > 0, δ > 0, and θk is the impulsive moments
of (11).

Then the origin of system (11) is globally exponen-
tially stable, and therefore, the origin of system (9) is
globally exponentially stable.

Proof From condition (b), by taking the mathematical
induction, we have

1. When t ∈ (0, θ1], we get

V (e(t)) ≤ V (e(t0))e
αt . (25)

then we can get,

V (e(θ1)) ≤ V (e(t0)) exp{αθ1}.
2. When t ∈ (θ1, θ2], we have

V (e(t)) ≤ V (e(θ1+))eα(t−θ1)

≤ d1V (e(θ1))e
α(t−θ1)

= d1V (e(t0)) exp{αθ1} exp{α(t − θ1)}.
≤ V (e(t0)) exp{αt + ln d1}. (26)

and

V (e(θ2)) ≤ V (e(t0)) exp{αθ2 + ln d1}.
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3. Assume that the inequality also holds for t ∈
(θk, θk+1], k ≥ 1, that is,

V (e(t)) ≤ V (e(t0)) exp

{

αt +
k∑

i=1

ln di

}

. (27)

and

V (e(θk)) ≤ V (e(t0)) exp

{

αθk +
k∑

i=1

ln di

}

.

4. Note that, if t ∈ (θk+1, θk+2], repeat the same
process, and hence we have

V (e(t)) ≤ V (e(θk+))eα(t−θk )

≤ dk+1V (e(θk))e
α(t−θk )

= dk+1V (e(t0)) exp

{

αθk +
k∑

i=1

ln di

}

exp{α(t − θk)}

= V (e(t0)) exp{αt +
k+1∑

i=1

ln di }. (28)

Therefore, for t ∈ (θk, θk+1], k ∈ Z+,

V (e(t)) ≤ V (e(t0)) exp

{

αt +
k∑

i=1

ln di

}

. (29)

and we also have

t ≤ θk+1 = θk+1 − θk + θk − θk−1

+ · · · + θ1 − θ0 + 0

≤
k+1∑

i=1

(θi − θi−1)

≤ (k + 1)(θ̄ − ν)

Therefore,

k ≥ t

θ̄ − ν
− 1,

and

V (e(t)) ≤ V (e(t0)) exp

{

αt +
k∑

i=1

ln di

}

.

≤ V (e(t0)) exp

{

α

k+1∑

i=1

(θi − θi−1) +
k∑

i=1

ln di

}

.

= V (e(t0)) exp{α(θ̄ − ν)}

exp

{
k∑

i=1

(ln di + α(θi − θi−1)

}

.

≤ V (e(t0)) exp{α(θ̄ − ν)} exp{−kδ}
< V (e(t0)) exp{α(θ̄ − ν) + δ} exp

{

− δ

θ̄ − ν
t

}

.

(30)

Then, from condition 1, we get

‖e(t)‖ ≤ M‖e(t0)‖ exp
{

− δ

θ̄ − ν
t

}

(31)

where M = p
√

ν−1
1 ν2 exp{α(θ̄ − ν) + δ}.

This completes the proof. ��
Theorem 4 Assume that all the assumptions hold.
Suppose that χ = {x ∈ Rn, y ∈ Rn | ‖ f (x, y)‖ ≤
γ ‖y − x‖}, then there exist symmetric and positive def-
inite matrix P > 0, and positive scalars α > 0, s > 0
such that:

1. Ω = (A− K )T P + P(A− K )+ s P2 + s−1γ 2 I −
αP ≤ 0

2. dk = λM μ2
1

λm
≤ 1

3. α(θ̄ − ν) + ln dk < −δ

Then the origin of system (11) is globally exponentially
stable.

Proof Consider the following Lyapunov functional:

V (e(t)) = eT (t)Pe(t)

When t �= θk , calculate the derivative V̇ of t along
the solution of system (11), and then we get

V̇ (e(t)) = ėT (t)Pe(t) + eT (t)Pė(t)

= [(A − K )e(t) + f (x(t), y(t))]T Pe(t)

+ eT (t)P[(A − K )e(t) + f (x(t), y(t))]
≤ eT (t)[(A − K )T P + P(A − K )]e(t)

+ seT (t)P PT e(t)

+ s−1 f T (x(t), y(t)) f (x(t), y(t))

≤ eT (t)[(A − K )T P + P(A − K ) + s P2

+ s−1γ 2 I − αP]e(t) + αeT (t)Pe(t)

≤ αV (e(t)) (32)
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When t = θk , we have,

V (θk, e(θk) + Wk(e(θk)))

= [e + Wk(e)]T P[e + Wk(e)]
≤ λMμ2

1‖e(θk)‖2

≤ λMμ2
1

λm
V (e(θk))

= dk V (e(θk)) (33)

��
Therefore, according to Theorem 3, together with

(32) and (33), we know that the origin of system (11) is
globally exponentially stable, which implies the same
stability property of system (9). Then the proof is com-
pleted.

When P is identity matrix, assume that all the
assumptions hold. Then we have the following corol-
lary by Theorems 2–4.

Corollary 1 Let α, s, γ be as in Theorem 4. If there
exists positive number δ such that, for all k ∈ Z+,

1. (A − K )T + A − K + s I + s−1γ 2 I − α I ≤ 0
2. −1 ≤ μ1 ≤ 1
3. α(θ̄ − ν) + 2 lnμ1 < −δ

where μ1 = l J eαν/2+Me(1−lτ Me)
−1lτ . Then, the ori-

gin of system (11) is globally exponentially stable, that
is, the memristive chaotic circuit (6) can be synchro-
nized follow the response system (7) under the state-
dependent impulsive control.

When there is no impulsive controller and only a
state feedback controller, the error system (9) reduces
to

ė = (A − K )e + f (x, y). (34)

Then we obtain the following result.

Corollary 2 Let s, γ be as in Theorem 4. If there exists
positive number α such that,

Ω = (A − K )T + A − K + s I + s−1γ 2 I + α I ≤ 0

Then, the origin of system (34) is globally stable, that
is, the memristive chaotic circuit (6) can be synchro-
nized follow the response system (7)when the impulsive
controller Ji (e) = 0.

Proof Consider the following Lyapunov functional:

V (e(t)) = eT (t)e(t)

Calculate the derivative V̇ of t along the solution of
system (34), we get

V̇ (e(t)) = ėT (t)e(t) + eT (t)ė(t)

= [(A − K )e(t) + f (x(t), y(t))]T e(t)

+ eT (t)[(A − K )e(t) + f (x(t), y(t))]
≤ eT (t)[(A − K )T + (A − K )]e(t)

+ seT (t)e(t) + s−1 f T (x(t), y(t)) f (x(t), y(t))

≤ eT (t)[(A − K )T + (A − K ) + s I

+ s−1γ 2 I + α I ]e(t) − αeT (t)e(t)

≤ −αV (e(t)) ��

The proof is completed.

Remark 3 References [10–19,22–26] have investigated
the dynamics of nonlinear systems with fixed-time
impulse. Different from the previous results, the B-
equivalence method allows us to consider equations
with fixed-time impulsive systems instead of state-
dependent impulsive systems. In addition, a novel B-
map for synchronization analysis of the addressedmod-
els has been formulated, and the reduction process is
explained in Theorems 2–4.

Remark 4 In Theorems 2–4 and Corollaries 1–2, the
results obtained in [10–19,22–26] have been extended
to the state-dependent impulsive case in this paper.
In other words, the time sequence is differential sys-
tems with fixed-time impulses can be viewed as special
impulsive differential systems with state-dependent
impulses. If τi (·) = 0, Eqs. (7) and (8) can be reduced
to the fixed-time impulsive system, which is same as
[6], then it is easy to analyze its dynamic behavior via
fixed-time impulsive control.

Remark 5 Theorems 2–4 imply that the effectiveness
of state-dependent impulsive control has been success-
fully analyzed theoretically, and the effective electrical
design scheme of memristive chaotic circuits has been
proposed in [5], and the impulsive synchronization cir-
cuit is devised as shown in Fig. 4.

5 Numerical simulations

In this section, we will give the numerical simulation to
imply the impulsive synchronization of the two mem-
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ristive chaotic circuit by applying the theory presented
in the previous section. The error system is given by

{
ė(t) = (A − K )e(t) + f (x(t), y(t)), t �= θi + τi (e(t))

�e |t=θi +τi (e(t))= Ji (e(t)), i ∈ Z+
(35)

Let A =

⎡

⎢
⎢
⎣

−a1a3 a1a3 0 0
a2a3 −a2a3 −a2 0
0 a4 0 0
1 0 0 0

⎤

⎥
⎥
⎦

≈

⎡

⎢
⎢
⎣

−62.5 62.5 0 0
2.5 −2.5 −5 × 10−3 0
0 65 0 0
1 0 0 0

⎤

⎥
⎥
⎦, the state feedback

control gain can be defined by K = diag(0.8, 0.8, 0.8,
0.8). Then Eq. (34) can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1 = a1(a3(e2 − e1) − W (y4)y1 + W (x4)x1), t �= θi + τi (e(t))

ė2 = a2(a3(e1 − e2) − e3), t �= θi + τi (e(t))

ė3 = a4e2, t �= θi + τi (e(t))

ė4 = e1, t �= θi + τi (e(t))

�e1 = J1(e(t)), t = θi + τi (e(t))

�e2 = J2(e(t)), t = θi + τi (e(t))

�e3 = J3(e(t)), t = θi + τi (e(t))

�e4 = J4(e(t)), t = θi + τi (e(t))

(36)

In the following simulation,We take θi = 0.2i, τi (e(t))
= 1

75π [arcsin(e1)]2, Ji (e(t)) = Bi e(t) = −0.5e(t) in
this paper. By simple calculation, we can obtain that
lτ = 1

75π , l J = |1 + Bi | < 1, 0 ≤ τi (e(t)) ≤ πlτ =
1
75 = ν. Note that

∂τi (e)

∂e
[(A − K )e(t) + f (x(t), y(t))]

= 2lτ arcsin(e1)

[
1√
1−e21

0 0 0
]

⎡

⎢
⎢
⎣

a1(a3(e2 − e1) − W (y4)y1 + W (x4)x1)
a2(a3(e1 − e2) − e3)

a4e2
e1

⎤

⎥
⎥
⎦

= 2lτ arcsin(e1)
a1(a3(e2 − e1) − W (y4)y1 + W (x4)x1)

1√
1−e21

≤ 2lτ arcsin(e1)
|a1(a3(e2 − e1) − W (y4)y1 + W (x4)x1)|

1√
1−e21

≤ 1

5
× 10−5 < 1 (37)
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Fig. 5 The time response curve of the error systemwithout state-
dependent impulsive controller and state feedback controller
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Fig. 6 The time response curve of the error system using state-
dependent impulsive controller and state feedback controller

τi (e + Ji (e)) − τi (e) = 1

75π
[arcsin((1 + Bi )e1)]2

− 1

75π
[arcsin(e1)]2

= 1

75π
[arcsin(|(1 + Bi )e1|)]2 − 1

75π
[arcsin(|e1|)]2

= 1

75π
[arcsin(|(1 + Bi )e1|)

+ arcsin(|e1|)][arcsin(|(1 + Bi )e1|) − arcsin(|e1|)]
≤ 0 (38)
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Fig. 7 The norm of synchronization error with the initial value
(x1(0), x2(0), x3(0), x4(0))T = (0.132, 0.147, 0.691, 0)T and
(y1(0), y2(0), y3(0), y4(0))T = (6.285, 1.652, 3.731, 0.001)T

That is ∂τi (e)
∂e [(A − K )e(t) + f (x(t), y(t))] <

1, τi (e+ Ji (e)) ≤ τi (e). Then all the assumptions hold.
Therefore, every solution e(t) : R+ → G of (34) inter-
sects each surface Γi = {(t, e(t)) ∈ R+ × G : t �=
0.2i + 1

75π [arcsin(e1)]2}, i ∈ Z+ exactly once.
Using the impulsive control scheme and the state

feedback control scheme proposed in Corollary 1,
we take s = 10, α = 25.6. By simple computa-
tion, we have γ = 172.2656, μ1 = 0.6183, μ2 =
0.613, dk = 0.3822, δ = 11.8516. Then Theorem
2 and Theorem 3 are satisfied. Therefore, by Corol-

lary 1, the origin of error system (9) is globally expo-
nentially stable, that is, the memristive chaotic cir-
cuit (6) can be synchronized following the response
system (7) and it becomes ultimately the same under
the state-dependent impulsive control, as shown in
Fig. 6. Figure 7 is the norm of synchronization error
with the initial value (x1(0), x2(0), x3(0), x4(0))T =
(0.132, 0.147, 0.691, 0)T and (y1(0), y2(0), y3(0),
y4(0))T = (6.285, 1.652, 3.731, 0.001)T , which is
globally exponentially stable.

In this numerical simulation, when the parameters
of driving system are the same as those in response
system, the initial conditions of two systems are differ-
ent, the time-response curve of the error system with-
out state-dependent impulsive control and state feed-
back control (with K = diag(0.8)) as shown in Fig. 5,
from which we can see the error system is unsta-
ble.When the state-dependent impulsive controller and
state feedback controller are added to system, themem-
ristive chaotic circuit (6) can be synchronized with the
response system (7). Figure 6 shows the time response
curve of error system using state-dependent impulsive
control and state feedback control, where the impulsive
controller is Ji (e(t)) = −0.5e(t).

In order to compare the performance of state-
dependent impulsive control, next, when we take s =
2, the parameters of error system are the same as
the first equation of (35), we choose the another
group of initial conditions of driving system and

Fig. 8 The time response
curve of the error system
with state feedback
controller 0 0.5 1 1.5 2 2.5 3 3.5 4
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response system are (x1(0), x2(0), x3(0), x4(0))T =
(0.132, 0.147, 0.691, 0)T and (y1(0), y2(0), y3(0),
y4(0))T = (0.022, 0.21, 0.7, 0.001)T , respectively.
Figure 7 shows the time response curve of the error
system without the state-dependent impulsive control.
It can be seen that the synchronization performance is
poor, and thus, the necessity of using suitable controller
is inevitable.

In this example, when we choose s = 2 and the
state feedback controller K = diag(1.2), by apply-
ing Corollary 2, we can get α = 43.9107. Figure
8 shows the time response curve of the error sys-
tem with initial value (x1(0), x2(0), x3(0), x4(0))T =
(0.132, 0.147, 0.691, 0)T and (y1(0), y2(0), y3(0),
y4(0))T = (0.022, 0.21, 0.7, 0.001)T , which are free
of impulsive control.

6 Conclusions

This paper is focuses on the synchronization analysis
of two memristive chaotic circuits via state-dependent
impulsive control by using a series of analysis tech-
nique.Byadding state-dependent impulsive controllers,
the general stability criterion conditions of the error
system, together with its simplified versions has been
obtained. Moreover, several necessary assumptions
have been proposed to ensure each solution of the
error system intersects each of the discontinuity exactly
once. In addition, based on B-equivalence method
and inequality techniques, we have reduced state-
dependent impulsive error system to the fixed-time
impulses (which is state-independent impulses), and
corresponding proofs have been proposed to imply
that the state-dependent impulsive error system has the
same stability property with the fixed-time impulsive
system. Finally, numerical simulations are carried to
demonstrate the effectiveness of the obtained results.
As we know, there are few works (if any) have been
reported to control the TS fuzzy systems and higher-
order memristive circuit via state-dependent impulsive
control in the existing literature, so one of the future
tasks will be to improve the stability criteria for TS
fuzzy model systems and higher-order memristive cir-
cuit under state-dependent impulsive control by B-
equivalence method.
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